
The CSCW Paradigm for Software Development

ZELDA VILJOEN & A.L STEENKAMP
Department of Computer Science and Information Systems

University of South Africa, PO Box 392, Pretoria
E-mail: VIUOZ@ALPHA. UNISA.ACZA

Facsimile: (012) 429-3434

1 5 5

Abstract: People work together to solve a wide variety of problems using different forms of
cooperation for each class of problem. Modem technology is complex, and therefore it is unusual for
an individual to attempt the development of a major project single-handedly. In an attempt to
provide computer-based suppon for the problems that arise when two or more people attempt to
cooperate to perform a task or solve a problem, the area of Computer Supponed Cooperative Work
(CSCW) becomes relevant The software development process almost invariably involves cooperation
that crosses group, professional, and subcultural boundaries. The complexity of software development
demands that highly integrated groups of analysts, designers, and users are invilved in the process.
Many development activities may occur concurrently. The area of CSCW and advanced information
technology, with its enormous capabilities for transmitting and storing information, holds considerable
promise for the software development process.

Keywords: Software Development, Software Development Life Cycle, Cooperation, Computer
Based Support, Computer Supported Cooperative Work (CSCW), Groupware, Object-Orientation

\

Computing Review Category: Software Engineering

1. Introduction

In recent years, literature about work has increasingly focussed on the importance of collective
communication, tacit knowledge, and group activities (Greenbaum, 1988). The idea of establishing
computer suppon for group-based work activities, which may be called cooperative work, is a useful
and challenging one, for it breaks away from centralised and bureaucratic systems of communication
and control The shift from computer systems that suppon a single user working alone to those
supponing a group of users working together bas considerable impact It leads to the consideration
of the ways people work together in everyday life, and possible ways to. suppon and extend their
interactions. Perhaps more importantly, it suggests that the unique capabilities of computers should
be embedded more firmly in ordinary work practices (Gaver, 1991).

The birth of the term Computer Supported Cooperative Work (now commonly abbreviated to CSCW)
is attn"buted to the computer scientists Irene Greif and Paul Cashman who organised an
interdisciplinary workshop on the development of computer systems that would suppon people in
their work activities (Greif, 1988).

In recent years, increasing attention has been focussed on the problems of CSCW which may be
broadly defined as the attempt to provide computer-based solutions to the problems that arise when
people (more than a single individual) attempt to cooperate to perform a task or solve a problem

1 56

(Borenstein, 1992). CSCW is a subject that draws on research in various disciplines, such as
psychology, sociology,_ computer science, and artificial intelligence.

Software development involves substantial integrated and cooperative elements. This has panicular
implications for the way the software system should be developed. The software development
methodology should reflect these elements of cooperation (across functional areas or within the
organ�nalhierarchy) and demands some form of participatory approach (Green, 1991). This leads
to the belief that CSCW should be incorporated in the software development process.

2. Computer Supported Cooperative Work in Perspective

In this section, an attempt is made to provide a conceptualisation of CSCW, anchored in a
framework and meta model that identifies the requirements for computer support of cooperative
work. The aim is to construct a conceptual model of the field that allows those active within CSCW
to have some common reference point, and some understanding of the important aspects of the field.

A broadly accepted framework for the study of CSCW systems classifies the type of work according
to its temporal and geographical distribution (Ellis, Gibbs & Rein, 1991). In the two-dimensional
space, four types of cooperative working can be identified as shown in Figure 1. These working types
correspond to four different meeting types, or scenarios, in which the cooperative work is supported
by computers.

synchronous 'fully'
geographical dlstrtbuted distributed
distribution meetings

temporal dlslrlbullon

Figure 1 CSCW Scenarios (Vil/er, 1991)

;

What caused the emergence of an apparently "new" set of issues in the field of information
technology, development, and use? To what extent were existing approaches unable to fulfil the
needs of computer�based support for cooperative activities? Ongoing developments in technology,
approaches to work, and people's' needs in the work place have contributed to a concern for a
technology that suited the actual work practices of people.

2.1 Main Dimensions of Computer Supported Cooperative Work

CSCW research and reference material contain a bewildering array of diverse technologies,
applications and concerns. According to Wilson (1991), there are two major issues: the support of
human groups, and the technology which can be used for that purpose. The dimensions of CSCW
are the groupwork situation, the players and their tasks, and the technology and media for supporting
them.

1 57

The dimensions of the CSCW field should be oonsidered to obtain the total picture of what CSCW
entails. This would be vital in working towards identifying the meta primitives of CSCW. The group
work situation, the players and their tasks, and the technology and media used for supporting them
should be characterised (Olson et al, 19'13).

2.1.1 The Support or Groups

Major topics associated with the support of groups (Wilson, 1991) include:

• Individual human characteristics such as oonversation patterns and the making of
commitments.

• Organisational aspects such as the culture and structure of organisations.
• Group work design issues such as user involvement in the work design process, rapid

prototyping and usability testing.
• Group work dynamics aspects such as group decision making and the cooperative or

collaboration process.

2.1.1 .1 The Global Characterisation of the Groupwork Situation

CSCW covers a wide spectrum of situations in which groups perform their work. Johansen (1988)
characterised the different sets of situations by separating the dimensions of time and location of
work, noting whether they are the same or different. as shown in Figure 2. Figure 2 is an instantiation
of Figure 1 to separate· the major modes of work.

SAME
�

Face-to-face
meetings

Tele- and
video-
conferencing

Figure 2 Tune and Location of Work (Olson, 1993)

DIFFERENT

Project
rooms,
shift work

E-mail,
annotated
drafts

In the case of face-to-face meetings and informal project work, work may be done in the same place
at the same time. Electronic meeting rooms such as Colab are intended to support this type of work

1 58

(OJson et al, 1993). Group work aJso occurs in different places but at the same time. Systems in tJm
category focus on remote work and attempt to help individuals communicate effectively with a
different set of channels and tools than those used in traditional face-to-face work. Video and audio
teleconferencing systems fall in this category. The third common situation is work that is neither in
same place nor same time. The situation is supported through email, conferencing, and group
authoring tools. In addition to the transfer of work objects and comments, this kind of work requires
the overhead of coordinating people. The fourth situation, work that takes place in the same place
but at different times, is less common. It is seen in shift work in hospitals and factories, and in project
rooms, places where all the material for a project resides, but individuals in the team come and go.

This characterisation helps separate the major modes of group work. With in-room technology, which
supports each person's ability to jot down ideas as they occur and can display one or more person's
work, two changes are apparenL Work gets done in the meeting. There aJso is a smooth swing from
silent, parallel thought and development of ideas, to a focussed, one-at-a-time viewing of each
person's ideas which may be shared. According to Olson et al (1993), technology has the power to
blend synchronous and asynchronous work in new ways.

2.1 . 1 .2 The Tasks of Groups

McGrath (1984) has categorised eight types of work, as shown in Table 1.

Table I Task types (McGrath, 1984)

Planning tasks
Creative tasks
Intellectual tasks
Decision-making tasks
Cognitive conflict tasks
Mixed-motive tasks
Contests/battles
Performances

(problem solving, generating plans)
(generating ideas)
(solving problems with a correct answ�r)
(solving for preference)
(conflict of view)
(conflicts of motive/interest)
(conflicts of power)
(psychomotor tasks)

According to Olson et al. (1993), this taxomony specifies whether the work involves cooperation or
conflict, whether it involves conceptual work or motoric actions (as in sport), and which phase of
development the work is in, whether the work involves generating, choosing, negotiating, or executing.
This is not the only task typology possible. Steiner (1972, 1976) has examined in more detail how
tasks require information from group members to be combined in order to identify how technology·
might support activity. However, neither of these typologies consider the kinds of tasks groups engage
in when they are trying to learn, to coordinate, or to get to know each other better.

2.1 .1 .3 The Group Members

Groups differ in both the characteristics of the participating individuals and how they interact with
each other, and in their style and pattern of managemenL

The individuals who comprise the group have various expertise and talents, attitudes, and personality
characteristics. Equally important are features of the individuals' interactions with each other. These
two factors are known as cohesiveness and structure, and both of these vary as a function of the size
of the group (Forsyth, 1990).

It is important to consider how the characteristics of individuals and group structure relate to the

1 59

embedded structure in technology. A group with a pattern of democratic, mhesive, but free-for-all
behaviour in unsupported work settings might react poorly to a technology that has embedded in it
an autocratic method.

2.1.2 Categories or cscw Technology

Few products built on pure CSCW principles currently exist, though there are many other products
which may suppon the group working process in one way or another. While there is considerable
overlap between CSCW and existing groupware products, CSCW has an altogether new kind of
software and a new kind of user-to-user relationship (Nolle, 1993). For example, E-mail is analogous
to an interoffice mail exchange, while CSCW will resemble face-to-face or phone conversations. The
wshared workspace• concept of groupware remains, but in CSCW applications, the computer
workspace (the files and applications being shared) is maintained in real-time as much as possible.

·,

A variety of media have been used to suppon group work, and each medium presents different
aspects of interaction. The primary differences have to do with whether the technology supports
communication about the work, or whether it represents the work itself. Video connectivity supports
conversation, including gestures and, sometimes eye contact, as well as artifacts (e.g., a model of a
new landscape). On the other hand, a real-time shared editor supports the work itself, providing to
all panicipants text, outlines, and diagrams for both viewing and changing. Bulletin boards and email
blend these roles, supponing both the work and the conversation about the work. This may cause
problems in understanding what a panicular message means.

It is difficult to dimensionalise the space of CSCW technologies, and attempts are just beginning to
appear (Ellis et aL, 1991; Malone and Crowston, 1990). These efforts are still preliminary, and there
is no widely accepted framework. It is, however, a very promising area of work, moving beyond the
early point systems of technology towards general theories of cooperation and coordination that are
needed for understanding how technology may fit into human social, organisational, and cultural
practices. This is the key � developing effective tools in the future.

The main categories of technology for supponing group work (Wilson, 1991), which include:

• Communication mechanisms enabling people at different locations to see, hear, and send
messages to each other, for example electronic mail and video conferencing.

• Shared work space facilities enabling people to view and work on the same electronic space
at the same time. An example is remote screen sharing.

• Shared information facilities enabling people to view and work on a shared set of
information, for example multi-user databases.

• Group activity support facilities to augment specific group work processes, for example the
co-authoring of documents, and idea generation.

A number of CSCW products which suppon the group working process in one way or another have
appeared. Product categories include (Wilson, 1991):

• Message systems
• computer conferencing systems
• Procedure processing systems
• Calendar systems
• Shared filing systems
• CO-authoring systems
• Screen sharing systems
• Group decision suppon systems (GOSS)
• Advanced meeting rooms
• Team development and management tools.

1 60
2.1.3 Integrating the Dimemions

Determining what type of group technology will be su�ful depends on specifying the four
dimensions. The components and dimensions introduced up to now are used in the next section to
specify the CSCW meta primitives.

2.2 CSCW Meta Primitives
'

The meta primitives constitute the basic modelling elements of a specific paradigm. The meta
primitives of the CSCW paradigm are derived from the definition of CSCW, the main components
and dimensions of CSCW, and estabmbed meta models from the literature that have relevance in
CSCW. The meta models from the literature that are referred to are:

• Gladstein's framework for group performance (Gladstein, 1984).
• Organigrams and Process Interaction Diagrams (Gladstein, 1984).
• The Logistics model and Petri nets (Joosten & Brinkkemper, 1993).
• An Activity meta model (Kuutti (1991), Engestrom (1990)).

By vinue of the first pan of its name, the •cs• pan of the name CSCW, the professed objective of
CSCW is to support via computers a specific category of work, namely cooperative work. The term
computer support oonveys a a>mmitment to focus on the actual needs and requirements of people
engaged in cooperative work. In analysing the word computer support, the attention is immediately
focussed on support in the form of hardware and software. In the context of CSCW, oomputer
suppon is achieved by means of the hardware which typically oonsists of basic hardware components,
as well as groupware technology. Basic hardware oomponents include network facilities, processors,
peripherals such as printers and terminals, and other hardware components which may be necessary
to provide basic oomputer support to anyone who uses a computer for work purposes. Architectural
components which form part of the basic hardware include the information store, organisational
database, and the information and oommunicationservers. Groupware technQlogy, on the other hand,
includes hardware technology that should be added to the basic hardware a>mponents for the
suppon of people who work in groups to attain specific goals in their work. Groupware technology
includes video conferencing capabilities (e.g. video and audio equipment), multimedia wmponents,
electronic whiteboard components, and other CSCW technology as already mentioned. The
architectural components which may be added are the CSCW managers (information, domain,
activity, security, and multimedia managers).

Software may be classified as system software, application software, middleware, and groupware in the
CSCW realm. The system software include the operating system software, utility S()ftware, and other
system software that are necessary for a computer to function. Customised software systems and
software packages which are used for specific applications are referred to as application software.
The general functions performed in the CSCW environment are referred to as services. The principle
is to provide as many such services as possible via sharable servers. Collectively, the systems providing
these-services are being called middleware, and examples are security services, network services, and
repository services.

Groupware software refers to software that is applied for the suppon of group activity. The
groupware provides various shared services for fulfilling the needs of people working in groups. The
shared services are categorised as:

• Communication mechanisms.
• Shared workspace facilities.
• Shared information facilities.
• Group activity support facilities.

The meta primitives for the computer suppon aspect condense to the following:

A. -Software
A.1 System software
A.2 Application software
A.3 Middleware
A.4 Groupware

A.4.1 Shared services

B. Hardware
B.1 Basic hardware
B.2 Groupware technology

1 6 1

Turning now to the second pair of characters in CSCW, •cW" or cooperative work, a specific
category or aspect of human work with certain fundamental characteristics common to all cooperative
work arrangements is covered. There are many forms of cooperative work, and other terms used are
collaborative work, collective work, and group work. Work is, of course, always social in the sense
that the object and the subject. the ends and the mean§, the motives and the needs, the implements
and the competencies, are socially mediated (Schmidt & Bannon, 1992). However, people engage
in cooperative work when they are mutually dependent in their work and therefore are required to
cooperate in order to get the work done. The term cooperative work should be taken as the general
and neutral desi�tion of multiple persons working together to produce a product or service. In
terms of cooperative work, the application domain and the participants involved in group activity are
important elements. The participants also fulfil differentroles (e.g. manager, secretary, and chairman)
in the group. For example, in the group situation when developing software a specific person may
play the role of either domain speciamt, project leader, analyst, or designer. The level of work
element refers to the organisational level in which a participant performs cooperative work. The
organisational level, level detail and job particulars are attn"butes of the level of work primitive. The
highest level is the universal level, then the wordly level, and then the atomic level, the lowest level
The application domain element refers to the specific application supported by CSCW. The variety
of application types include manufacturing applications, production control applications, broadcasting
applications, and health care applications. The nature of cooperative work taking place within the
application domain are a15<> of importance. These include projects, meetings, committees, and task
forces. Different 'types of work refers to either managerial, creative, physical or technical work. The
specific work performed, the location of the work, and the temporal characteristics of the work are
attn"butes of the type of work.

The meta primitives for the cooperative work aspect may now be derived. The previous discussion
higlighted the important elements that are related to cooperative work and as before they will form
the meta primitives. The cooperative work meta primitives are:

C. Panicipants
C.1 Roles
C.2 Level of work

D. Application domain
D.1 Nature of cooperative work

D.1 .1 Types of work

An object model illustrating these meta primitives and their relationships is represented in Figure 3.
An object is defined as a concept, abstraction, or thing with crisp boundaries and meaning for the
problem at hand. An object model captures the static structure of a system by showing the objects
in the system and their relationhips. Most object models, including those proposed by Rumbaugh et
al (1991), Booch (1991), Coad & Yourdon (1990), and Jacobson (1987) capture the attn"butes and
operations that characteme each class of objects. For the purpose of this discussion, the attn"butes
and operations are not important and are not incorporated in the CSCW object model

1 62

System
Sorflware

A.1

cscw

Middle- Group.
ware ware

A.2 A.3 A.4

Shal9d
Senllcel

A.4.1

NOTATION (Rumbaugh II IL 1fill

_ _:-----�L-------'

.___.-----�..__....,

Figure 3 The CSCW Object Model

2.3 A CSCW Conceptual Model

RolM
C.1

Level ol
Work

C.2

�D

Natwe al
Coopera
tive Work

D.1

has

_ _----q....______,

Initially, a general conceptualisation of the CSCW paradigm is established, as illustrated in Figure
4. Figure 4 depicts the notion of groupware (electronic components) in suppon of participants
involved in group activity.

1 6 3

Cooperative
Agents

Figure 4 General Conceptualisation of the CSCW paradigm

The model depicted in Figure 4 comprises the following main components:

• CSCW, the computer supported cooperative work paradigm including all the
components that are necessary for the computer-based support provided to
participants engaged in group activity.

• Cooperative Agents, which allow the participants in the groupware communications
to organise their work, to communicate and to ensure that the communications and
cooperative work are performed in a coherent and consistent way.

• Shared services, which allow the participants to access common resources and to
share common information.

The general conceptual model as abstracted in Figure 4 can now be instantiated with the meta
primitives of CSCW. The first instantiation of the conceptual model is illustrated in Figure 5.

1 64

.....

- -

COMPUTER
SUPPORT

Figure 5 Conceptual Model of CSCW Meta Primitives

COOPERATIVE
WORK

3. Software Development within a CSCW Environment

Software development according to sound software engineering (SE) principles aims at producing
quality software systems efficiently. More specifically, the software development process involves a
set of activities aiming at conceptualising, specifying, and producing software systems in accordance
with the requirements of the users, under existing economical and technological constraints.

Many of the activities of the software development process could be performed either individually
or in collaboration. As modern technology is complex, it is unusual for an individual to attempt the
development of a major software project single-handedly. Integrated groups of analysts, designers and
users work together to establish a clear understanding of the software system that should be
developed. These software teams have the challenge of solving the difficult problems of task
coordination and information integration.

Software development almost invariably involves cooperation that crosses group, professional, and
subcultural boundaries (Bannon, 1993). Different groups, professions, and subcultures embody
different perspectives - they communicate in different "jargon". The difficulties of working in such

1 6 5

situations where individuals in the group have different practices, traditions, and working objectives
may lead 10 a lot of time wasted in clearing up differences between the panies involved. Different
groups reflect different ways of doing things (a different on10logy1 and epistemologr). These
ydistinct groups will be refened 10 as semantic mmmunities. Efforts within the systems development
process to emphasize the importance of good mmmunicative practices between the differing semantic
mmmunities attest to the difficulties that are experienced.

Many problems are experienced in the early phases of the software development process, particularly
in the analysis phase. One of the challenges that software developers face in this cycle is the overall
analysis (and subsequent detailed specification) of mmplex and ill-de�ed opportunities surrounding
the a>upling of user needs with system functionality. The opponunities span a spectrum that ranges
from easy to define (and specify) to mntinually evolving and almost impossible to specify. There are
often ·extensive c::Qmmunication and cooperation barriers between the analysts and the users. This
could lead 10 software developed without fully understanding (or being able to build on) what users
already know about their tasks. Software developers are often forced to assess situations, determine
user requirements, define system functionality, and devtjop software within very shon time frames
and at low budgets, without mmpromising system functionality or putting users into compromising
positions.

Groupwork during the software development process introduces problems of organisation,
coordination and communication. The tasks carried out by the groups can rapidly become
overwhelming because of the complexity of the interactions and the amount of information that is
generated. Due to the interdependence in mnducting their work, cooperating workers have to
aniculate (divide, allocate, coordinate,schedule, mesh, interrelate, etcetera) their respective activities.
Entering into cooperative work relations, the software developers must engage in activities that are,
in a sense extraneous to the activities that contn'bute directly to fashioning the software product and
meeting the requirements. A justification for incurring this overhead cost and the reason for the
emergence of cooperative work formations in software development is that workers a>uld not
acoomplish the task in question if they were to do it individually, at least not as well, as fast, as
timely, as safely, as reliably, and as efficiently as a group muld (Schmidt, 1991).

I

Nowadays, truly distn'buted applications seem natural in the face of a high ratio of computing power
to available mmmunication bandwidth (Borenstein, 1992). The users and software developers
involved in a specific software development project may be widely separated geographically. For such
cooperative development efforts, distn'buted solutions seem inevitable. Unfortunately, the practical
success of such systems has been limited. Three problems that are not generally faced by single-user
development environments should be solved (Borenstein, 1992). Firstly, there is the problem of the·
remote installation, where the participants of the cooperative development effon may have differing
degrees of motivation for allowing the installation of the cooperative development software. Related
to the problem of getting software installed at distnbuted sites is the problem of getting the
participants in the software development process to use the distnbuted development software once
it is installed. Getting software to work on a wide variety of platforms is a major task, and one that
has to be carefully considered before establishing a fully distn'buted development environment ·
Complex organisations are characterised by distnbuted decision making, and require a sharing of
perspectives among participants if they are to coordinate activities and adapt 10 changing
circumstances.

The problems have resulted in the realisation of a need to unleash all the resources of cooperative
work: horizontal coordination, local control, mutual adjustment, critique and debate, and self
organisation (Schmidt, 1991). Tools.and techniques for cooperation between end users, management
and professional designers should be applied in the software development process.

Ontology is a branch of metaphysics dealing with the nature of being (Oxford Dictionary, 1982).

2 Epistemology is the theory of the method or grounds of knowledge (Oxford Dictionary, 1982).

1 66

Advanced information technology, with its extensive capabilities for transmitting and storing
information 'WOUid �m to bold ronsiderable prom� for groupwork (Gorry, 1988), and hence the
role of CSCW. This also has relevance for the software development process.

3.1. Support for the Cooperative Work in Software Development

The increasing size of, and limited time for the development of software is the basis for the growing
importance of distnbuted development teams (Hahn et al, 19'JO). The support of this type of group
activity may increase synergy and paralellism making the software development process more
productive. The issues of group activity, roncurrent development, distnbuted development, and
technological support for group activities motivate the use of CSCW in software development

Within the area of cooperation the work of software development teams ronstitutes a natural and
important application. The shift in emphasis that seems to be implied by the emerging paradigm of
computer supported cooperative work for this application is twofold (Hahn, 19'JO):

• Software development by teams, though being constrained by technical requirements, is
recognised as a social process comprising the formal or informal interactions of the members
of the team (group work) within an organisational setting.

• Social processes (work procedures) in task-Oriented groups underlie particular conditions for
negotiations, commitments, and responsibilities that are essential for smoothly accommodating
dynamic changes of the project environment

In discussing teamwork support, it is useful to distinguish between different levels of support and
different scales of cooperation (Jarke et al, 1992). In terms of support levels, connectivity (the ability
to technically exchange data), interoperabilily (the ability to exchange semantically meaningful
information), and cooperation (the ability to enhance individual work by' contributing towards a
common goal) are relevant In terms of cooperation scale, collaboration, communication and
coordination can be distinguished. According to Ellis et al. (1991), collaboration refers to joint work
on a common object, whereas communication refers to the exchange of pieces of information
(messages or development objects). Collaboration and communication tools augment human ability
for cooperation in small groups by breaking barriers that have existed in traditional real-time and
asynchronous group work (Jarke et al., 1992). On the other hand, coordination structures (and_
sometimes limits) the flow of communication and the way of collaboration in a typically larger group,
to overcome overloading.

In establishing computer support for software development, some important cha'facteristics of the
process should be considered (Marmolin et at.,1991). Firstly, software development is an iterative
process in which each activity is characterised by a mixture of analytic, structured, linear, creative,
chaotic and nonlinear behaviour. The behaviour depends on the development phase,'the state of the
problem, and the size and skills of the development team. The bottom-up approach seems to be
dominant in small research oriented development tasks, when the problem is ill-defined, the design
teams are small and prototyping is used. Although support for processes is important, both analytic
and creative software development activities should be supported.

Secondly, the earlier stages of software development are characterised by intuitive information
gathering processes rather than by formal analytic processes. Concrete representations play an
important role in understanding and evaluating development ideas. Thus, the support given has to
focus on informal cooperation. According to Marmolin et aL (1991), tools for idea generation (story
board facilities) and facilities for observing other systems, and tools for visualising and descnbing
ideas are often more valuable than analytic tools.

Thirdly, the view in which good development is characterised by the ability to integrate knowledge
into a unified view and transform it- into computational structures is adopted. Support is necessary
for integration of knowledge by learning and development from a common frame of reference.

1 6 7

Finally, software development is regarded as a><>perative work. Thus, support for collaboration,
coordinationand communication are n�ry. Marmolin et al (1991) refer to the need for informal
and formal a><>perative tools for recordkeeping of ideas and development concepts, change
facilitation, information sharing, and project management Support for cooperation, which is �ntial
in software development, has to be very effective and so easy to use that it does not interfere with
the development activities themselves.

The cooperative tasks in a distnbuted software development environment can be classified as either
conference tasks, co-working tasks, information exchange tasks, or. management tasks (Mannolin et
al, 1991). A conference task is a discussion exchange of experience and knowledge between two or
more team members. These discussions may take the fonn of negotiations, idea generation, problem
solving, and briefings. The task could be asynchronous or synchronous, formal or informal and have
social and communicative characteristics. It could be supported by electronic conference systems and
mail systems. A co-working task is any activity concerned with the cooperative production of a
document or other kind of product in a synchronous or asynchronous way. This task could be
supported by distnbuted applications including co-editors, co-authoring and annotating systems. An
information erchange task is an activity concerned with the exchange of documents and other
information between two or more team members. It could be supported by shared databases,
hypertext hbraries, record keeping tools and other forms of group memories. The management task
is an activity for coordinating and supervising of cooperation within a team. It includes planning and
scheduling tools which may be supported by PERT and GANTT tools.

The classification of the generic cooperative tasks can be used as a basis for the establishment of
support for the cooperative development environment Next, the requirements of tools for the
support of cooperative software development will be examined.

3.2 Requirements or CSCW in Distributed Software Development Environments

Based on the examination .of the software development process and cooperative or group work, the
following set of general functional requirements are relevant for groupware support in a distnbuted
software development environment (Marmolin et al, 1991):

• Support informal cooperation. This is a most important requirement of a distributed software
development environment that is also hard to fulfil. This requirement implies that the
environment should support communication of social behaviour patterns, establishment and
development of personal relations, and drop in meetings.

Moreover, interactions of groups require support beyond the formal level of technical
communication lines such as e-mail and electronic conferencing systems (Hahn et al, 1990).
The social protocols that underlie group communication have to be accounted for in terms
of human strategies and policies for argument exchange, contract assignment and decision
making.

Support is needed beyond basic multi-user facilities which are used to partition teams with
standard schemes of concurrency control. The support of group interactions should account
for human cooperative techniques such as negotiations, and commitments.

• Support sharing and record keeping of softw{l]'f! development information. Research has shown
the need for supporting sharing and record keeping of important development information,
especially in larger teams or groups. Thus the environment should support record keeping
and sharing of requirement, design and implementation information, development
deliverables, development ideas, commitments and work plans.

• Support sharing of background knowledge. This requirement refers to important preconditions
for cooperation. These include the need for a common frame of reference, for sharing
application domain knowledge and for exchanging knowledge about ·similar systems and

1 68

other solutions to the development problem.

Took need content�rientedspecifk:ation of knowledge beyond language facilities. Aa:ording
to Hahn et al (1990), proper tool suppon and properly rontrolled tool integration should
a>nsider domain knowledge of the underlying project, working procedures and languages
used for suppon specification, design and implementation.

• · Support presentations of iJ:wJs. Concrete representations are vecy important in software
development Therefore the distnbuted software development environment should suppon
different ways . of presenting and visualising ideas for other team or group members.
Examples are visualisation tools and stocy board or white board facilities.

• Support strategies reducing the need for co-working. Efficient tools for reducing the
•oollaborative load· may be more imponant than tools to suppon co-working. Division and
integration of work, encapsulation and sequential processing should be supported.

• Support co-working. There will always be a need for co-working. Asynchronous co-working
in particular should be supported by annotating and reviewing systems. The support of
synchronous co-working are not as important, except for suppon of interface design together
with users. at other locations.

• Support management activities. Management should be supported in terms of planning,
monitoring, reviewing and control of software development projects. An example of a
management tool is electronic calenders which have been proved not to be vecy useful

Although the main concern is with distnbuted software deveiopment environments, it is not .a�umed
that groupware should be a substitute for all face-to-face meetings. Complex cooperative work
involves a a>ntinuing need for face-to-face meetings. This is especially applicable in initiating and
planning of the cooperative work. It is believed that well designed distributed software development
environments may both reduce the need for face-to-face meetings and provide new and more
effective ways of cooperation.

3.3 CSCW Technology for Software Development

There are numerous examples of both commercial products and research prototypes for most of the
major categories of CSCW technologies. Many isolated tools are already available.to suppon software
development processes. These include tools for modelling during analysis and design, resource
management, project control, or hypertext facilities for project documentation. However, these tools
tend to have limitations in terms of a sound coverage of the knowledge of the software domain, and
a centralised view of project planning. They provide island solutions incapable of being integrated.
Recently, theories and tools have appeared th4t take a le� centralised viewpoint of software projects
and at the same time aa:ount for the human factor inherent in work procedures. Initially, a software
development environment incorparating these theories and tools were perceived as a forum of
communication considering notions from speech act theocy and other, more ad-hoc conversational
models as the basis of tools such as typed messaging or conferencing systems (Hahn et al, 1990)
However, a pure conversation perspective is inadequate neglecting technical aspects of software
development

With so many CSCW technologies available, there is now a trend in CSCW research towards
integration along numerous dimensions. What is needed is an integrated project support environment
(IPSE) a>nsisting of multi-user tools suitable for a>mputer-aided group work in software projects.
The requirements of CSCW in software projects that were determined in the previous chapter are
used to establish a framework for cooperative distnbuted so_ftware development which may form the
foundation for integrated project suppon environments.

1 69

3.4 CSCW Software Development Environments

The idea of a Software Development Environment (SDE) as a comprehensive, integrated set of tools
supporting the complete software development process has been the topic of research over the last
few years. Supporting the software development process means to support the modelling techniques
of the process, and the development and maintenance of all kinds of documents including
requirements specifications, software design specifications, code listings, technical documents, and
manuals. The ultimate goal of a SDE is to improve the quality of the final product, to support reuse
in and acr� software projets and to free developers from routine work (Peushel et aL, 1991).

A major challenge for future SDEs is the support of �ibly large) teams of software developers
who may even be geographically distnbuted. Such distnbuted software environments exist, but the
available machine support is usually restricted to local or wide area networks and corresponding low
level protocols that only enable simple file transfer, rudimentary configuration management support,
and a mail sys�m (Peushel et al, 1991). The need is !or coordinating access to shared information
on different levels of granularities (e.g. form complete systems of modules or documents down to
procedure definitions in a single module). There is also a need for dedicated message servers for
conveying inform�tion about project states, critical tasks to do, and getting feedback. Examples of
research projects which tackled the problem of team support are MARVEL (Kaiser and Feiler,
1987), ARCADIA (Belz et aL, 1988), ALF (Benali et al, 1990), and MERLIN (Peushel et aL, 1991).
A further achievement of such an environment is the computer-supported integration of development
and management activities. It is envisaged that the petri net-based DesignNet Model of the OISEE
project which presents the universal level of the development process model, as previously illustrated
in Figure 3.1, should be computer-supported for the integration of development and management
activities.

3.4. 1 Generic Facilities

This section outlines the facilities that a software development support tool must provide in order
to meet the goals of fleXJ�ility and active support. These generic facilities were compiled by Kaplan
et al. (1992) in a paper which reports on the development of an open, fleXIble and active support
environment for software development based on the ConversationBuilder. The first set of activities
is concerned with users being able to w.ork on and relate among arbitrary sets of activities. These
facilities are necessary to:

• Provide the ability to specify new kinds of activities to the system. The specification of such
situations are called protocols.

• Allow the user to have as many activities running simultaneously as is useful.

• Allow the user to relate activities to one another as is suitable, in order to make an activity
subordinate to another, or group of other activities.

• Be able to impose obligations on other users, or other contexts, from any context, and be
able to manipulate one's own obligations. This entails handing the obligations over to others,
changing their context, declaring them complete and refusing offered obligations.

• Allow the user to switch among activities at will and as effortlessly as possible.

The second set of facilities is concerned with helping the user to determine his current position in
the system, and the options available to him. These facilities are to:

• Help users determine how they got into a particular context.

• Indicate the legal actions which may be performed in a given context.

1 70

• Perform any of the legal actions.

• Indicate to the user the obligations which must be met before a task is complete.

• Enable the user to understand the relationships (if any) that exist among the data that are
present in the system.

• Enable the users to understand the relationships among all the contexts in which they are
involved.

• Allow members of a group to be aware of what ather group members are doing.

The third set of facilities is miscellaneous, but necessary. These facilities are to:

• Allow the construction of arbitrary networks (hypertext systems) of data, in which both nodes
and links can be typed, so that both shared and private data of various types can be
modelled in the system.

• Continue to provide traditional support facilities, such as compilation, version control, editing
and mailing.

• Allow the incorporation of new tools as required by users.

3.4.2 Cooperative Models for Software Development

Repositories are the central information servers for design environments. Early repositories generalJy
provided the service of storing evolving objects. However, there is evidence especialJy in the software
engineering domain that repository technology will soon be used to integrate whole environments,
even organisations (Jarke et al., 1992). Figure 6 illustrates these environ.ments which incorporate
human agents, their local workplaces and tools, and structured communication either directly by
message-passing over the network or indirectly by shared information in the repository. In such cases,
the repository matures to an active center of communication for complex cooperative devel0pment
processes.

With development in the area of computer communications, information represented in different
formats, such as voice, graphics, images and text can be processed, stored, retrieved and distnbuted.
In the area of communications, new technologies are available for developing integrated networks
capable of providing the level of service required by different media. This is motivated by technology
transformations in the following domains (Karmouch, 1993):

• The emergence of high-speed networks with powerful workstations and new storage·
technology imposes a new way of processing information.

• Distnbuted system configurations are possible where several powerful workstations share
resources at different sites by communicating through local area networks (LANs). Other
configurations may cover wider areas such as LAN interconnection through MANs and wide
area networks (WANs).

• Faster networks, high performance processing and storage systems directly manipulate new
types of information such as video, voice and image, all integrated in a single entity (the so
called multimedia document).

• Optical fibre technology has overcome the limitations of current networking technology in
providing high speed networks, permitting the transfer of large amounts of multimedia
information over a single channel in an integrated and synchronised manner.

� c;,

� � r ,

<;= Agents

" ·� Workplaces

<;= Network

<;= Repository

Figure 6 A typical Software Development Environment (Jarke et al, 1992)

1 7 1

The architecture that is proposed for computer-supponedcooperative work in software development
should be able to fulfil thefoture needs of multimedia distnbuted cooperative work. The architecture
is adopted from an architecture established by Brodie and Ceri (1992) for the new generation
information systems called 1Intelligent and Cooperative Infonnation Systems (ICISs). These systems
provide forms of cooperation and intelligence. Intelligent and Cooperative Information Systems will
involve large numbers of heterogeeous,_ intelligent agents distnbuted over large communication.
networks. The agents may be humans, humans interacting with computers, humans working with
computer support, and computer systems performing tasks without human intervention. Core
technology, previously descnbed as services provided by middleware required to support the·
advanced features of ICISs include (Brodie & Ceri, 1992):

• Data/object/knowledge/information managers (DBMS, OODBMS, KBMS, file systems,
distnbuted object management).

• Presentation services/user environment - windows, forms.
• Communication infrastructures - RPC, peer-to-peer messaging, queued messaging, X-400,

maiL
• Security nanagers - authentication, encryption, access control.
• Reliability managers - transaction manager, recovery manager, log manager.
• Advanced/distnbuted operating systems services - resource allocation.
• Naming services - global name directory and management
• Libraries/library services.
• Control - job and request scheduling.
• Distributed computing / programming services.
• Interoperability services - information and language translation, data interchnage,

information/object migration, copy management, other transparency services.
• Network services.
• General services - sorting, maths, and data conversion.
• Repository services.

Ideally, these services should be transparently available to any infformationsystem or IS development

1 72

environment in the distnbuted oomputing environment Collectively, the systems providing these
services are called middleware and the principle is that it should provide as many services as possible
via sharable servers.· Figure 7 gives an illustration of the layers of the a>rresponding distnbuted
architecture.

Applications • • Applications

System
Application (Tool)

• • • System
Application (Tool)

APls

Middleware (Distributed Computing Services)

- User I nterlace - Asset Management
- R un Time Envi ronment/OG E - Coput ing Network Management

(Distributed Computing Environment) - Telecom. Network Management
- Software Development Environment - Control: Request Schedul ing . . .
. . (Lowe& CASH--- - - - - - - - - -- � -Nam111g: . . . - - --- ,-

_.· - Moaelling Tools (Upper CASE) . - Security • � ·
- Data Management and Access - Uti lities

System Interfaces

OS
Network

Hardware

i

OS
Network

Hardware

Figure 7 Distributed Computing Architecture with Middleware (Brodie & Ceri. 1992)

A multimedia oonfiguration, as established by Karmouch (1993) for cooperative applications is
depicted in Figure 8. Three separate networks are used - Ethernet for data, PBX for voice, and
Broadband for video. When high speed networks such as FDDI. DQDB and B�ISDN become
commercially available, all of the media may possibly be integrated into one network. An extension
of the worksiation level is a separate TV monitor to display video. A videowindow may al'IO be
integrated in the graphical screen, depending upon the image quality required for an application.

Servers may be classified to fall within two categories: information servers and communication
servers. Information servers can be further classified into a database server and storage servers.

I
I

Voice
Server

Text and
Graphic
Server

Image
Server

Camera

Database
Server

Ethernet

Cooperative � DirectOry
Server � Server

• · · · · · · · · · · · · · · · · ·
r
· · · · · · · · · · ·

I

Digitally Controlled
Analog Video

· - - - - - - - - - - - - -

Figure 8 Multimedia Platform for Cooperative Applications (Karmouch, J<J93)

1 74

4. Conclusion .

This article reports on an investigation of bow the CSCW paradigm could be incorporated into the
software development process. This investigation was motivated by the fact that software
development is almost always carried out by groups and that technology support is essential for a
quality, on-time and within budget software project. Specific requirements for computer-aided
support for the cooperative work during software development were examined. The generic facilities
that software development environments should provide for supporting cooperative work were
determined to form the b�is for the establishment of architectures.

1 75

References

Books:

1. Booch, G. 1994. Object-oriented Analysis and Design. Wuh Applications. Second Edition.
Benjamin/Cummings Publishing Company, Inc.

2. Coad, P., and Yourdon, E. 1991. Object-oriented Analysis. Second Edition. Yourdon Press.

3. Forsyth, D.R. 1990. Group Dynamics. 2nd edn. Brooks/Cole Publishing Company, Pacifc
Grive, CA

4. Greif, I. 1988. Computer-Supponed Cooperative Worlc: A Book of Readings. San Mateo,
California: Morgan Kaufmann Publishers.

5. Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G. 1992. Object-Oriented Software
Engineering. Addison-Wesley

6. McGrath, J.E .. Groups: Interaction and Performance. Prentice-Hall, Inc., englewood Cliffs,
NJ.

7. Rumbaugh, J., Blaha, M., PremerlanL W., Eddy, F., Lorensen, W. 1991. Object-Oriented
Modeling and Design. Prentice-Hall International, Inc.

8. Steiner, I.D., 1972. Group Process and Productivity. Academic Press. New York.

Contributions in Books:

1. Steiner, I.D. 1976.1 Task performing groups, in Contemporary Topics in Pl)'chology. , edited by
J.W. Thibaut, J.T. Spence, and R.C. Carson. General Leaming Press, Morristown, NJ.

1 76

Journal Artides:

1 . Bannon, L J . 1993. CSCW: An initial exploration. Scandinavian Journal of Information
Systems. 5:3-24.

2. Bannon, L, & Schmidt, K. 1992. Taking CSCW seriously: Supporting articulation work.
Computer-Supponed-Cooperative Worlc (CSCW). Kluwer Academic Publishers, The
Netherlands, 1:7-40. 4, 67-83.

3. Belz, F.C., Clarke, LA, Osterweil. L, Selby, R. W., Taylor, R.N., Wileden, J.C., Wolf, AL,
Young, M. 1988. Foundations in the ARCADIA environmentarchitecture, in [SDEB8), 1 -13.

4. Benali, K., Boudjlida, N., Charoy, F., Demiame, F.-C., Godart, C., Griffiths, P., Gruhn, V.,
Jamart, P., Legait, A, Oldfield, D.E., Oquendo, F. 1990. The presentation of the ALF
Project, in eds. Madhavji, N., Schafer, W. and Weber, H., Proceedings of the First Conference
on System Development Environments and Factories I, 75-90.

5. Borenstein, N.S. 1992. Computational Mail as network infrastructure for Computer
Supported Cooperative Work. Proceedings of the ACM]')92 Conference on Computer
Supported Cooperative Work. Toronto, Canada, Oct 31-Nov 4, 67-83.

6. Brodie, M.L, & Ceri, S. 1992. On intelligent and cooperative information systems: A
workshop summary. International Journal of Intelligent and Cooperative Infonnation Systems.
1 (2):249-289.

7. Ellis, C.A, Gibbs, S.J., & Rein, G.L 1991. Groupware: Some issues and experiences.
Communications of the ACM. 34(1):38-58.

8. EngestrOm, Y. 1990. Activity theory and individual and social transformation. 2nd
International Congress for Research on Activity Theory. Lahti, Finland, May 21-25.

9. Gaver, W.W. 1991. Sound support for collaboration. Proceedings of the Second European
Conference on Computer-Supported Cooperative Work. Amsterdam, The Netherlands,
September 25-27, 293-308.

10. Gladstein, D.L 1984. Groups in context: A model of task group effeetiveness.Administanive
Science Quarterly. 29:499-517.

1 1. Green E. et al. 1991. Office systems development and gender: Implications for Computer
Supported Cooperative Work. Proceedings of the Second European Conference on Computer
Supported Cooperative Work. Amsterdam, The Netherlands, September 25-27, 293-308.

12. Greenbaum, J. 1988. In search of cooperation: An historical analysis of work organization
and management strategies. Proceedings of the Conference on Computer-Supported
Cooperative Work. Portland, Oregon,September 26-28, 102-114.

13. Hahn, U., Jarke, M., Rose, T. 1990. Group work in software products. Multi-User Interfaces
and Applications. Elsevier Science Publishers, p 83-101.

14. Jacobson, I. 1987. Object-oriented development in an industrial environmenL Proceedings
of OOPSLA '87. SIGPLAN Notices, 22(12), p 183-91.

15. Jarke, M., Maltz.ahn, C., Rose, T. 1992. Sharing processes: Team coordination in design
repositories.Internationa/Journal of Intelligent and Cooperative Information Systems. 1(1): 145-
167.

1 77

16. Joosten, S., and Brinkkemper, S. 1993. Modelling of working groups in Computer Supported
Cooperative Work. Proceedings of the 18th lnremational Conference on Information
Technologies and Programming.

17. Kaiser, G.E., and Feiler, P.H. 1987. An architecture for intelligent assistance in software
development Procedure of the 9th International Conference on Software Engineering.
Monterey, c.alifornia, p 180-188.

18. Kaplan, S.M., Tolone, WJ. c.arroll. AM., Bogia, D.P., Bignoli, C. 1992. Supporting
collaborative software development with ConversationBuilder._Proceedings of the ACM 1992
Conference on Computer-Supported Cooperative Work. Toronto, c.anada, Oct 31-Nov 4, 1 1-20.

19. Karmouch, A 1993. Multimedia distnbuted cooperative system. Computer Communications,
568-580.

20. Kuutti, K. 1991. The concept of activity as a basic unit of analysis for CSCW research.
Proceedings of the Second European Conference· on Computer-Supported Cooperative Worlc.
September 25-27, Amsterdam, The Netherlands, 249-264.

21. Malone, T.W., and Crowston, K 1990. What is coordination theory and how can it help
design coopeartive work systems. Proceedings of the Conference on Computer Supported
Cooperative Work. Los Angels, October 7-10, 357-370.

22. Marmolin, H., Sundblad, Y., Pehrson, B. 1991. An analysis of design and collaboration in a
distnouted environment, 147-162.

23. Nolle, T. 1993. Groupware: The next generation.Business Communications Review, 23(8):54-
58.

24. Olson, J.S., c.ard, S.K, Landauer, T.K., Olson, G.M., Malone, T, Leggett, J. 1993. Computer
Supported Cooperative Work: Research issues for the 90s. Behaviour & Information
Technology. 12(2): 1 15-129.

25. Peuschel, B., Schafer, W., Wolf, S. 1991. A knowledge-based software development
environment supporting cooperative work. International Journal of Software Engineering .
2(1):79-106.

26. Schmidt, K. 1991. Riding a tiger, or Computer Supponed Work. Proceedings of the Second
European Conference on CSCW, 1-16.

27. Schmidt, K., and Bannon, L 1992. Taking CSCW Seriously: Supporting articulation work.
Computer-Supported Cooperative Work (CSCW). 1:7-40.

28. Wilson, P. 1991. Computer Supponed Cooperative Work (CSCW): origins, concepts and
research initiatives. Computer Networks and ISDN Systems. 23:91-95.

1 78

NOTES

1 79

NOTES

1 80

NOTES

	SAICSIT_1995_VILJOEN

