
Extending PythonQA with knowledge from
StackOverflow

Renato Preigschadt de Azevedo, Pedro Rangel Henriques1, and Maria João
Varanda Pereira2

1 Centro Algoritmi (CAlg-CTC), Dep. Informática, Universidade do Minho, Braga,
Portugal,

renato@redes.ufsm.br, prh@di.uminho.pt,
2 Centro Algoritmi (CAlg-CTC), Dep. Informática e Comunicações Instituto

Politécnico de Bragança Portugal
mjoao@ipb.pt.

Abstract. Question and Answering (QA) Systems provide a platform
where users can ask questions in natural language to a system and get an-
swers retrieved from a knowledge base. The work proposed in PythonQA
create a Question and Answer System for the Python Programming
Language. The knowledge is built from the Python Frequent Answered
Questions (PyFAQ). In this paper, we extend the PythonQA system
by enhancing the Knowledge Base with Question-Answer pairs from the
StackExchange Python Question Answering Community Site. Some tests
were performed to analyze the impact of a richer Knowledge Base on the
PythonQA system, increasing the number of answer candidates.

Keywords: question and answering systems, natural language process-
ing, stackexchange

1 Introduction

The wideness of information available associated with the demand for direct an-
swers from the users requires a different approach from standard search engines.

Question and Answering (QA) Systems provide a way to process natural
language inputs from a user extracting the meaning which enables better and
direct answers from a computer system. These systems allow a user to make
questions in a more natural way and get concise and straightforward answers,
thus decreasing the effort necessary to find a good answer. Unlike standard search
engines that retrieve documents based on keywords for the input, QA systems
aim to recognize the input as a high-level natural language enabling the retrieval
of concise answers instead of a set of possible related documents.

Many Python users are not Software Engineer since Python is more popular
in Data Science and other areas. PythonQA is a QA system proposed by Ramos
[9] and is a closed-domain QA that addresses the Python programming language
[10]. It was developed aiming to be useful for students and professionals that are
working or learning Python.



2 Renato Preigschadt de Azevedo et al.

Question and Answering sites like StackExchange (SE) provide a platform
where users can ask questions on specialized topics and get feedback provided by
users that have knowledge on the topic. This paper aims to extend PythonQA
[9], adding knowledge from the SE Python site to the original Python Frequent
Asked Questions (PyFAQ) Knowledge Base.

A review of the literature is presented in Section 2 including a discussion
on Question and answering systems; In Section 3 an overview of PythonQA is
presented; The extension of PythonQA, among details about the StackExchange
and tests and results, is shown in Section 4, and Section 5 closes the paper with
conclusions and directions for future work.

2 Related Work

Questions are asked and answered several times per day by a human. QA Systems
try to do the same level of interaction between computers and humans. This
approach differs from standard search engines (Google, Bing, and other search
engines) because it makes an effort to understand what the question expresses
and try to give concise answers instead of using only keywords from the question
asked and provide documents as results.

A simple QA System is composed of several processes: question typing, query
construction and text retrieval, and processing answer candidates [5]. Question
typing analyses the input from the user to extract meaning from the phrases
entered and can be done with Natural Language Processing (NLP) techniques.
The query construction and the text retrieval allow to recover the information
about relevant document and data from the Knowledge Base (KB). Using that
information, a list of answer candidates are retrieved creating a ranking of the
best answers to present to the user.

QA systems can be divided into two categories: closed or open domain.
Closed-domain QA systems aim to address a specific area of knowledge, provid-
ing more accurate answers and being easier to fine tune the system. Some exam-
ples of Closed-domain QA are Question Answer System on Education Acts [8],
Python Question Answer System (PythonQA) [9], and K-Extractor [2]. Open-
domain QA systems attempt to work with any domain of knowledge, having a
broader knowledge base than the closed-domain. Examples of Open-domain QA
are Intelligent Question Answering System based on Artificial Neural Network
[1], Automatic Question-Answering Based on Wikipedia Data Extraction [7],
and SEMCORE [6].

In MEANS [3] the authors propose a semantic approach to a medical QA
system. They apply NLP to process the corpora and the user questions. The
sources documents are annotated with RDF, based on an ontology. The au-
thors propose ten question types. In the work proposed by [8], a QA system
to handle education acts is presented. The knowledge base is created from the
data publicly available from the UK parliament using NLP techniques. Only
keywords are extracted from the user question, ignoring the question type and
possible actions present in the input from the user. The authors in [4] created



Extending PythonQA with knowledge from StackOverflow 3

AskHERMES, a QA system for complex clinical questions that uses five types
of resources as a knowledge base (MEDLINE, PubMed, eMedicine, Wikipedia,
and clinical guidelines). The user question is classified by twelve general topics,
made by a support vector machine (SVM). To process the possible answers, the
authors developed a question summarization and answers presentation based on
a clustering technique.

3 PythonQA: an overview

PythonQA is a closed-domain Question and Answering system that answer ques-
tions about the Python programming language. As a closed-domain QA system,
PythonQA can provide concise answers rather than a set of related documents,
depending on the quality and size of the knowledge base.

Python has gained attention from the scientific community and programmers
around the world, from both beginners and experienced programmers. Many
Community Question and Answering Sites (CQAS) address the python language
because of the demand created by users who use the programming language reg-
ularly. Thus, Python was chosen as the domain for the QA system. Nonetheless,
other languages such as Java, Haskell or Julia could serve as the domain of the
PythonQA without the need for structural changes.

The system receives a question from the user and sends it to the Question
Analysis module. In this module, the question is parsed to produce a query
that will be used to retrieve relevant information from the knowledge base. The
information is processed in the Answer Retrieval module to compose the final
answer.

The PythonQA system was developed using the Python programming lan-
guage, together with some libraries such as Natural Language ToolKit (NLTK),
Django, among others. To process the input from the user, a module called
Phrase Analysis divides a phrase into several components and tries to identify
three elements: action, keywords, and question type. The Figure 1 describe the
significant phases of the Phrase analysis. Firstly the question is processed with
the NLTK library to replace contractions, converting them to their full form. The
next two steps use the NLTK library to divide the phrase into multiple strings
using the Tokenizer package allowing the use of the POS (Part-of-Speech) tagger.

After the POS tagger is applied, the words are converted to their lower form,
avoiding problems when comparing words. This conversion has to be done after
the POS tagger because this can decrease the efficiency of the tagger. The verbs
are then processed to find actions in the question. If no verb were found, the
system tries to analyze the phrase in WordNet, to detect if a word can be a verb.
The next step is to convert these verbs found in the infinitive mode using the
NLTK WordLemmatizer package. If more than one verb were found, the system
would try to identify and exclude false positive verbs. A value for quality is
assigned for each verb identified in the previous steps. To identify keywords firstly
the following information is removed: stopwords, verbs, unwanted characters,
”Python”. After the removal of unwanted information, the keyword candidates



4 Renato Preigschadt de Azevedo et al.

Question

Replace 
contractions

tokenizer

POS Tagger

Normalize to lower 
case

List of 
expressions

Verbs 
(action)?

Lemmatize

Yes
Wordnet

No

More than 1 verb?

Remove "do" and 
"be"

Dictionary l_action

Yes

No

Remove Stopwords
Compare begining 

of phrase

Remove Verbs

Remove ".", ",", "?"

Remove "Python"

Split words by "/" or 
"\"

Dictionary 
keywords

Dictionary q_type

Compare middle of 
phrase

Actions

Keywords

Question Type

Fig. 1. Phrase Analysis

are processed to split words that may have a slash (”/” or ”)̈ between them.
To finish a dictionary is created with the keywords found in the previous steps,
along with a value of assertiveness. The PythonQA contains a list of expressions
that was extracted with the manual analysis of the PythonFAQ [10]. This list
has expressions like ”How”, ”When”, ”Where”. This expressions list is used to
discover the question type of the phrase. The system searches for the presence
of these words and generates a dictionary of question types. Depending on the
position in the sentence (beginning or middle) is assigned a value for the question
type.

The Knowledge Base was constructed with the entries from the Python Fre-
quently Asked Questions (PyFAQ [10]). All the questions are processed by the
Phrase Analysis module of PythonQA. For each pair Questions → Answer, the
KB is populated with the raw data, along with the dictionaries actions, key-
words, and question type. The information stored in the KB is crucial for the
information module be able to extract and present concise answers to users.

The Answer retrieval is the module that is responsible for processing the
information gathered in the Phrase Analysis module and present an answer to
the user. The Figure 2 depicts the steps necessary to find and process the answer
candidates. The analysis of Actions and Keywords are made looking for a direct
match with the KB. After the previous phase, the PythonQA system uses an
NLTK Stemmer package to get the base word. With the base word, the system
tries to find synonyms that are used to match more answers from the KB. A trust
value is assigned to each answer retrieved in these steps. The search for answers
that equal to question type is done firstly with a direct match, and then with



Extending PythonQA with knowledge from StackOverflow 5

Answer Retrieval

User question

Direct Match

Synonyms

Stem Words

Trust Value

Actions

Direct Match

Synonyms

Stem Words

Trust Value

Keywords

Direct Match

Similar Question 
Type

Trust Value

Question Type

Answers

Probability Function

Answer

Show Answer

Fig. 2. Answer Retrieval

similar question type. A trust value is then assigned for each answer retrieved
from the KB. All these steps are made to retrieve more answers candidates that
match actions, keywords, and question type. With all these candidates answers
retrieved, a probability function is applied to rank them and present to the user
the most likely answer. The less probable answers are made available to the user
if they are not satisfied with the answer provided by the system.

4 Extending the PythonQA with Knowledge from Stack
Overflow

The PythonQA was able to return satisfactory answers, but the Knowledge
Base is too narrow. The only source of knowledge is extracted from the Python
Frequently Asked Questions. The PyFAQ has only 169 pairs of Question-Answer
[9], restricting the knowledge of the system.

To increase the KB, we have to choose between CQAS such as StackEx-
change3 or Yahoo Answers4. We decided to extend the PythonQA with data
from the StackExchange because of the public availability of the data, as well
as being regularly updated. StackExchange is an Online Social Question and

3 www.stackexchange.com
4 answers.yahoo.com



6 Renato Preigschadt de Azevedo et al.

Answering site which allows users to post questions and answers to questions
already asked. StackOverflow is one of the 166 Stack Exchange Community and
provide information about programming languages, like Python.

The data is available as a direct download through the Archive.org Site5.
The size of all compressed datasets is approximately 40 GB. Each SE file has at
least 8 XML files: Votes, Tags, Users, PostLinks, Posts, PostHistory, Comments,
and Badges. The Users file contains the information about the users, like Dis-
play Name, Creation Data, and other information. The Badges file includes a
relationship between badges and users. Tags used in the SE are inside the Tags
file. The contents of the questions and answers are into Posts file. This XML file
defines if the post is a question or an answer, the creation date, page views, score,
owner, title and the body of the question. The Comments file contains comments
produced by users of SE about the questions and answer that is inside the Posts
file. We downloaded the StackExchange programming data from StackOverflow.

StackExchange
Files

Extract Questions 
with Answers

Select only Python
Questions and 

Answers
PythonQAS Knowledge

Base

Fig. 3. Extending PythonQA

The Figure 3 detail the steps necessary to process the data from the StackEx-
change and insert in the Knowledge Base of PythonQA. Firstly we extract the
Questions that have answers from the Posts file. Next, we select only questions
and answers that has a Python tag associated with the pair Question → An-
swer. After we have extracted all Question → Answer pair, we process them into
PythonQA in the Phrase Analysis module to insert into the Knowledge Base of
the system.

Some improvements have to be made in the PythonQA system, to be possible
to process more than 480 thousand Question → Answer pairs. To add informa-
tion in the PythonQA system, we developed a module that handles the data in
an unattended way.

Some preliminary tests were made, with ten random questions extracted from
StackOverflow that were not imported to KB. The original KB was only able to
correctly answer 20% of the analyzed questions, while the extended KB fulfilled
successfully 80%. This result was due to limited information on the original KB.
When looking in the alternative answers, the PythonQA with the extended KB
was able to provide the correct answer in 50% of the unanswered questions on
the first answer alternative. The extended PythonQA presented more details in
the answers, providing solutions that contained code fragments and links to more
relevant information. This was possible because the information available in the
StackOverflow are curated by a large community of developers. For instance,
with the following questions: q1: ”How can I create a stand-alone binary from a
Python script?”, and q2: ”How do I validate a XML against an DTD in Python”.
The q1 is correctly answered in PythonQA with original and extended KB. But

5 https://archive.org/details/stackexchange



Extending PythonQA with knowledge from StackOverflow 7

with the question q2 only with the extended KB, a relevant answer is presented.
Because of page limitations, more details about the tests and PythonQA ex-
tended version is available at http://pythonqas2.epl.di.uminho.pt.

5 Conclusions

We presented our improvements made in the PythonQA system, which aims to
extend the knowledge base and provide better answers to the users. The KB
of the PythonQA system was improved with knowledge from the community
QA site StackExchange, which provides relevant Questions and Answers from
the Python topic. The changes made to the system code allowed the inclusion
of a larger knowledge base. The PythonQA system has also benefited from the
user’s tailored information about the quality of answers present in the dataset.
The information present in the answers usually has examples of Python code,
turning the answer more relevant to the user.

As a future work, we can enhance the PythonQA system by using different
CQAS, extending the knowledge base.

References

1. Ansari, A., Maknojia, M., Shaikh, A.: Intelligent question answering system based
on artificial neural network. In: 2016 IEEE International Conference on Engineering
and Technology (ICETECH). pp. 758–763 (2016)

2. Balakrishna, M., Werner, S., Tatu, M., Erekhinskaya, T., Moldovan, D.: K-
Extractor: Automatic Knowledge Extraction for Hybrid Question Answering. In:
Proceedings - 2016 IEEE 10th International Conference on Semantic Computing,
ICSC 2016 (2016)

3. Ben Abacha, A., Zweigenbaum, P.: MEANS: A medical question-answering system
combining NLP techniques and semantic Web technologies. Information Processing
and Management 51(5), 570–594 (2015)

4. Cao, Y.G., Liu, F., Simpson, P., Antieau, L., Bennett, A., Cimino, J.J., Ely, J.,
Yu, H.: AskHERMES: An online question answering system for complex clinical
questions. Journal of Biomedical Informatics 44(2), 277–288 (2011)

5. Clark, A., Fox, C., Lappin, S.: The Handbook of Computational Linguistics and
Natural Language Processing. Wiley-Blackwell (2010)

6. Hoque, M.M., Quaresma, P.: A Content-Aware Hybrid Architecture for Answer-
ing Questions from Open-domain Texts. 2016 19th International Conference on
Computer and Information Technology (ICCIT) pp. 293–298 (2016)

7. Huang, X., Wei, B., Zhang, Y.: Automatic question-answering based on wikipedia
data extraction. In: 10th International Conference on Intelligent Systems and
Knowledge Engineering, ISKE 2015, Taipei, Taiwan. pp. 314–317 (2015)

8. Lende, S.P., Raghuwanshi, M.M.: Question answering system on education acts
using NLP techniques. In: IEEE WCTFTR - Proceedings of 2016 World Conference
on Futuristic Trends in Research and Innovation for Social Welfare (2016)

9. Ramos, M., Pereira, M.J.V., Henriques, P.R.: A QA system for learning python.
In: Communication Papers of the 2017 FedCSIS, Prague, Czech Republic. (2017)

10. Rossum, G.: Python reference manual. Tech. rep., Amsterdam, The Netherlands,
The Netherlands (1995)


