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ABSTRACT
A key challenge of HRI is allowing robots to be adaptable,
especially as robots are expected to penetrate society at
large and to interact in unexpected environments with non-
technical users. One way of providing this adaptability is
to use Interactive Machine Learning, i.e. having a human
supervisor included in the learning process who can steer
the action selection and the learning in the desired direction.
We ran a study exploring how people use numeric rewards
to evaluate a robot’s behaviour and guide its learning. From
the results we derive a number of challenges when design-
ing learning robots: what kind of input should the human
provide? How should the robot communicate its state or its
intention? And how can the teaching process by made easier
for human supervisors?
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1. INTRODUCTION
One important challenges in HRI is to allow users, who

often have no technical expertise, to personalise the behaviour
of the robot they are using. It seems infeasible to expect
either users to be satisfied by a robot with a static behaviour
or for the robot’s designers to be able to anticipate all the
needs of the users and all the different environments a robot
could interact in. For this reason, we argue that robot
behaviour should be adaptive at run-time, and especially
that non-experts in technology should be able to teach a
robot new action policies.

Interactive Machine Learning (IML) is a field of research
which aims to include end-users in the machine learning
process [1, 3]. The idea is to move away from robots as
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Figure 1: Examples of positive (left) and negative (right)
reward in the robot cake baking task.

complex black boxes with inaccessible input and output, to
systems that can be intuitively (re)programmed by the users.
One advantage of this approach is it empowers users with
the ability to personalise their robot according to their needs
and desires.

IML has principally been tested on virtual agents. A good
example of IML is the TAMER framework [4] which predicts
the reward a human would give and use this prediction to
select a next action maximising the predicted reward.

2. EXPERIMENT

Methodology.
IML has not often been applied to robotics. An application

using virtual robots was presented in [6], which presented
a study where we compared two different methods used to
teach robots an action policy. The first, Interactive Rein-
forcement Learning (IRL), is derived from Reinforcement
Learning (RL) [7], the difference being that user now pro-
vides rewards, rather than the environment (cf. Figure 1).
In our implementation, the participant could evaluate the
robot’s actionsby moving a slider on a graphical interface,
the value of the slider acted as the reinforcement learning
reward. The second method, inspired by [5], uses a more
direct control method in which the robot communicates its
intentions to the participant who can either passively accept
the suggestion or actively select an alternative action.

In the task, inspired by Thomaz and Breazeal [8], a virtual
robot is in a kitchen and has to learn how to bake a cake. The
users know what the robot should do to finish the cake, but
multiple strategies can lead to success. The IRL algorithm
is similar to that used by [8].
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Figure 2: Distribution of rewards according to their numeric
value.

Participants were divided into two groups of 20, each group
interacting with a different system.

Results.
This paper reports how participants used the rewards in

the IRL condition. Figure 2 presents the distribution of
rewards given to the robot. In our case, the distribution
was tri-modal, with only three types of rewards given to the
robot. Over a total of 7364 rewards, we observe 899 with a
value of −1, 1337 with a value of 0 and 2653 of a value of 1.

This indicates that even if participants had the opportunity
to provide fine grained numerical rewards, they decided to
evaluate the robot’s actions either as bad, neutral or good. We
identify three reasons potentially explaining this behaviour.
The first one is related to the unambiguity of the expected
behaviour: when a desired strategy is clear, humans might
only use extremes to give feedback to the robot. Alternatively,
the tri-modality of the reward distribution can be due to
the interface used, a slider makes the use of extremes easier.
And lastly, as participants were time constrained (they only
had 2 seconds to evaluate the robot’s action) they might not
have taken the time to use a fine grained rewarding strategy.

3. DISCUSSION
From these results, we derive three challenges that robot

designers will face when allowing humans to teach robots.

Type of inputs.
The first challenge is to make human input efficient and

generalisable over different tasks. RL seems like a reasonable
approach: the user can provide numerical rewards to evaluate
the action executed by the robot. However, as the task
becomes more complex, the algorithm converges only after a
long series of trials and errors which is undesirable. Another
limit of numerical rewards is that they generally are assigned
after the execution of an action, and so do not allow the
supervisor to prevent the robot from making an error, even if
the supervisor could have known beforehand that this action
was not appropriate. Reward-based learning is general, but
it does not make good use of human domain knowledge and
tutoring competency.

Other types of inputs could be used; in [6], we propose
using commands rather than feedback. Commands allow
the user to have more control of the robot, but limit the
actions to a predefined set of actions. A way to generalise
commands to a larger set would be to use natural language
and ability to teach new actions associated to new commands.
A robot could also combine different types of inputs from the
human: both explicit (rewards or commands for example)
and implicit (such as the reactions of other humans).

Clarity of robot’s communication.
The robot should also provide the human with feedback

about its internal state, including its intentions, uncertainty,
learning progress and confidence. In [6], we argue that in-
tention communication is especially important when robots
are interacting in the real world, so as not to fluxom people
or execute undesired actions. Furthermore, if the robot has
planning abilities, the robot can also explain its actions and
communicate what its next actions will be.

Similarly to the content of the robot’s communication,
the medium is important. Humans have evolved to use
social signals, and robots should use these too. Speech
could be a good way of communicating more complex states,
intentions and plans, but it would be interesting to modulate
the sentences expressed by the robot in a way which is
socially acceptable and which does not annoy the long-term
user, avoiding repetitions and bluntness often associated with
robots.

Reduce the workload on human teachers.
A last important challenge is maintaining the user’s com-

fort when teaching. As explained in [2], a robot using the
same mode of communication without considering the human
it is interacting with could annoy the user. In our study,
many participants also reported frustration due to them of-
ten knowing what the robot should do, but not being able to
have the robot execute the desired action. Robots learning
from humans should reduce the workload on the teacher, and
give the teacher enough control of the robot’s actions while
taking into account the human’s state when learning.
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