
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Oct 21, 2019

Prioritization before risk assessment: The viability of uncertain data on food contact
materials

Pieke, Eelco Nicolaas; Granby, Kit; Teste, Bruno; Smedsgaard, Jørn; Rivière, Gilles

Published in:
Regulatory Toxicology and Pharmacology

Link to article, DOI:
10.1016/j.yrtph.2018.06.012

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Pieke, E. N., Granby, K., Teste, B., Smedsgaard, J., & Rivière, G. (2018). Prioritization before risk assessment:
The viability of uncertain data on food contact materials. Regulatory Toxicology and Pharmacology, 97, 134-143.
https://doi.org/10.1016/j.yrtph.2018.06.012

https://doi.org/10.1016/j.yrtph.2018.06.012
https://orbit.dtu.dk/en/publications/prioritization-before-risk-assessment-the-viability-of-uncertain-data-on-food-contact-materials(08185db0-8852-438f-a945-495df9149f2a).html
https://doi.org/10.1016/j.yrtph.2018.06.012


Accepted Manuscript

Prioritization before risk assessment: The viability of uncertain data on food contact
materials

Eelco N. Pieke, Kit Granby, Bruno Teste, Jørn Smedsgaard, Gilles Rivière

PII: S0273-2300(18)30168-5

DOI: 10.1016/j.yrtph.2018.06.012

Reference: YRTPH 4153

To appear in: Regulatory Toxicology and Pharmacology

Received Date: 6 April 2018

Revised Date: 13 June 2018

Accepted Date: 16 June 2018

Please cite this article as: Pieke, E.N., Granby, K., Teste, B., Smedsgaard, Jø., Rivière, G., Prioritization
before risk assessment: The viability of uncertain data on food contact materials, Regulatory Toxicology
and Pharmacology (2018), doi: 10.1016/j.yrtph.2018.06.012.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.yrtph.2018.06.012


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Prioritization before Risk Assessment: 1 

the viability of uncertain data on food 2 

contact materials 3 

Eelco N. Pieke*a, Kit Granbya, Bruno Testeb, Jørn Smedsgaarda, Gilles 4 

Rivièreb 5 

a Technical University of Denmark, National Food Institute, Research Group for Analytical Food Chemistry, 6 

Kemitorvet Building 202, 2800 Kgs. Lyngby, Denmark 7 

 8 
b French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie 9 

Curie, 94701 Maisons-Alfort Cedex, France 10 

The views and opinions expressed in this article are those of the authors.  11 

                                                           
* Corresponding Author: Eelco Nicolaas Pieke; eelco.pieke@gmail.com; +31 657 151 292 
 
Correspondence for other authors: Kit Granby (kgra@food.dtu.dk), Bruno Teste (bruno.teste@anses.fr), 
Jørn Smedsgaard (smeds@dtu.dk), Gilles Rivière (gilles.riviere@anses.fr) 
 
 
Abbreviations: ADI: applicability domain index; CMR: carcinogenicity, mutagenicity, reproductive toxicity; 
EDA: effect directed analysis; FCM: food contact material; (N)IAS: (non-)intentionally added substances; 
QSAR: quantitative structure-activity relationship; RA: risk assessment; TMC: total migratable content; TTC: 
threshold of toxicological concern. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Abstract 12 

The shortage of data on non-intentionally added substances (NIAS) present in food contact 13 

material (FCM) limits the ability to ensure food safety. Recent strategies in analytical method 14 

development allow investigating NIAS by using chemical exploration; but this has not been 15 

sufficiently investigated in risk assessment context. Here, exploration is applied on two paperboard 16 

FCM samples followed by risk prioritization for chemicals that can potentially migrate to food. 17 

Concentration estimates from exploration are converted into a tentative exposure assessment, 18 

while predicted chemical structures are assessed using quantitative structure-activity relationships 19 

(QSAR) models for carcinogenicity, mutagenicity, and reproductive toxicity. A selection of 60 20 

chemical compounds from two FCMs is assessed by four risk assessors to classify chemical 21 

compounds based on probable risk. For 60% of cases, the assessors classified compounds as 22 

either high priority or low priority. Unclassified compounds are due to disagreements between 23 

experts or due to a lack of data. Among the high priority substances were high concentration 24 

compounds, benzophenone derivatives, and dyes. The low priority compounds contained e.g. 25 

oligomers from plasticizers and linear alkane amides. The classification scheme was demonstrated 26 

to provide valuable information based on tentative data, able to prioritize discovered chemical 27 

compounds for pending risk assessment. 28 

Keywords: risk prioritization; FCM; structure assessment; semi-quantification; exposure 29 

assessment; hazard assessment  30 
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1. Introduction 31 

An all-time debated source of human health risk is the chronic long-term exposure to chemical 32 

compounds due to presence in food. One important source of chemicals in food is due their 33 

migration from food packaging materials (Arvanitoyannis and Bosnea, 2004; Castle, 2006; Grob, 34 

2014; Jickells, 2007). Investigations into the safety of food contact materials, especially those non-35 

harmonized in legislations affirm that thousands of possible chemicals may be present in paper 36 

and board packaging alone (Bengtström et al., 2016; Biedermann et al., 2011; Biedermann and 37 

Grob, 2013; Binderup et al., 2002; Ozaki et al., 2005; Triantafyllou et al., 2007), while only a minor 38 

fraction of these chemicals have been successfully identified and risk assessed (Geueke et al., 39 

2014). In addition, some chemical compounds originating from paper and board have been shown 40 

to have biological activity and therefore are of concern to human health (Bengtström et al., 2016; 41 

Honkalampi-Hämäläinen et al., 2010; Rosenmai et al., 2017). As a result, packaging contaminates 42 

food with uncharacterized chemicals that may exert significant adverse effects (Gallart-Ayala et al., 43 

2013), yet the extent or nature of the chemical migration is not well-defined because it depends on 44 

many parameters, e.g., the packaging material, contact type, temperature, and food type (Barnes 45 

et al., 2007; Hauder et al., 2013; Poças et al., 2011). 46 

The regular approach to chemicals in food is to perform a specific risk assessment (RA) for each 47 

individual chemical, see Figure 1. However, determining the risk character is convoluted when 48 

there is a shortage of available data on migrating compounds (Skjevrak et al., 2005). For the 49 

commonly investigated Intentionally Added Substances (IAS), there is often data available from 50 

prior research or via accredited methods, but for the more elusive Non-Intentionally Added 51 

Substances (NIAS), there is rarely relevant data (Driffield et al., 2016; Grob, 2014; Koster et al., 52 

2015; Pivnenko et al., 2015). In fact, most NIAS do not have assigned chemical structures, 53 

concentration data, or characterization of hazards, and few methods are capable to obtain these 54 

data for such a large group of chemicals. The sheer amount of possible compounds prohibits 55 
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performing a dedicated safety evaluation on each compound, and it significantly challenges 56 

analytical methods to provide adequate data to perform RA. Consequently, some researchers 57 

recently concluded that the existing frameworks RA are inadequate to ensure food safety (Muncke 58 

et al., 2017). 59 

The knowledge gap for NIAS and other chemical compounds needs to be reduced in order to 60 

incorporate them in legislation. We recently investigated the use of explorative methods to discover 61 

chemical compounds in FCM and concluded that untargeted analytical strategies are useful and 62 

efficient to estimate the concentration and chemical structure of unknowns (Pieke et al., 2018, 63 

2017). However, it is unrealistic to perform comprehensive analysis on all compounds discovered 64 

via exploration (Biedermann and Grob, 2013), so some sort of risk prioritization is required to 65 

ensure resources are dedicated to compounds most likely to introduce adverse health effects 66 

(Barlow, 2009). One of the core requirements of risk prioritization is to determine a risk character of 67 

a chemical compound that is in line with common risk assessment (Guillén et al., 2012; 68 

Schymanski et al., 2014). 69 

 70 

Figure 1: The characterization of risk is a result from highly specific data, which are combined into 71 

exposure assessment and hazard identification and characterization. Obtaining the data needed for these 72 

assessments is resource-intensive, especially for larger number of compounds with existing data gaps. 73 
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The Threshold of Toxicological Concern (TTC) concept has been adopted within European Union 74 

(EU) legislation as a tool to better deal with NIAS and other unknown chemical compounds (EFSA 75 

and WHO, 2016; Kroes et al., 2004). The TTC concept uses tentative exposure data to assess if 76 

intake is below an accepted threshold of no concern, defined by assigning a Cramer class based 77 

on the chemical structure. Hence, TTC is an preliminary assessment tool. It has been applied in a 78 

strategy for NIAS discovery by Koster et al. (2014), and may be viable for the exploration 79 

approaches shown recently by Pieke et al. (2018, 2017). However, TTC requires compounds to 80 

show no genotoxicity (e.g., mutagenicity) or do not exceed an exposure of 0.15 µg person-1 day-1. 81 

Hence, if the exposure exceeds 0.15 µg person-1 day-1 genotoxicity testing is required, which is 82 

problematic for the large number of compounds that may exceed this threshold. Quantitative 83 

Structure-Activity Relationship (QSAR) modeling of chemical hazard may provide substitute toxicity 84 

data if testing is prohibitive, which has successfully been applied to FCM for hazard-based 85 

assessment and prioritization by van Bossuyt et al. (2017). However, a limitation in hazard-based 86 

approaches is that these generally do not always consider occurrence, migration, and exposure. 87 

In present article, we aim to develop a strategy for risk prioritization of chemical compounds in 88 

FCM following their prior discovery by exploration strategies. For this, we aim to establish the link 89 

between tentative data, e.g., semi-quantification and tentative identification, and existing hazard-90 

based and exposure-based assessment tools, e.g., TTC and QSAR, to perform qualitative risk 91 

prioritization. The risk prioritization tool is designed to mimic conventional risk assessment, 92 

identically obtaining exposure assessment and hazard assessment, followed by an expertise 93 

decision on risk. The tool proposed here is not suggested as a definite method for performing 94 

qualitative risk prioritizations, but emphasizes the need and possibility for using tentative data in a 95 

risk assessment perspective.  96 
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2. Methods 97 

2.1. Analysis 98 

Analysis is performed as reported in two previous studies (Pieke et al., 2018, 2017). In brief: 99 

UHPLC-MS was performed on an Agilent 1290 system (Agilent Technologies, Santa Clara, CA, 100 

USA). Two UHPLC columns were used serially (Phenomenex Luna Omega Polar C18 100 Å, 1.6 101 

µm, 100 x 2.1 mm (Phenomenex, Denmark) and Waters ACQUITY UPLC CSH C18 130 Å, 1.7 102 

µm, 100 x 2.1 mm (Waters, Denmark)). Mass analysis post-UHPLC was performed using an 103 

Agilent 6550 Quadrupole-Time of Flight (Q-TOF) mass spectrometer (Agilent Technologies, Santa 104 

Clara, CA, USA) equipped with Agilent JetStream electrospray ionization (ESI) interface. The 105 

optimization, operating conditions, data collection, and data interpretation are discussed in 106 

previous studies (Pieke et al., 2018, 2017). 107 

Semi-quantification was used to determine estimated concentration of chromatographically eluting 108 

chemical substances within a threefold error (Pieke et al., 2017). The semi-quantification was 109 

limited to the 1200 largest eluting peaks and to detectable analytes in the sample. The chemical 110 

structures of compounds in the extract of the sample were tentatively identified by recording 111 

fragmentation spectra and using structure correlations to propose a best matching chemical 112 

compound (Pieke et al., 2018). The tentative identification results (five predicted chemical 113 

structures) were later combined with the semi-quantification results by comparing exact mass and 114 

retention times. 115 

2.2. Construction and evaluation of a decision unit 116 

The decision unit for risk prioritization and risk profile classification boundaries was designed by 117 

discussing with various interdisciplinary experts at the “Risk assessment for substances and 118 

processes submitted to human food regulation” panel at the French Agency for Food, 119 

Environmental and Occupational Health & Safety (ANSES). Based on the feedback of the expert 120 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

panel, the decision unit was designed to involve automation (data-based decisions) and manual 121 

assessing (expertise-based decisions).  122 

To test the classification scheme the semi-quantification and tentative identification results of two 123 

paper and board FCM samples were used. 30 identified compounds were selected per sample, of 124 

which 20 from ESI+ and 10 from ESI−, resulting in a total test set of 60 chemical compounds. The 125 

selected entries were evaluated to avoid including chemicals which would not produce a 126 

meaningful classification, e.g., no predicted structures. The chemical compounds were gathered in 127 

a single Excel-based program available as Supplementary Information. The file contained the 128 

predicted structure(s), QSAR consensus and individual prediction by the QSAR models, estimated 129 

intake compared to a defined threshold (TTC Excess), absolute estimated intake, and finally the 130 

predicted Cramer class from the TTC methodology (Cramer et al., 1976).  131 

The 60 entries were assessed by four individual assessors using the decision unit. Each assessor 132 

was tasked with classifying 60 compounds via the decision unit into one of the three risk profile 133 

classes: high expected risk ([A]), low expected risk ([B]), or insufficient data ([C]). Prior to 134 

classification, each assessor obtained documented instructions on how to work with the Excel 135 

program and decision unit. Following, each assessor individually classified the chemical subset. 136 

The assessors were specifically instructed to use the decision unit as much as possible, but also to 137 

deviate from the decision unit in case their opinion would conflict with the decision unit result. 138 

2.3. Quantitative Structure-Activity Relationship (QSAR) 139 

Possible adverse health effects of tentatively identified chemicals were predicted using 140 

Quantitative Structure-Activity Relationship (QSAR) models and software. Three endpoints were 141 

defined: Carcinogenicity, Mutagenicity, and Reproductive Toxicity; abbreviated as CMR. To predict 142 

CMR activity, the VEGA-QSAR platform (Benfenati et al., 2013) was employed using the included 143 

four models for carcinogenicity (CAESAR, ISS, IRFMN/Antares, IRFMN/ISSCAN-CGX), four Ames 144 

models for mutagenicity (CAESAR, SarPy/IRFMN, ISS, KNN/Read-Across), and two models for 145 
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reproductive toxicity (PG Toxicity Library, CAESAR). The VEGA-QSAR platform predicted only the 146 

likely activity of the chemical compound, not a dose-response relationship. The Applicability 147 

Domain Index (ADI) was used as performance criterion to define the quality of prediction (Istituto di 148 

Ricerche Farmacologiche Mario Negri Milano, 2017). 149 

An in-house solution was applied to integrate the QSAR results from VEGA-QSAR into the 150 

decision unit. For each prediction the result, active (+) or inactive (−), and the prediction 151 

applicability domain index (ADI) were extracted. A QSAR consensus score was calculated from 152 

each endpoint results and accompanying ADI score. Each QSAR model applied contributed a 153 

fraction to the total consensus score, e.g., for carcinogenicity four models were used, so each 154 

model contributed a maximum ±0.25 score. The score was corrected for lower ADI (i.e. prediction 155 

certainty) so that less certain prediction had lower weight in the consensus score. The consensus 156 

was calculated by the biggest sum for either positive values (active effect) or negative values (no 157 

active effect). Hence, the result of the consensus calculation was a value between −1 and +1, in 158 

which a negative number indicated a predicted non-active effect and a positive number indicated 159 

an active effect. Values closer to the extremes −1 or +1 were results of good agreement between 160 

model predictions on the same endpoint; values close to zero indicated a poor agreement. 161 

2.4. Sample selection and preparation 162 

Two paper and board samples were analyzed. The first sample was a recycled unused carton 163 

pizza box, similar to the sample used in (Pieke et al., 2018), because these are known to contain 164 

many extractable compounds (Bengtström et al., 2016). The second sample was a carton sheet 165 

part of the packaging of luxury chocolates. The sheet was folded in a way to compartment 166 

separate chocolates, thereby being in contact with the chocolates on multiple sides. The sheet was 167 

unfolded before preparing the sample. From each sample, a 10 cm x 10 cm (1 dm2) sample was 168 

prepared using a clean knife.  169 
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Each of the 10 cm x 10 cm samples were cut into four identically sized pieces of 2.5 cm x 10 cm 170 

and inserted into a glass vessel. The Total Migratable Content (TMC, see 3.1) was recovered by 171 

adding 100 mL of warm (40–50 °C) Food Simulant D1 (50 v/v ethanol water) to the vessel. The 172 

vessel was closed and sealed into a calibrated thermostat compartment at 40°C. The setup was 173 

left to soak for 24 hours, after which the food simulant was removed from the vessel and allowed to 174 

cool to room temperature. Proceeding, the food simulant was filtered and prepared for semi-175 

quantification and identification as described in recent work (Pieke et al., 2017). 176 

3. Results and discussion 177 

3.1. The total migratable content (TMC) 178 

TENAX is frequently used for paper and board migration testing, but shows different behaviour for 179 

polar and non-polar compounds depending on vapour pressure (Poças et al., 2011). In addition, 180 

the use of TENAX implies limited direct contact transfer, but it has been shown that migration from 181 

direct contact is not negligible for paper and board and migration can occur even for non-volatile 182 

compounds (Biedermann-Brem et al., 2012; Triantafyllou et al., 2007). In addition, there are 183 

examples of food contact by paperboard that question the assumption of exclusively dry indirect 184 

migration like TENAX simulates, e.g., pizza boxes, snacks, fast food, or fruits (Binderup et al., 185 

2002; Bradley, 2006). Some of the test methods presented in Commission Regulation no. 10/2011 186 

regarding plastic FCM might be used for paper FCM (European Parliament and Council of the 187 

European Union, 2011). However, the usage pattern of paper and plastic is different: plastic is 188 

often used in longer term storage of a wide array of products, whereas paper is used for shorter 189 

contact times or for freezing boxes, e.g., fast food or prepared foods. To use the plastic migration 190 

test conditions (10 days at 40°C) on paper materials may not be representative, and this 191 

perception is supported by U.S. FDA recommendations proposing migration studies on uncoated 192 
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paper at 40°C for 24 hours (FDA, 2007). Therefore, here a smaller testing window of 24 hours was 193 

used for paper and board FCM. 194 

No migration tests exist for paper and board FCM, so the intended food simulant should ideally 195 

have a broad extractable range and compatibility for further analysis by LC-MS. From the analytical 196 

and investigative perception in this study these two criteria are met using water/ethanol mixtures. 197 

However, using water/ethanol mixtures in contact with paper or board for 24 hours is not a 198 

migration test. Noticeably compared to plastics, paper is porous, inhomogeneous, and poorly 199 

resistant to liquids, which lead to large numbers of extractives (FDA, 2007). Hence, we consider 200 

these testing conditions to be somewhat more severe than a migration test, yet less severe than a 201 

complete extraction, as the material integrity is preserved. Instead, we defined the tests performed 202 

here as Total Migratable Content (TMC). The TMC contains chemical compounds from the FCM 203 

that can reasonably be expected to migrate into food, but is an overestimation of actual-use 204 

migration levels. Consequently, TMC implies a thorough screening of extractable chemical 205 

compounds, which when observed in the simulant can – but not necessarily will – migrate.  206 

3.2. Risk characterization of tentative data 207 

3.2.1. Tentative hazard identification 208 

A recently published identification strategy allows high-throughput tentative elucidation of the 209 

chemical structure of a potentially unknown compound, but does not provide an unambiguous 210 

chemical structure, instead presenting several chemical candidate structures (Pieke et al., 2018). 211 

Finding existing toxicity data on multiple structures is convoluted. Here, we applied predictive 212 

hazard modeling by QSAR. Because QSAR assumes that similar molecules likely have similar 213 

effects (Raies and Bajic, 2016), it is compatible with the concept of tentative identification: if the 214 

structure prediction closely resembles the actual molecule, the QSAR prediction results will likely 215 

be similar. A precaution in using QSAR is that the application of different models can produce 216 

different and sometimes conflicting results. To minimize the leverage of a single model in cases 217 
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where the model performed inadequate, several models are used in parallel for the same endpoint 218 

on the same molecule. This presented a battery of results for each prediction, of which the average 219 

prediction can cancel the effect of single outliers or false predictions (Benfenati et al., 2013). 220 

Consequently, the average prediction of these models (the QSAR consensus) is more likely to 221 

contain accurate information than any model alone. 222 

The in-house consensus model closely mimics those presented by the VEGA software (Benfenati 223 

et al., 2013). To evaluate thresholds for consensus relevance, the consensus approach was 224 

applied on chemical compounds of IARC’s Group 1, 2A, and 2B of known, probable, and possible 225 

carcinogens list (International Agency for Research on Cancer, 2017). To ensure a strict 226 

consensus, the VEGA QSAR results were compared to the assumption chemicals on the extracted 227 

carcinogen list (n = 204) are active carcinogens. The threshold for false negative prediction results 228 

was set to 2.5%. The results indicated that a consensus score of at least +0.40 was required to 229 

minimize the chance of a false negative prediction. This value can be logically evaluated to make 230 

sense: +0.40 only be obtained by two or more models predicting the same results, considering the 231 

best-case predictions can only contribute +0.25 per model. 232 

Characterizing the hazard as demonstrated here is limited to interpretation of the QSAR evaluation 233 

on Carcinogenicity, Mutagenicity, and Reproductive Toxicity (CMR) prediction models. However, 234 

there are other toxicity endpoints that influence the probable risk of a substance, e.g., 235 

hepatotoxicity, neurotoxicity, or endocrine disruption, but these are not well-studied and few broad 236 

range QSAR models exist for these. In addition, CMR is already incorporated in the TTC approach, 237 

and a CMR substance has the most strict exposure limit (0.15 µg person-1 day-1). Consequently, a 238 

reliable CMR alert from QSAR is sufficient to assign the hazard characterization of the substance 239 

as a high priority substance. 240 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

3.2.2. Tentative exposure assessment 241 

Semi-quantification reports a concentration per volume or per surface with a maximum uncertainty 242 

of threefold (Pieke et al., 2017). The content per surface area cannot be directly used for assessing 243 

exposure, because the contact factor of the FCM is usually unknown. According to European 244 

regulations, it is usually considered that an average person has a body weight of 60 kg and 245 

consumes 1 kg of food containing the substance daily in contact with a plastic FCM with 6 dm2 246 

packaging (European Parliament and Council of the European Union, 2011). However, other 247 

studies have shown that actual food contact is likely in the range of 10–14 dm2 (Bouma et al., 248 

2003; Duffy et al., 2007; ILSI Europe Packaging Material Task Force, 1996), and in some cases 249 

even higher at 30–40 dm2 (Bouma et al., 2003). However, paper and board FCM constitute only a 250 

limited fraction of 10–20% of the total used packaging materials (Duffy et al., 2007; FDA, 2007). 251 

Hence, by applying a usage reduction factor of 10–20% on the worst-case estimate of packaging 252 

results in an estimated contact range of 3–8 dm2 person−1 day−1, which is close to EFSA 253 

assumptions of 6 dm2 person−1 day−1 and likely to be sufficiently conservative. Hence, by adopting 254 

the standard used by EFSA, the semi-quantitative concentration data in µg dm−2 can be converted 255 

to µg person−1 day−1 by multiplying with 6 dm2 person−1 day−1. 256 

Due to the similarities of the data in this study with that needed in the Threshold of Toxicological 257 

Concern (TTC) approach (EFSA and WHO, 2016; Kroes et al., 2004), parts of the TTC strategy 258 

are applicable here. Notably, the division of chemical compounds into Cramer classes is useful, 259 

because it provides an exposure limit below which likelihood of adverse effect is considered to be 260 

very low: for Class I compounds max. 1800 µg person−1 day−1; Class II compounds max. 540 µg 261 

person−1 day−1; and for Class III compounds max. 90 µg person−1 day−1 (Cramer et al., 1976; Kroes 262 

et al., 2004).  263 

It should be noted that the use of the TTC approach for risk assessment is not without criticism 264 

(Bschir, 2017). A large number of uncertainties are propagated throughout the TTC approach, 265 
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where in this study these uncertainties are potentially larger. Hence, as the aim of the study is 266 

provide a qualitative human risk ranking of discovered chemical substances, here the TTC is not 267 

applied as a tool for preliminary risk assessment. Instead, the TTC approach is applied as means 268 

to derive an exposure limit for a tentatively identified chemical compound rather than as risk 269 

assessment method. This effectively makes use of the Cramer Class approach, which could be 270 

debated as taking into account chronic low dose exposure insufficiently (Bschir, 2017), but 271 

provides an estimated exposure limit in case where full identification is not available, as is the case 272 

with the results used here. Essentially, other methods that provide exposure limits based on 273 

structure may be used if these are found more appropriate, but currently few of these methods 274 

exist and are used at the scale at which the TTC is. 275 

Here, the exposure (in µg person−1 day−1) from semi-quantification is compared to the limit 276 

imposed by the Cramer class assignment calculated from the tentative identification. The result is 277 

the TTC Excess factor, which is the fraction of exposure compared to the threshold, i.e., TTC 278 

Excess of 100% means the predicted intake is equal the threshold from the TTC approach. 279 

However, not every structural prediction was successful where the structure of the chemical 280 

compound was unresolved or largely uncertain. For those cases, we considered the worst-case 281 

scenario excluding carcinogenicity by assigning Class III.  Considering uncertainty of the 282 

concentration estimate, worst case ± 3-fold, TTC Excess above 300% would most probably 283 

indicate that the TTC would be exceeded, whereas below 33% indicates that most probably the 284 

TTC would not be exceeded. Values within this range are to be decided on a case by case basis. 285 

3.3. Risk Prioritization based on tentative data 286 

3.3.1. Risk profile classification 287 

Prioritization based on semi-quantification and structure predictions is convoluted: even if a 288 

complete “picture” of exposure and hazard is available, these still contain considerable uncertainty. 289 

Consequently, it is not recommended to perform a quantitative risk assessment (RA) on these 290 
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data, and it should be more feasible to use qualitative risk prioritization, where all variables are 291 

evaluated stepwise in order to determine a likely risk profile of the chemical compound. While it 292 

would be convenient to classify chemical compounds into subgroups with well-described risk 293 

profiles and priority, it is practically less achievable. Here, prioritization is likely to produce only 294 

broad risk profiles of chemical compounds, because uncertainties in the estimated hazard and 295 

estimated exposure assessment do not support clear boundaries for risk profile classes. The 296 

concept for broad classification with uncertain data is not new, as the TTC approach effectively 297 

only uses two Cramer classes: Low (Class I) and High (Class III), supplemented by the highly 298 

specific Intermediate (Class II). 299 

 300 

Figure 2: Framework representing one of the possible approaches to incorporate tentative data from 301 

exploration in risk assessment principles. The chemical compounds are subdivided into three priority 302 

classes following a decision unit (DU), which is an expertise-driven decision tool. The resulting risk profile 303 

classes can be used to prioritize further risk assessments. 304 

Only three classes are used in this prioritization approach, shown in Figure 2: [A] — Compound of 305 

Direct Concern; [B] — Compound of Lesser Concern; and [C] — insufficient information available. 306 

It could be argued that a class between [A] and [B] is needed that defines moderate concern. 307 

However, more than two risk profile classes require the capability to define a clear distinction 308 

between classes. This is not straightforward due to uncertainty in the data, and a large number of 309 

substances might not be classified properly when too many classes are present, thereby making 310 
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the decision process much more complicated for the assessor. The ultimate goal of risk 311 

prioritization is to categorize chemical compounds for probable risk, so a limited decision choice of 312 

two risk profile classes was thought to be sufficient for this purpose, whereas for actual risk 313 

assessment more classes would be desirable.  314 

3.3.2. Design of a decision unit 315 

To facilitate the assignment of a risk profile class to a chemical compound, a decision unit was 316 

designed to incorporate all available data from the tentative exposure assessment and the 317 

tentative hazard identification, as shown in Figure 2. The goal of the decision unit is to provide a 318 

simple, unified, and reproducible workflow for risk assessors to evaluate input data from 319 

exploration experiments into a risk profile classification. Input data for the decision unit consisted of 320 

tentative exposure, i.e., estimated intake, Cramer Class exposure limit, and resulting TTC Excess; 321 

and tentative hazard identification, i.e., predicted structures, structure correlation scores, QSAR 322 

CMR predictions, and QSAR consensus. Due to the tentative nature of the data, the input data can 323 

contain variations especially in structure predictions, which affect hazard predictions and intake 324 

limit by Cramer class. Hence, it is important to note that small changes in chemical structure may 325 

affect different Cramer classifications and exposure limits, so these values should always be seen 326 

in context, e.g., evaluation of the actual intake in addition to the TTC Excess. 327 
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 328 

Figure 3: Implementation of a decision unit for risk prioritization. The decision unit is designed as a 329 

decision tree that is evaluated by an expert for each node. The result from the decision unit is risk profile 330 

class: [A] high priority, [B] low priority, or [C] insufficient data. The risk profile can be determined either 331 

data-driven or via expert decision, in which an experienced assessor decides the class based on all 332 

available data. 333 

The decision unit was constructed like a decision tree, as shown in Figure 3, built up from the 334 

structure prediction by tentative identification (I), the hazard prediction by QSAR prediction (H), and 335 

the TTC Excess exposure prediction (E). The decision unit consists of 14 decision-nodes and 6 336 

risk profile classification end-nodes. Decision nodes systematically evaluate all input data and 337 

provide a path to the most appropriate end-node. End-nodes within the decision unit result in the 338 

assignment of a risk profile to a compound (discussed in 3.3.1), but are always expert judgements. 339 

In some cases the end-node provides a non-binding advice for the most likely risk profile class 340 
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considering the data. In case no such advice is attainable, i.e., where data interpretation cannot 341 

unambiguously result in classification, the final risk profile is a decision that needs to be made by 342 

the assessor. Consequently, the decision unit is not designed as an automated data evaluation tool 343 

although it contains decisions based purely on data, but more as a guide for assessors to stepwise 344 

evaluate all available data. 345 

3.3.3. Design of data-driven decision modules 346 

The first nodes in the decision unit are to assess the quality and appropriateness of the predicted 347 

structure(s) by tentative identification. The nodes in the tree (see Figure 3) evaluate structure and 348 

quality parameters, but require assessor feedback and insight. As discussed in by Pieke et al. 349 

(2018) at least one authentic prediction (I‒1) or two non-authentic predictions with sufficient 350 

prediction score are required (I‒2). When there is insufficient chemical structure information, the 351 

exposure (TTC Excess) should be evaluated for exceeding the TTC threshold (I‒3). When there 352 

are sufficient structural predictions, the predicted structures should be evaluated for chemically 353 

unlikely features (I‒4), molecular mass and similar chemical structure (I‒5), and sufficient chemical 354 

information (I‒6). Finally, the polarity and molecular weight of the predictions should be 355 

proportional to the chromatographic retention time (I‒7). 356 

Following, the predicted chemical structures are evaluated for exerting possible CMR activity. If 357 

there is sufficient QSAR data that suggests CMR activity, the compound is immediately classified 358 

as [A]. The QSAR results are checked for experimental data on possible carcinogenicity (H‒1), 359 

mutagenicity (H‒2), or reproductive toxicity (H‒3) evident from a maximum reliability score. In 360 

addition, the prediction consensus for C and M — but not for R, only limited to two models — is 361 

evaluated for exceeding the threshold >0.40 (H‒2). The final node is an expert assessment on 362 

concerns with the chemical structure regarding hazard, or below-threshold QSAR alerts that 363 

promotes concern for safety and should therefore be classified as [A] (H‒4). 364 
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Finally, the Exposure Module is evaluated by means of the Cramer class and TTC Excess. By 365 

comparing the estimated intake with the intake threshold the acceptability of exposure can be 366 

decided. First, the intake is assessed compared to the threshold beyond the uncertainty of the 367 

exposure measurement, i.e., more than 300% TTC Excess, in which case it will be risk profile [A] 368 

(E‒1), or below the uncertainty, i.e., less than 40% TTC Excess, in which case it is risk profile [B] 369 

(E‒2). Next, there is a final expert evaluation node that confirms that the given substance is not 370 

known for likely safety, like sugars or inert materials, because the derived TTC limit may be too 371 

strict for these, especially since the Cramer classification is often Class III (High) if the structure 372 

deviates slightly from a well-known Class I (Low) structure (E‒3). 373 

3.3.4. Incorporation of expert decisions 374 

Several nodes in the decision unit are based on human evaluation by requiring expert input. 375 

Expert-based decisions are included in the decision unit for two reasons: First, they are a result of 376 

discussions with risk assessment expert panels, which summarized that the need for an expert to 377 

control the final decision is critical. Second, a simple decision tree is not able to assess the 378 

multiplicative effects of several parameters, or capable to assess the data as a whole instead of 379 

individually. Hence, expert judgment is required for cases where data obtained by QSAR and/or 380 

quantitative methods are inconclusive (Lester et al., 2018). The use of a human assessor within 381 

the decision unit fulfills the need for control, but also mitigates the limitations of simplistically-382 

designed decision units, and can thereby help improve decisions. However, it also requires the full 383 

attention of a trained risk assessor throughout the entire decision unit, which is problematic with a 384 

very large number of substances. Advances in computer sciences, such as advanced machine 385 

learning neural networks, may provide an outcome for this in the future (Ru et al., 2017). 386 

Consequently, the outcome from the decision unit is codependent on assessor expertise, which in 387 

fact closely resembles the methods for traditional RA. 388 
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Within the decision unit, the expert assessments are generally called upon in situations where 389 

simple data evaluation did not result in a classification. In other words, most expert decisions are 390 

needed when no immediate hazard or exposure of concern is detected. In those cases, a 391 

comprehensive picture of all available data followed by an expertise decision is required. For 392 

example, there may be stacked evidence for classification without exceeding any of the defined 393 

thresholds in prior nodes, e.g., a QSAR consensus of 0.39 for both carcinogenicity and 394 

mutagenicity. None of the nodes H‒1 to H‒3 will have marked this compound as a possible risk, 395 

but the expertise decision node H‒4 likely will via human evaluation. The expert decision nodes at 396 

the end of the tree are needed in case iterating through single descriptors such as exposure or 397 

hazard identity did not lead to a proper classification. It is impossible to model every likely scenario 398 

into the decision unit and retain its accessibility. In addition, an automated decision unit cannot 399 

effectively decide whether the available data is sufficient for classification. Expert decisions are 400 

consequently the only decisions that can result into a [C] classification for a lack of information. 401 

3.4. Applying risk prioritization explorative data 402 

3.4.1. Application and results of the decision unit 403 

The decision unit (Figure 3) was applied to a set of data obtained from exploration experiments on 404 

two different paperboard FCM samples described in the Experimental section. Assessment results 405 

of the 60 discovered chemical compounds are summarized in Table 1. The full dataset, which 406 

includes all predicted chemical structures, QSAR predictions, and estimated exposure of these 60 407 

compounds are given in the Supplementary Information. Note that the total number of chemical 408 

compounds per sample targeted for structural elucidation was 249 for the pizza box sample and 409 

161 for the chocolate box sample, 410 in total, so the 60 compounds represented here are only a 410 

fraction of the total number of discovered compounds. 411 

To convert the assessment into risk ranking, a score was calculated based on the assessors’ 412 

answers. The score is on a scale from −100, low priority, to +100, high priority. Scores near zero 413 
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were those either that showed no consensus between assessors or where data was inadequate for 414 

classification. Calculation of the score is performed according to Equation 1, where nX represents 415 

the occurrence count of each classification x = [A], [B], or [C] per compound. The formula has 416 

deliberately not been simplified for clarification: the first part penalizes differences between [A] and 417 

[B], while the second part penalizes a lack of consensus. Hence, more contrast in the classification 418 

results in a ranking score closer to zero. 419 

Rank =
����	

��
�	
��
∗
�����,�	,���

��
�	
��
 Equation 1 420 

The threshold of priority and no consensus was set at a score of ±30. This marked the point where 421 

above which at least three assessors assigned the same risk profile, but one assessor assigned a 422 

conflicting profile or indicated insufficient data, e.g., AAAB or AAAC.  If an assessment contained 423 

two or more entries of [C] these were marked as uncertain, since at least 50% of assessors 424 

indicated that available data was not sufficient to take an appropriate decision. 425 

The overall results from the assessment in Table C.1 reveal that approximately 60% of the 426 

chemical compounds were eligible for prioritization as a result of the evaluation, while 40% of the 427 

substances either have insufficient data for prioritization, or displayed conflicts in assignments by 428 

different assessors. The results show an almost even distribution of cases between high priority 429 

(29%), insufficient data (23%), no consensus (18%), and low priority (30%). A number of 430 

compounds were unanimously ranked by all assessors as high risk or low risk for 13% and 13% of 431 

the cases, respectively. 432 

Some illustrative examples of each consensus result are discussed in order to understand some of 433 

the choices behind the classification. For a visualization of the chemical structures discussed, the 434 

reader is referred to the Supplementary Information. 435 
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Table 1: Assessments results of four assessors on 60 different chemical compounds from two different 436 

samples. Assessors were tasked to assign one of three risk profiles to the chemical substance. The 437 

ranking score is calculated from the ratio of the risk profiles reaching four different consensus results, 438 

where a score of at least ±30 was considered consensus. When two or more assessors assigned [C], the 439 

entry was considered to be deficit in information. 440 

ID. Sample ESI Polarity Ret. time (min) 1 2 3 4 Ranking score Consensus 

10 Pizza ESI− 18.582 A A A A 100 High priority 

13 Choc ESI− 18.572 A A A A 100 High priority 

15 Pizza ESI− 20.385 A A A A 100 High priority 

16 Pizza ESI+ 35.247 A A A A 100 High priority 

19 Pizza ESI+ 34.313 A A A A 100 High priority 

24 Pizza ESI+ 13.270 A A A A 100 High priority 

36 Pizza ESI+ 23.521 A A A A 100 High priority 

49 Choc ESI+ 2.088 A A A A 100 High priority 

1 Choc ESI+ 3.652 C A A A 56.25 High priority 

30 Choc ESI+ 24.146 A A C A 56.25 High priority 

32 Pizza ESI+ 8.989 A A A C 56.25 High priority 

34 Pizza ESI− 22.801 A A C A 56.25 High priority 

45 Choc ESI+ 26.474 A A C A 56.25 High priority 

54 Choc ESI+ 15.071 A A C A 56.25 High priority 

5 Pizza ESI+ 34.689 A B A A 37.5 High priority 

53 Choc ESI+ 8.988 A A A B 37.5 High priority 

57 Choc ESI+ 19.585 A A B A 37.5 High priority 
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ID. Sample ESI Polarity Ret. time (min) 1 2 3 4 Ranking score Consensus 

39 Pizza ESI− 27.602 C A C A 25 Insufficient data 

20 Pizza ESI− 11.742 B A C A 12.5 No consensus 

40 Choc ESI− 17.711 B A C A 12.5 No consensus 

6 Pizza ESI+ 27.600 B C C A 0 Insufficient data 

11 Choc ESI+ 27.018 C C B A 0 Insufficient data 

21 Pizza ESI+ 19.644 C A C B 0 Insufficient data 

23 Choc ESI+ 10.820 B A B A 0 No consensus 

27 Choc ESI+ 24.373 B A B A 0 No consensus 

35 Pizza ESI− 17.712 B A B A 0 No consensus 

38 Choc ESI− 3.473 C C C C 0 Insufficient data 

42 Choc ESI+ 30.173 C C C C 0 Insufficient data 

43 Choc ESI+ 33.504 C C C C 0 Insufficient data 

46 Choc ESI− 30.398 C C B A 0 Insufficient data 

56 Pizza ESI+ 28.307 B A B A 0 No consensus 

58 Pizza ESI+ 10.831 B A B A 0 No consensus 

25 Choc ESI+ 13.095 C A B B −12.5 No consensus 

26 Pizza ESI+ 3.283 B B C A −12.5 No consensus 

50 Pizza ESI− 24.446 B B C A −12.5 No consensus 

52 Pizza ESI+ 36.131 B B C A −12.5 No consensus 

2 Choc ESI+ 31.825 C C C B −18.75 Insufficient data 

51 Choc ESI− 29.098 C C C B −18.75 Insufficient data 

3 Choc ESI+ 16.438 B C C B −25 Insufficient data 
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ID. Sample ESI Polarity Ret. time (min) 1 2 3 4 Ranking score Consensus 

7 Choc ESI+ 14.272 B C C B −25 Insufficient data 

12 Choc ESI+ 27.434 C C B B −25 Insufficient data 

17 Pizza ESI− 28.550 C C B B −25 Insufficient data 

14 Choc ESI+ 17.416 B A B B −37.5 Low priority 

22 Choc ESI− 20.588 B A B B −37.5 Low priority 

31 Choc ESI+ 13.335 B B B A −37.5 Low priority 

44 Pizza ESI− 2.790 B A B B −37.5 Low priority 

60 Choc ESI− 18.167 B A B B −37.5 Low priority 

4 Choc ESI− 19.438 B B C B −56.25 Low priority 

28 Choc ESI− 14.359 B C B B −56.25 Low priority 

33 Pizza ESI+ 15.083 B B B C −56.25 Low priority 

37 Pizza ESI+ 31.396 B B B C −56.25 Low priority 

59 Pizza ESI− 14.359 B C B B −56.25 Low priority 

8 Pizza ESI+ 27.289 B B B B −100 Low priority 

9 Choc ESI− 20.881 B B B B −100 Low priority 

18 Pizza ESI+ 26.490 B B B B −100 Low priority 

29 Choc ESI+ 24.943 B B B B −100 Low priority 

41 Pizza ESI+ 28.868 B B B B −100 Low priority 

47 Pizza ESI+ 33.264 B B B B −100 Low priority 

48 Pizza ESI+ 15.083 B B B B −100 Low priority 

55 Pizza ESI+ 34.327 B B B B −100 Low priority 

 441 
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3.4.2. Compounds with high priority 442 

One notable entry unanimously marked as risk profile [A] is ID 10 and ID 13, which is in fact the 443 

same chemical compound observed in different samples. The chemical structure suggests a 444 

benzophenone-like compound at relatively high exposure levels of 360−445 µg person−1 day−1, 445 

excluding the three-fold semi-quantitative uncertainty, compared to the 90 µg person−1 day−1 TTC 446 

limit of Cramer Class III compounds, with QSAR alerts that indicate carcinogenicity and 447 

mutagenicity. There is another instance of a benzophenone-like compound among the high priority 448 

compounds: ID 15, which has a less unambiguous predicted structure which occurs at nearby 449 

retention time. The presence of benzophenone compounds in paper and board is known mostly 450 

due to recycling of printed board (Anderson and Castle, 2003), so detection of benzophenone-like 451 

substances is not unexpected; however, the concentration estimates indicate a relatively high 452 

exposure potential. This potential can also be limited by the overestimation in the TMC, but it is 453 

nevertheless a compound of concern. 454 

Another entry clearly marked as risk profile [A] is ID 19, which strongly represents an azo dye 455 

Pigment Red 2. The chemical compound could exceed TTC limits with an estimated intake of 50 456 

µg person−1 day−1, excluding uncertainty, compared to 90 µg person−1 day−1 defined by Cramer 457 

Class III. However, QSAR results clearly indicate a possible carcinogenicity and mutagenicity, 458 

which would exempt the compound from Class III limits and instead impose the stricter limit of 0.15 459 

µg person−1 day−1. The presence of pigments, especially pigment red, has been observed before 460 

(Bengtström, 2014). Azo dyes are capable of breaking down into carcinogenic substances like 461 

amines and aromatic amines, which can be cause for concern, e.g., in cosmetic products 462 

(SCCNFP, 2002). 463 

Compound ID 32 and ID 53, both marked as risk profile [A], represent an isothiazolinone fungicide 464 

compound present in both samples at similar retention times. For the pizza box, it exceeds the 465 

maximum exposure significantly: 700 µg person−1 day−1 excluding uncertainty, but for the chocolate 466 
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box semi-quantification was unsuccessful. When strictly following the decision unit, the presence in 467 

the chocolate box would likely be marked as risk profile [B] or [C] because none of the thresholds 468 

are explicitly exceeded, but since it was classified as risk profile [A] by most experts this 469 

demonstrates the added value of an expert decision. Here, the expert decision rightly classified the 470 

same chemical compound with the same priority, despite differences in available data. This 471 

substance has been discovered and more extensively discussed in previous work (Pieke et al., 472 

2018). 473 

3.4.3. Compounds with low priority 474 

ID 47 and 55 represent two compounds marked as risk profile [B], and are chemically similar long-475 

chain amides originating from the pizza box. Estimated intake of these substances is significantly 476 

below a TTC Class III compound at 33‒38 µg person−1 day−1, excluding uncertainty, which is 477 

unlikely to exceed 90 µg person−1 day−1 when including uncertainties. In addition, there are no 478 

QSAR alerts for these compounds. These substances have previously been identified (Pieke et al., 479 

2018) in a similar sample, where these were also considered unlikely to pose a risk. The 480 

consensus of the risk prioritization here emphasises that the previous assessment is probably 481 

correct, and this type of compound is not anticipated to be at risk by different evaluators. 482 

ID 31, ID 33, and ID 48 represent polyethylene glycol (PEG) oligomers, while ID 18 represents 483 

dipropylene glycol dibenzoate. These are all commonly used plasticizers. The intake for these 484 

compounds is relatively high compared to other compounds listed here, but these compounds are 485 

not commonly associated with any hazardous effects. It was shown here that the expert decisions 486 

play a critical role in ensuring the proper class assignment, e.g., ID 31 has large TTC Excess 487 

values because the compound is marked as Cramer Class III. Despite that, three out of four 488 

assessors marked the compound as risk profile [B] because the chemical structure was known to 489 

them as a PEG oligomer, for which a Cramer Class I is more likely appropriate. All of these 490 
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compounds are relatively inert plasticizers with no QSAR alerts, and especially PEG oligomers are 491 

unlike to pose a risk at these concentrations. 492 

ID 4, ID 8, ID 37, ID 41, and ID 60 are a number of diverse, yet chemically similar and simple 493 

structures that are each marked as risk profile [B] by most assessors, indicating a low priority. 494 

These compounds are characterized by a generally low exposure estimate, simple chemical 495 

structures composed predominantly of C, H, and O, and few carbon-rings, and rarely contain any 496 

QSAR alerts for CMR. A number of the predicted chemical structures are classified as Cramer 497 

Class I, which increases the exposure limit significantly to 1800 µg person−1 day−1, but for most of 498 

these compounds the 90 µg person−1 day−1 is not exceeded. 499 

3.4.4. Compounds with no assigned priority 500 

The compounds that did not have a prioritization can be separated in two main groups: compounds 501 

with insufficient data, or compounds with mixed information containing both elements of high 502 

priority and low priority, which prevented consensus. Compounds with insufficient data are marked 503 

if at least half of the assessors indicated that the available data is insufficient to assign a risk profile 504 

[A] or [B], e.g., ID 51, ID 2, ID 38, and ID 43. These cases are not discussed extensively, but 505 

reassessment should only occur upon obtaining additional or improved data. 506 

Interesting cases of non-consensus compounds are ID 23 and ID 58. Some structure predictions 507 

seem to indicate a polyethylene glycol (PEG) oligomer, similar to ID 31, ID 33, ID 48 previously 508 

discussed. However, the exposure is significantly higher: 1240 µg person−1 day−1 for ID 58 and 520 509 

µg person−1 day−1 for ID 23. In addition, some of the predicted structures seem to be PEG 510 

derivatives or unrelated structures, which have more severe QSAR alerts and TTC Excess due to 511 

being Cramer Class III. Different assessors interpreted this information differently: two considered 512 

this a high priority substance and two considered this a low priority substance. Based on the 513 

exposure, it is sensible to consider these substances as high priority, but on the other hand the 514 

knowledge of PEG oligomers can render these compounds as low priority. Consequently, the lack 515 
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of consensus can warrant the need for a discussion on the substances to clarify where differences 516 

in opinion are originating from. 517 

Another case where no consensus could be achieved is for ID 56. The predicted structures greatly 518 

varied between the authentic and non-authentic databases, where structure predictions of the latter 519 

appeared unlikely, but the predictions from the first were of relatively low confidence. The 520 

estimated exposure was 83 µg person−1 day−1, which is close to the limit of 90 µg person−1 day−1 of 521 

a Cramer Class III compound. There are no obvious QSAR alerts that indicated direct concern. 522 

Here, the assessment of the compound was primarily based on expert decision, and assessors are 523 

unable to agree. ID 56 is an example of a group of compounds that have very little information, or 524 

where the information shows conflict between different predictions, so a decision for low- or high-525 

priority is not straightforward. Some other examples are ID 20, ID 26, ID 27, and ID 35. The proper 526 

classification of these compounds may require additional information, a stricter decision unit, or 527 

more assessors. 528 

In a number of cases some assessors considered the information to be not sufficiently informative, 529 

but others tried to give a classification. These cases are characterized by an equal distribution in 530 

assessors indicating [C] and [A] or [B]. An illustrative case is ID 3, which initially does not appear to 531 

lack information. However, the structure predictions are varying greatly and are accompanied by 532 

low confidence, so no good structural image can be obtained. Because there is no structural 533 

image, QSAR alerts cannot be considered reliable. Yet, the exposure to this compound is low: 12 534 

µg person−1 day−1, which is including uncertainty well below the TTC limit for a Class III compound. 535 

As a result, half the assessors indicated [B] for no likely risk due to the low exposure, but the other 536 

half indicated [C] likely due to the poor quality of structure predictions. There are some other 537 

examples where this occurred, e.g., ID 59, ID 6. 538 
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3.5. The implementation of risk prioritization tools 539 

Based on the results in 3.4, a different course of action is required for each assigned priority and 540 

rank score. Compounds that show the maximum rank score do not require much discussion, as 541 

these are classified similarly by all assessors, so their priority for risk assessment is fairly 542 

unanimous. For compounds that do not score maximally, but are still classified as low- or high-543 

priority (e.g., AAAC), it is suggested to discuss these entries briefly to understand the reason for 544 

reaching a less than maximum consensus. Unless there is a good reason to deviate from the 545 

advice of the consensus, it should be maintained. Results with rank scores close to zero need to 546 

be investigated: either the available data is insufficient or has too many uncertainties, or the 547 

assessors disagree on the risk profile. In the first case, insufficient data, more data will need to be 548 

gathered or, as discussed in the next paragraph, the quality of results needs to be improved. The 549 

latter case, no consensus, requires discussion and is cause for concern. In some cases, the 550 

differences occur as a result of data weight: some assessors weigh the exposure heavier than 551 

hazards. Disagreements between assessors will need to be better understood in order to improve 552 

the decision unit.  553 

Presently designed decision unit was found to be suitable for assessing a small to moderate 554 

number of chemical compounds with tentative data. The decision unit is currently an expert-based 555 

model in which the decision tree is a helpful tool for the experts to reach classification. The value of 556 

the expert decision was shown throughout the data, e.g., in classifying ID 32 and ID 53. However, 557 

for a larger number of compounds the workload on the assessors increases similarly, so the 558 

current design may not be suitable for a very large number of chemical compounds. For this, 559 

automation may be a solution, but discussions with risk assessment experts indicated caution to 560 

changing the decision of risk to a fully automated process. In addition, automated decisions for 561 

tentative data are complex since they require a multivariate approach that can incorporate multiple 562 

uncertainties, whereas it also must be able to derive decisions from experience as humans do. 563 
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Hence, while automated decisions are desirable for many compounds, these should be developed 564 

with caution to the human expertise needed to classify compounds. 565 

Further needs are to improve the input data on which decisions are based, which will reduce the 566 

number of non-consensus and insufficient data prioritizations. For example, the inclusion of more 567 

and improved in silico models (e.g., Expert Model, QSAR, or hybrids) may allow a better decision 568 

process, as more hazards can be included in the assessment possibly with higher prediction 569 

certainties. Moreover, the current strategy assesses on a compound-to-compound basis without 570 

including mixture effects. Mixture effects are highly complex and the assessment thereof not 571 

strongly developed, which make them and this strategy currently incompatible, but may be an 572 

interesting addition for future research. To enable the assessment of mixture effects, it could be a 573 

possibility to incorporate Effect Directed Analysis (EDA) into the strategy, which could provide 574 

toxicity data on mixtures based on chromatographic fractions. This would significantly improve the 575 

toxicological basis of risk priority, but it would require substantial pre-decision work, which can 576 

negate the speed of the strategy as currently presented. 577 

In addition, a reduction in uncertainty originating from tentative data is beneficial, e.g., lower error 578 

in concentration estimation or improved structure predictions. Suggestions for improving the 579 

strategies for semi-quantification and tentative identification have been provided in the respective 580 

research (Pieke et al., 2018, 2017). Both, however, highlight that these explorative methods are 581 

relatively novel in applications, and will need substantial further developments. Finally, the 582 

inclusion of more assessors can improve the classification results. More assessors permit more 583 

combinations of risk profile assessments, which will improve the amount of ranks that are 584 

available, as well as allowing a better investigation and discussion of compounds that did not reach 585 

a risk prioritization consensus. 586 
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4. Conclusion 587 

A strategy for risk prioritization based on tentative data is demonstrated for ranking the tentative 588 

risk of discovered compounds. This tool is based on a simple and low cost approach. The 589 

classification/prioritization of 60 substances was performed in a short time (less than 1h). The 590 

strategy is demonstrated to be capable to discriminate sufficiently (>60%) within a test set of 60 591 

compounds between low priority compounds expected not to be of concern, and high priority 592 

substances expected to be of concern or demonstrating indications of concern. The tool is 593 

validated on compounds previously reported in literature as being of concern, so the strategy is 594 

able to sort relevant results. Consequently, the tool can easily be transposed on the total set of 400 595 

compounds discovered by exploration to greatly improve the chemical knowledge on complex 596 

samples from a risk assessment perspective. 597 

Currently, the strategy is demonstrated with a limited number of hazard endpoints and assessment 598 

is limited to the intake of a single compound at a time. A critical reason for this is the tools needed 599 

to assess mixture effects or more advanced toxicity endpoints are currently not sufficiently 600 

developed; therefore, these would likely be supported to a lesser degree by risk assessors. If 601 

assessors do not trust the predictive models to be accurate, it would limit the effectiveness of the 602 

decision tree model. As a result, the demonstrated strategy uses a limited set of QSAR models 603 

known to be relatively reliable and focuses on single compounds; yet, this strategy is adaptable to 604 

include more predictive models (e.g., endocrine disruption models, mixture toxicity models) and 605 

experimental techniques (e.g., EDA) in the decision process, which makes it robust to future 606 

developments in the field of structure-based hazard predictions. 607 

Automation of part of the decision process may be needed to ensure more rapid decisions for 608 

larger sets of data. However, implementation of automated processes is complicated because the 609 

current presentation of data is reliant on interpretation and experience, for which dedicated in silico 610 

models would be required. However, improving the quality of the tentative data, e.g., by reducing 611 
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uncertainties, will be helpful in reducing the number of compounds that remain unclassified after 612 

prioritization, and will also assist in improving the quality of the decisions. 613 
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• A strategy for risk prioritization of FCM-borne chemical compounds is shown 

• Application of a decision model utilizing both expert judgment and tentative data 

• Non-target scope enables prioritization of NIAS and newly discovered compounds 

• Compound priority constructed from expert-assigned risk profile consensus 

• Strategy demonstrated on a subset 60 compounds from paper and board FCM 


