
Towards an Option Space for Network Structures 1n
Computer-Based Instruction

PAULA KOTZE
Department of Computer Science and Information Systems

University of South Africa, PO Box 992, Pretoria
E-Mail: kotzep@riscl . unisa. ac .za

Fa cszmzle: (01 2)429-9434

2 1 1

Abstract : There are three major agents in a computer-based instruction (CBI) environment :
the tutor , the tutoring system and the tutee . The emphasis of this paper is on the tutoring sys­
tem which contains the instructional content and structures for presenting the content , the rules
guiding a particular student 's path through the material , and information regarding the perfor­
mance data to be recorded. A CBI program consists of a network of related chunks of i nformation,
called nodes , that are connected by means associated links . Research has been undertaken into the
general structures of a CBI env ironmeut ,:illd some of the results will be discussed iu this paper .

The structure that makes up a CBI program is essentially a directed semantic multigraph. Formal
specifications are employed to discuss several properties that influence the usability of these CBI
networks structures, including reachabil ity, determinism, precedence ordering and restartability.
Although these structures are discussed in the context of CBI, the particular properties can also
be transferred to other m1;1ltimedia appli cations .

Keywords: Tutoring systems, computer- based instruction , human-computer interaction , usabil­
i ty, multimedia', graph theory, formal software specification .

Computing Review Category: H .5 . 1 , C . 4 , K .3 . 1 , D .2 . 1

1 Introduction
Formal approaches to software development (for example [2 , 5]) have been ·mostly concerned with
problem descriptions where the key aspects of the design state is functional , but avoid the ex­
pression of interactive behaviour . In the design of interactive systems it is also necessary to be
concerned with the interaction between the system and its users . This concern is asserted by defin- ·
ing models of interactive behaviour where the issue is closer to what the user perceives . Operations
are of interest in as far as they manipulate perceivable entities .

The design of interactive systems may be elucidated and enhanced by :

• Clarifying design dimensions relevant to the comprehension of interactive systems ; and

• Providing criteria to expedite choice between design options [1) .

An abstract system model of interactive behaviour can be employed to discuss the design of
interactive systems , formulate interact ive properties of various kinds, describe the relationship
between task and system , as wel l as what happens when there is more than one independent party
in the interaction . The aim of this paper i s. to show how such an abstract model of authoring

2 1 2

Lesson !

Course!

Lesson2

CBI-Environment

• • •

Course2

Lessonx

Figure 1 : Computer-based instruction environment

• • •

•. . .

support environments may be used to generate a precise framework or option spa ce within which
design choices may be discriminated .

A mathematical (formal) description of system behaviour provides the means to analyse as­
pects of the behaviour· of a system such as usability and performance. ' A precise description of
characterist ics of the system can also be used as a basis for a set of generative user-engineering
principles which can be used in the analysis , design and construction of future systems .

A uthoring support environments (A S Es) are computer s oftware t ools which support au­
thors in translating their subject knowledge and instructional needs in to computer-based
instructional material. These systems should provide functions to assist the author of
such material in the execution of tasks forming an essential part of such material,
for example, screen display, answer analysis, response judging, student data collection,
control of multimedia devices; and feedback. It should also assist the author in cre­
a t ing the necessary data s t ru ctures which constitute the instru ctional components, a
computer- based instruct io 11 a / environment consists of.

Figure 1 gives an illustration of a computer-based instruction environment . A computer-based
instruction environment consists of a set of courses on a certain topic . Each course is subdivided
into a number of lessons. Each lesson consists of a network of nodes connected by 1 ineans of links .
Nodes carry the actual material used for instruction . The functional characteristics of ASEs should

I
reflect these levels of a CBI environment . Regardless of the kind of interaction an ASE involves ,
it should , as a minimum requi rement , possess the general features required in the courseware
development process of the three sublevels ind icated [3] .

The lowest level , that of node or instru ctional content creation , refers to the input , formatting
and modification of nodes carry ing media objects consisting of text , graphics , audio, video , or
any other information which w i l l be d i sp layed or stored in relation to the nodes . This level
is the most device-dependent s i i1 ce the way the content is entered or modified , and the type
of presentation possible are al l functions of the particular hardware involved. Further principle
categories of instructions involves those related to the display or presentation of information , to
student response processing, and those related to branching sequences . The nodes should be'
linked to form the networks which will be traversed by a student as a result of certain · responses
and rules . The creation , formatting and modification of such links , thus forms the second major
function performed on this level .

2 1 3
The second level , that of lesson or instructional network definition , includes functions which

involve specifying the structure of individual lessons . Lesson management functions include the
capability to define or select a particular instructional strategy (test, tutorial , simulation , etc .) ,
the specification of response data to be collected, the capability to test a lesson just created , and
the control options available to a student . The effect of these functions is local to a specific lesson .
For example most instructional systems automatically produce records of students whenever the
student responds to a question , or passes a checkpoint (for example a particular node in a lesson,
a certain percentage (performance) mark , or the end of a particular lesson) . Such records typically
include data such as the student 's number (identification) , a node identifier, time and date , total
time spent on a node (response latency) , the number .. of passes through a part icular node (or
attempts at a question) , and the transcript of any response . A similar situation exists for student
control options . A student may be allowed to go back one node, repeat a node, skip a node , restart
a lesson , skip to the end of a lesson , etc . The capability to specify such control options, for the
parts of lessons where i.t is permissable , thus also belongs to this level .

Global effects across lessons are specified at the course level . Fti.ndamentally operations at this
level allow an author to manage the authoring and instructional process for a whole course under
development . The records accumulated for each lesson that forms part of a particular course are
integrated and result in a very detailed trace of a student's progress through a particular course ,
which can be sum:p1arised and processed into reports as required. These records can be used to
determine a student 's access to other lessons in the course . The access controls for all lessons in a
course are han<lled on this level , both for students and authors.

ASEs are used to produce computer-based instructional systems and usually have two areas of
functionality

l . Computer-based instruction management - organising networks into lessons , organ1smg
lessons into courses , keeping student records (assigned lessons , progress in assigned lessons ,
including score) , tun-control of lessoris , etc .

2 . Developing the networks that lessons are composed of - a lesson consists of a number of
network structures connec ted in some or other way in order to achieve some instructional
objective. Each network consists of chunks of information , called nodes , connected by means
·of links . ASEs supply the means to "program" these node-link structures .

In order to develop a (formal) model for evaluating ASEs we first need to establish the charac­
teristics of the node, l ink , and network structures which are created by these environment.s. The
different kinds , essential characteris t ics a11d control structures of each need to be identified .

The next step in developing the model would be to identify certain properties that these network
structures should adhere to , for example ,

• reachabi l i ty (of nodes with in a network , as wel l as the end of the network) ,

• d irectedness of the networks ,

• determinism , etc .

The same needs to be done for the higher order structures - the lessons and the courses
these networks would finally form part of. For lessons , for example , we need to model the scoring
mechanisms , the control of prerequ isites . the lesson status (whether it is still in the development
phase , ready for full distribution or l im i ted distri bution , etc .) . Courses form the highest level
of structures identified and consists of a number of associated lessons (and therefore also the
prerequisites associated with each lesson) .

We also need t o look at the d i fferent perspectives the two main groups of users of ASE, teachers
and students , wil l have of the instructional system. What are the objectives of the two groups ,
how do they differ? Do the state and display of the system differ for the two groups? We need to
establish the way in which the different roles are controlled by the ASE. The concept of initiative
comes into play at this stage .

Research has been conducted and an extensive formal model constructed covering most of the
aspects described above . The rest of this paper will report on some of the resul ts as far as the
networks structures are concerned .

2 1 4

2 Network definition
A CBI network consists of a number of nodes connected by means of a set of links . We will treat
the set of nodes and the set of links as given sets for the purpose of this document . A complete
description of these objects can be found in [4] .

2 . 1 Given sets
The first set of objects we require is the set of nodes carrying the instructional content :

Nodes _______________________________ _

[
n ode_id : NODE_!D
Node_ Type
N ode_ Contents

Three typed partitions to a node type can be identified:

Node_ Type ____________________________ _
node_type : NODE_ T YPE
orientation : ORIENTA TION
controlled_by : CONTR OLL ED

The contents of a node consists of two distinct but related sets of information - one contains the
information "displayed" to a "student" and the other contains the "embedded monitor" information
(node level controls) .

Formally :

Node_Contents ---------------------------­
instructionaLcontents : seq M edia_ Ob1ects
node_m onitors : P MONITORS

If one p lans to create instructional and t raining material instead of more generalised interactive
presentations , you need some special features that allow you to evaluate the students using the
courseware . An instructional system should be able to keep records of the students participating
and permit the extraction of such information from the material . The records might include
information about the number of correct (or incorrect) answers a student has made , how long it
took the student to finish a particular piece of work , the current score of the student , the scoring
mechanism for any particular node, flags set to indicate how many times he has been to that node·,
or the path the student followed to get to the particular node, etc.

This information is not general ly avai lable to the student and he is usually unaware of the
existence thereof, and we therefore say the i nformation is "embedded" in the node contents . The
node mon itors are used for keeping stu dent records as well as to determine which path to follow
through the network representing the CBI material . The values of the node monitors thus change
dynamically as result of a student 's interac.tion with the instructional system. We will use node
monitors in our discussion of a network type in section 7 .3 .

Record must also be kept of•the nodes that actually exist :

N odes_th aLexist ---------------------------­
node_instances : NODE_JD >++ Nodes

V nid : NODE_JD I nid E dom(node_ instances) •
(n ode_ instances (n id)) . node_ id = n1d

Secondly, we need to define l ink objects , the g lue that connects nodes into networks:

L inks ----------------------------------'-
link_id : LINKJD
L inL Type
L inL Contents

2 1 5

Each link is associated with two nodes - a source node and a destination node, both of which
should be existing nodes. A link can be sourced to one node only and has only one destination
node. Several links ca.ii, however, be sourced to the same node, and more than one link may have
both the same source and destination just with different conditions attached.

Each link could have a number of conditions associated with it - conditions that should be
satisfied if a certain path is allowed to be taken (these conditions are usually related to the monitors
associated with the nodes) . Typical link conditions include the minimum score level required for
traversing a particular path , the experience level of the student (novice , intermediate , advanced) ,
how many times a student h as visited the particular node, whether an answer t o a question was
.correct or not , a particular choice a student might have made from a list , etc . Link conditions
are fixed and do not change dynamically as is the case· with the node monitors with which they
are associated. The node monitors thus gather the data to be used by the link conditions in
determining the path for traversal through the system.

Link_ Conte nts -----------------.----------­
link_conditions : P CONDITIONS
link_sour.ce : NODE_/D
link_destination : NODE_/D
'2 Nodes_thaLexist

link_source': E dom(n ode_ ins tances)
link_ destina'tion E dom(node_ instances)

Link types convey a certain amount of information and allow one to d istinguish among different
relationships between · nodes , and can thus be compared with links in a semantic n etwor� . A
distinction is made between those link types used for control flow and those used as data flow.
Control flow specifies the sequence of actions to solve a given problem, while data flow defines the
flow of information without determining an order of processing this information.

L ink_Kind -----------------------------
link_type : LINK_ TYPE
attachment : A TT,4.. CHMENT
used_Jor : USE

We also have to keep rec'ord of all the' l inks that exists in our CBI system:

Links_thaLexist -------------------------­
link_instances : LINI<-ID >-<-> L rnks

\:/ lid : LINI<-ID I lid E dom(link_inst a n ces)
(link_inst ances (li d)) . link_ i d = l id

Given these two sets of objects , nodt_ rnstances and link_instances , we can define a CBI net­
work .

2 . 2 General network definition

Each network is identified by means of a ne tworLid , chosen from a representative set NET WORK_­
ID . Each network has a type and a contents , carrying the node-link associations that make up the
network .

Networks -----------------------------
network_id : NETWORILID
NetworL Type
N etwork_ Contents

2 1 6

3 Network contents
Each CBI network has a root node which indicates the start of the network ("Start" in Figure 2)
and an indication of when the end of the network has been reached ("End" in Figure 2) .

The graph constituting a CBI network can be defined in a similar way to that of a general
graph as consisting of a non-empty set N representing the finite set of nodes that form part of the
network , and a finite set L which forms the edges (links) of the graph, and a mapping ,j, from the
set of edges L to the set of pairs of elements of N .

The mapping ef, is defined by determining the transitive closure1 of the root node . The partial
function

destination_of : NODE-1D -++ P NODE_JD

defines the set of nodes that can be reached from any given node . The function takes a single node
reference as argument and returns a set of nodes that are direct destinations of links which have
their source in the argument node.

The partial function

links_attach ed : NODE_JD -++ P LINK_JD

defines the set of links that can be reached from any given node. The function takes a single node
reference as argument and returns a set of links that have their source in the argument node.

Collectively :

Destination_Nodes -------------------------­
destination_of : NODE_JD -++ P NODE_JD
links_attached : NODE_JD P LINK-1D
'=. Nodes_thaLexist
'E. L inks_thaLexist

V nid : NODE_JD I nid E dom(node_instances) •
(destination_ of(nid) =

{ lid : LINK_JD I nid =
(/inLinstances(lid)) . links_source •

(linLznstances(lid)) . linL dest znation } /\
links_attached(nid)

=

{ lid : LINK_JD I nid =
((linLinstances(lid)) . linLsourcef•

((linLinstances(lid)) . link_ id) })

In order to come up with the set of all nodes existing in a particular network we need to
calculate the transitive closure of the root node .

The partial function

rea chable_nodes : NODE_JD -++ P NODE_JD

calculates the transitive closure of a node i 1� the context of the whole network , i .,e . the function
takes any single node in the network as its argument and returns the set of all nodes that can be
reached from that node . This is, done by firstly including the set of nodes that can be reached
directly from a certain node, and then add to this the set containing all the nodes that can be
reached from these nodes .

The partial function

reach able_links : NODE_JD, P LIN I< _JD

calculates the set of all links existing in a particular network in a similar way.
1 Transitive closure - the set of vertices (nodes) that can be reached from a given vertice (node) by traversing

edges (links) from the graph in the indicated direction[6) .

AlLReachable_N odes _______________________ _ reachable_nodes : NODE_ID -++ P NODE_JD reachable_links : NODE_JD P LJNKJD '2.Destination_N odes
V nid : NODE_JD I nid E dom(node_instances) •

(destination_ of (nid) = 0 � reachab/e_nodes(nid) = 0) /\
(destin ation_of (nid) f:. 0 �

(reachable_nodes(n id) = destination_ of(nid) U (LJ{ mid : NODE_JD I mid E destination_of (nid) • reachable_nodes(mid)})) /\ (reachable_links (nid) = lmks_attached(nid) U (LJ{ rnid : NODE_JD I mid E destination_of (nid) • reachab/e_links (mid) }))

2 1 7

We are now in the position to define the general contents of a CBI network. Network contents
consists of the following:

• The identifier of the root node indicating t_he start of the network .

• The set of nodes that make up the network.

• The set of links that connect the nodes to for an instructional network .

To define the set .of nodes that make up a network , we need to compute the transitive closure
of the root node in the context of the whole network environment .

nodes_in_network = rea chable_nodes(rooLnode) U rooLnode
To define the set of links that make up a network , we need to compute the transitive closure

oft he root node in respect of the links originating from it .

Iinks_in_network = reachable_lmks (root_node)
Integrity checks to perform include determining that all the nodes and links used in defining

the node contents actually exist , and that al l the links used in the network is sourced to a node in
that network .

We can therefore define the contents� of a network collectively as follows :

Network_Contents --------�----------------­root_node : NODE_JD nodes_in_network : P NODE_JD links_in_network : P Li N](_JD =.A ILReachable_N odes
rooLnode E nodes_ in_network nodes_ in_network � <lorn(node_ instances) nodes_ in_network = reacha ble_nodes (rooLnode) U { rooLnode } links_ in_network � <lorn(lm/.:_rnstances) links_in_network = reachab/e_ /mks (rooLnode) V lid : LJNK_JD I lid E lmks_m_network •

(link_instances(li d)) . lrnLsour-ce E nodes_in_network

4 Network types
As is the case with components making up networks, i .e . nodes and links , networks also belong to
a particular type. The type of a network is determined by the behaviour of the network .

The general network type can be defined i n terms of five subtypes identified , each representing
a different network behaviour:

2 1 8

Start

L7

Ll L2 13 L4
Node! Node2 Node3 NodeN

L5

16

Figure 2: Non-linear network structure

NetworLType = L inear_Network V Non_Linear_Network V ContextuaLNetwork V Browsing_N etwork V Detour _Network
Thus we have :

Network_Type __________________________ _ [network_type : Net work_ Type

End

One of these subtypes , the contextual network , and its behaviour will be discussed in the
following sections to illustrate the concept of network bebaviour.

5 General network behaviour
Net work behaviour can be specified in terms of the path followed through the network by a (student)
user . This is done in terms of a current node, a predecessor node, a successor node and a history
of the path already taken .

NE>twork types ;:an to some extent be determined by the types of the nodes that are allowed to
be part of the network . A browsing net work could for example only contain nodes of type browsing ,
while a detour network can only contain nodes of type glossary , information , or external node of
an unknown type. Sometimes no restrictions are placed on the node types than may be included . .

Network_Behaviour ___________________,... ____ _ 'E.N etwork_Contents
currenLnode : NODE_JD predecessor_node : NODE_JD successor_node : NODE_JD h istory : seqNODE_JD types_of_nodes : P NODE_ TYPE
rooLnode = last (ltis tory) currenLnode E nodes_ in_11 e twork ran(ltistory) = dom(node_ mstances) predecessor _node = head (lustory)

Several general network propert ies can be defined , of which three are briefly discussed below .

5 . 1 Reachability
If the end of a network can be reached from any given node in the network , the network is said to
adhere to the property of end_reacltable if and only if, there exists at least one node in the set of
nodes reachable from that node , which has the end link as its destination .

End_Reachability ________________________ _
end_reachable : P NODE_JD
'2.N etwork_Contents
'2.Link_type_sets

V nid : NODE_JD I nid E nodes_in_network •
nid E end_reachable <::>

3 rlid : reachab/e_links(nid) •
linLtype_of (rlid) = end

5. 2 Determinism

2 1 9

We are now in the position to define a deterministic and a non-deterministic network . A deter­
ministic network is defined as a network where the end of the network can be reached from all of
the destination nodes attached via Jinks to any particular node in ihat network - i .e . a user will
never be trapped. in the network without being able to reach the proper end of the network .

Determinzstic_Network ________________________ _
deterministic : P NODE_JD
'2.End_Reachability

V nid : NODE_JD I nid E end_ reacltable •
nid E deterministi c �

V mid : reachable_nodes(nid) •
3 rlid : reachable_links (mid) •

linLtype_of (rlid) = end

A non-deterministic network , on the other hand allows for the case where at least one of the
paths would never reach the end , and thus permits for a user to be trapped in some or other
circular route , for example .

Non_Determmistic_N etwo rk _____ �-----------------
non_ deterministic , : P NODE_JD
'2.End_Reachab ility

3 nid : NODE_JD I nzd E end_ reacha b/e •
nid E non_ determm 1st zc �

(3 rnid : reachab/e_nodes(n zd) •
end ft linLseLtypes_ of (reachable_links(mid))

Although a CBI network should essent ially be deterministic (but not necessarily predictable) ,
i t may also allow fo r non-determmism. For example, in the cases where unlimi ted revision of a
piece of material is allowed

5 . 3 Directionality
The order in which nodes appear in a network is important . For example in a tutorial , a question
node cannot appear before the node contain ing the appropriate content material has been displayed .

Both l inear and non-linear networks are found in CBI systems. Linear networks are incorporated
in systems which calls for a linear progression through a piece of material , for example in the case
of a test or a questionnaire . For the purpose of this document we wil l , however focus on non-linear
networks . Two different ordering operators have been defined to represent the relationship amongst
nodes in linear and non-linear networks . The operator for non-linear networks are represented by :

[X]===
- � - = X - X
V x , y , z : X •

x � x V
(x � y /\ y � z =;, x � z)

220

This ordering operator allows fo r reflexivity and transitivity, but not fo r symmetry o r antisymmetry.
For full details abou� the derivation of this operator, see [4] .

6 Non-linear networks
Non-linear networks are networks that can behave as illustrated in Figure 2 . It allows the return
to nodes already traversed through , or in other words, the same node can precede itself, or both
precede or succeed any other node in the network . Loops are allowed in a non-linear network .

6 .1 Successor nodes
Each node in a non-linear network can be associated with any number of associated successor
nodes, or none at all in the case of the last node in the network:

Ir/ nid : NODEJD I nid E nodes_ in_network • #(destination_of (nid)) ;:=: 0

Both forwards and backwards progression is allowed. The successor_node can therefore be a
member of the sequence of history nodes. The predecessor_node is the last element added to the
history sequence. The successor node can be chosen from a set compiled by obtaining the union
of the following three subsets :

• The set of history nodes .

• The current node .

• The destination node of any other link attached to the current node .

Thus,

't/ nid : NODE_JD I nid E n odes_ in_network •
(successor _ n ode E dest inat ion_of (nid) I\ ran(destination_of) s;

{ ran(history) U { currenLuode } U { (link_instances(lid) . link_destination) } }

where lid E links_attached(n i d) .

6 .2 Non-Linear Directionality
Looking at the precedence order between the currenLnode in a non�linear network and the nodes
in the history we can observe that :

't/ cnid : NODE_JD I cnid = currenLnode •
('t/ hnid : NODE_JD I hnid E ran(history) • cnid t hnid V
3 phnid : NODE_/D I phnid E ran (histo ry) • cnid ::5 phnid) I\
't/ snid : NODE_JD I snid E (11 odes_ irt_n etwork \ (ran (history))) • cnid ::5 snid

6.3 Non-linear network type
We can thus define the general n�n-linear network type as :

Non_Linear _Network ________________________ _
6. Network_Behaviour

* * Types of nodes allowed in network * *
{ browsing} � types_ of _nodes
* * Successor nodes and history * *
"I nid : NODEJD I nid E n odes_ in_network • #(destination_of(nid)) � 0 I\

('ti lid : LJNK�D I lid E links_attach ed (nid) •
(linLinstances (lid)) . linL destination E nodes_ in_network V
link_type_ of (lid) = end) I\

(successor _node E destinatzon_of (nid) I\
ran(destination_ of) <;;;

{ ran(history) U { currenLnode } U { (link_instan ces(lid) . link_ destinatio n) } }
* * Directionality between current node and nodes in history , **
* * and current node and nodes not in history * *
'ti cnid : NODE_JD I cnid = currenLnode •

(\/ h ffid : NODEJD I hnid E ran(h istory) � cnid t hnid V
(3 phnid : NODE_JD I phnid E ran(history) • cnid � phnid)) I\

"I snid : NODE_JD I snid E (nodes_ in_network \ (ran(histo ry))) • cnid j snzd

6.4 Node motiitors

22 1

In this general non-linear network type no mention has been made to node monitors. The reason
for that is that one can distinguish between a general non-linear network without the ability
to monitor a student '!\ progress through the system, and a network which do incorporate node
monitors and adapt network traversal accordingly. The former is used for lessons with fixed routes
(although allowing for some flexibility by the choice of nodes) , while the latter , which we will
call a ContextuaLNetwork , allows for different routes through the same set of nodes for different
performance levels . In both these types of networks , the choice of successor node is initiated by
the system . We say the traversal is system controlled or determined.

The only type of node monitor sometimes associated with a general non-linear network is
scoring, if applicable . Link condi tions associated with such monitors are usually absent though .

7 Contextual networks -

A contextual network is a non-linear network which makes extensive use of node monitors and
associated link conditions .

7 . 1 Successor nodes
The choice of successor node is , as w i t h ,1 general non-linear network , restricted to a node from the
set compiled by obtaining the un ion of al l the h istory nodes , the current node, and the new nodes
for which links exist in the current node . The choice is dependent on the directionality properties
of the network .

7 .2 Node monitors and l ink conditions
Several monitors are generally attached to nodes associated with these kind of networks . Associated
links contain conditions based on the monitors which have to be satisfied for that path to be
followed .

The association between the monitors and the conditions is represented by a function , satisfies,
which maps the relations between them to a Boolean value (either true or false) :

satisfies : (M ONITORS x CONDI TIONS) -++ Boolean

222

A certain path is followed if and only if all the conditions associated with the link is satisfied :

'v Leon : CONDITIONS I Leon E (link_ instanees(lid)) . link_ eonditions •
3 11-mon : MONITORS I
n_mon E (node_instanees(currenLnode)) . node_monitors •

satisfies(n-mon , Leo'!) = True

Conditions might for example be &S!!Ociated with the current score, Jearni�g processes and
ability (different paths (strategies) may be followed for low, average and high ·abiiity) , certain flags
set by the nodes already traversed , etc .

7 .3 Contextual network type
The contextual network type is thus a general non-linear network with additional properties related
to node monitors and link conditions :

Boolean : := Tru e I False

ContextuaLNetwork ________________________ _
flNon_Linear _Network
satisfies : (MONITORS x CONDITIONS) -++ Boolean

* * Types of nodes allowed in network * *
{ qu estion} E types_of _nodes
* * Successor nodes * *
'fl lid : LINK_ID I lid E links_attaeh ed(currenLn(!de) •

successor _node = (link_instances(lid)) . link_destination �
'v Leon : CONDITIONS I Leon E (link_instanee,(lid)) . linLeondit ions •

3 n_mon : MONITORS I
n_mon E (no4e_ instances(currenLnode)) . n ode_monitors •

satisfies(n_ m o n , Leon) = True

8 lJ sing such models
The question "so what?" can now be posed . What do we use such models for? To conclude this
paper we wil l name but a few of these uses .

Using the networks stru ctures as defined above , we can in the first inst,ance define the different
types of lessons that can be found in a CBI system .

A tutorial lesson , for example , al lows for either a linear or non-linear progression through the
associated networks , depending on the content material . This category of lessons include tutorials
depending on student models (the so-cal led intel l igent tutoring systems) or those that are not , since
all of them have the same basic structure . The only difference is that the network of an inteiligent
tutoring system is always contextual . Detour networks including help and glossaries form integral
parts of tutorials . Restart behaviour can be any of three types identified - restarting at the last
active node (current node) , rest.trting at the root node, or non-interruptable [4] .

We can therefore identify an "ordinary" tutorial as:

Tut o rial = ((Non_ L inear_NetwoT'i..· V ContextuaLNetwork) /\ Detour_Network) /\
Deterministic_N etwor-k I\
(CurrenLRestarLBelt a vi our· V RooLRestarLBehaviour
V No_RestarLBehaviour)

or an "intelligent" tutorial as:

Int elligent_ Tutorial = (ContextuaLNetwork /\ Detour_Network) /\
Deterministic_Networ·k /\
(CurrenLRestarLBelt a viour V RooLRestarLBehaviour
V N o_RestarLBeltaviour)

223

Secondly, we c an define a set of generic operations than c an b e performed o n the different
substructures identified . Such a comprehensive model of abstract data types and operations ,
based on sound principles and structures, can in refined form be used as a reference model for the
development of new ASEs.

Furthermore the model allows one to reason about the interactive properties of different classes
of ASEs - a classification that has been elucidated by means of the model . The model has been
used to classify ASEs into three distinct categories . according their user interface styles - map­
based, display-based and code-based [4] . The model also allows one to reason and make precise
observations about different propert ies that are not possible by informal argument .

Furthermore , such a model can b e used as an evaluation framework against which existing A S Es
can be assessed as far as the level of support they give to the other two agents in constructing and
using CBI systems, is concerned .

Acknowledgement
I am grateful to my supervisor , professor Michael Harr.ison of the Human-Computer Interaction
Group at the University of York , for his guidance and support since 1992. The research reported
on in this paper, as well as my visits to York during 1992 and 1994, have financially been supported
by means a prestige'· scholarship from the Centre for Science Development of the HSRC , as well as
a grant from the Research and Bursaries Committee of the University of South Africa.

References
[l] Harrison M.D . 1 992. A model for the option space of interactive systems. In: Engineering for

Human- Computer fnteraction , edited by J . . Larson & c . Unger , Elsevier Science Publishers
B .V . (North-Holland) , p 155- 170 .

[2] Jones C .B . 1990 . Systematic software development using VDM . London: Prentice-Hal l .

[3] Kearsley G. 1 982 . Authoring systems i 11 computer based education . Communications of the

A CM , 25(7) : 429-437.

[4] Kotze P. 1 995 . Agents part ic ipatiu� in a computer-based environment , Second Year DPhil
Report, Department of Computer Scjence, U niversity of York .

[5] Morgan C . 1990. Programming from specifications . Hemel Hempstead : Prentice-Hall Interna­
tional .

[6] Sedgewick R. 1988 . A lgorithms . Addison-Wesley.

	SAICSIT_1995_KOTZE

