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Abstract

Sustainable and efficient design solutions are the aim for any engineer. In

offshore engineering forces resulting from extreme wave impact are of special

interest as these challenge the structure and the crew working in this harsh

environment. Theoretical models tend to be limited to linear or weakly non-

linear situations and are unable to predict the violent and turbulent effects

of breaking waves in combination with wave run up on structures or green

water loading. The classic approach for such cases is to carry out scale model

tests in a physical wave tank and measure the forces, water levels and flow

velocities at some chosen locations.

In this paper another approach is investigated, that uses fully non-linear

Computational Fluid Dynamics calculations, and has the potential to inves-

tigate the design in different conditions at full scale. The suitability of the
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use of the numerical techniques implemented in commercial CFD packages

for design of offshore structures under extreme waves is considered. The nu-

merical schemes are used to simulate wave focussing to generate an extreme

wave in a numerical wave tank and for regular wave interaction with struc-

tures. Non-linear effects of extreme wave interaction are demonstrated and

the implications for a numerical wave tank are discussed. Also the forces on

horizontal and vertical cylinders, which represent simple models of offshore

structures, are calculated. The predicted results generally compare well with

physical experiment data, both in wave surface profile prediction and in wave

forces on structures, and conclusions are drawn regarding the suitability of

the numerical approaches for these applications.

Key words: focused waves, NewWave, horizontal cylinder, vertical

cylinder, Computational Fluid Dynamics, Control-Volume Finite Element

method, Finite Volume method

Wave interaction with structures is a large and important research area.

Due to the complexity of the wave breaking process and the interaction of

a wave with a structure due to wave run-up and green water effects, a great

deal of effort is required to investigate the physics.

One of the most common approaches to model testing in extreme waves

is by physical tank testing. The big advantage of this method is that the real

hydrodynamics are modelled and can be measured, filmed and reproduced

as often as necessary, although physical testing is limited by scale restric-

tions. Also, with a physical model it is fairly quick to carry out a large

number of tests. However, to obtain representative data sets this might well
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be necessary, as only a certain number of wave gauges, Acoustic Doppler

Velocimeters or pressure sensors can be placed in the flow without affecting

it. Scaling effects from model to full scale might occur as well. To overcome

this, analytical methods have been developed. Empirical approaches, such

as the Morison formula (1) to estimate the forces on a pile, can be used.

As empirical methods depend on flow coefficients that have to be estimated

from measurements, they are often not generally valid for all flow regimes.

In the case of the Morison formula forces are only estimated correctly when

applied to compact bodies, (Sarpkaya and Issacson , 1981) and it does not

provide complete pressure distributions on these bodies.

Potential flow methods may be used in offshore engineering to compute

the fluid flow in a more realistic way. A general overview of the different

methods is given by Newman and Lee (2002). Here the model is discre-

tised by boundary elements or panels. For each panel the pressures and the

flow velocity potential is calculated. The potential flow formulation is ob-

tained by simplifying the Navier-Stokes equations assuming non-viscous and

non-rotational incompressible fluid flow. The velocity derived equation set is

simpler and faster to solve than the full Navier-Stokes equations. This makes

it efficient for linear and weakly non-linear wave structure interaction prob-

lems, although the methods are usually restricted to non-breaking waves and

wave problems up to the breaking point, as described by Zang et al. (2006).

More recent advances have been reported by Ma and Yan (2009) and Yan

and Ma (2010), who have developed a combined Eulerian-Lagrangian tech-
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nique for 3-D wave breaking. Although node adjustment at the free surface

can be time consuming, they show computational speeds of at least 10 times

the fastest of the BEM methods (Yan and Ma , 2008).

For the high non-linear phenomenons of wave breaking, green water and

possible violent body motion Computational Fluid Dynamics(CFD) can be

used. Eulerian methods use a mesh to represent the geometry. On this mesh

the equations describing the fluid flow, such as the Euler and Navier-Stokes

equations, are solved for each mesh element. Lagrangian methods, such as

Smooth Particle Hydrodynamics (SPH), model the interaction between par-

ticles that represent the fluid rather than using a mesh. The advantage of

CFD is that in principle it is valid for all flow regimes in offshore engineer-

ing. Hence it can be applied to all the problems described earlier, but also for

overturning flows and where viscous effects are important. Furthermore the

simulations do not need to be scaled as is necessary for physical tank tests,

although they are often validated against such results due to a lack of full

scale data available. However, the computational effort for CFD is high and

the accuracy of the prediction not assured compared to the empirical and

potential flow methods. With the development of computational power and

improvements in the efficiency of the numerical simulation models, engineers

now have the possibility of backing up their measurements or extending their

measured data with calculated results from validated CFD simulations. For

this work two different Computational Fluid Dynamics (CFD) codes are ap-

plied to classic offshore engineering applications, the generation of extreme
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waves and the interaction of regular waves with cylinders.

Section 1 describes the governing equations of the fluid flow and the two

solvers, a Finite Volume approach (Section 1.2) and a control-volume Finite

element method (Section 1.3), by which these equations are solved.

The first set of tests is described in Section 2. They encompass the gen-

eration of extreme waves where several relatively small waves are superposed

to form one focused wave at a specified location in the tank. The principles of

this technique are described in Baldock et al. (1996). This paper deals with

the numerical setup for the generation of three NewWave cases as published

in Ning et al. (2009). The test cases increase in the level of non-linearity up

to the point where the waves almost break. Comparisons of surface elevation

predictions to high quality experimental data are made using input signals

defined by linear wave theory and linear plus 2nd order.

The interaction between waves and structures is conducted using fixed

vertical and horizontal cylinders. Firstly, semi-submerged horizontal cylin-

ders in regular waves are simulated. The topic itself has been investigated

extensively and many experiments by a number of authors are described in

the literature. Hogben et al. (1977) review many of these early studies.

Due to developments in offshore exploration techniques for oil and gas

it became important to know the stresses on oil rigs and drilling platforms.

Morison et al. (1950) investigated the forces on piles systematically and pro-

posed a simple formula which became known as the Morison equation
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F =
1

2
ρCDDu |u|+ 1

4
ρπD2CM

du

dt
. (1)

Here, F is the horizontal force per unit length on the cylinder of diameter

D and u is the horizontal component of the water particle velocity. CD

and CM are the coefficients for drag and inertia respectively. The range

of values for CD and CM , used with Morison’s equation are outlined by

Hogben et al. (1977), a handy tool to estimate the forces per unit length

for a pile. However, Equation (1) was developed from tank tests driven with

small sinusoidal waves, which makes it applicable for specific cases as stated

in Keulegan and Carpenter (1958). Keulegan and Carpenter’s objective

was to extend the Morison equation (1) by a supplementary function ∆R

to represent the forces more truly when CD and CM were considered to be

constant throughout the whole wave cycle. Also they introduced a period

parameter, which later became the Keulegan-Carpenter number NKC , as

NKC =
AT

D
, (2)

with A being the amplitude of the oscillating fluid, T the period of the oscil-

lation and D the diameter of the cylinder. NKC is a measure of the relative

importance of the viscous drag forces compared to the close to potential

flow inertia loads. For lower NKC inertia dominates the force contribution.

Keulegan and Carpenter (1958) carried out physical tank tests with regular

waves passing a fully submerged, horizontally mounted cylinder.
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Cases for horizontal cylinders are described by Dixon et al. (1979). Their

objective was to calculate the vertical forces on a horizontally mounted cylin-

der in regular waves. They adapted the Morison equation and compared their

computational results with measurements from physical tank tests. They

found that in certain wave regimes the effects become more non-linear. For

different combinations of wavelength and axis depth of the cylinder a dou-

bling of the forces could be observed. This could not be described accurately

by their mathematical approach.

In Section 3 results for horizontal cylinders with three levels of submer-

gence are presented according to the experimental setup used by Dixon et al.

(1979). In the first simulation the horizontal cylinder is placed with the axis

at the free surface, being half-submerged. Next, the structure is positioned

deeper in the water only showing 25% above still water level. Finally, the

cylinder sits fully submerged but close to the water surface in the tank or

computational domain.

Different non-linear effects are reported for vertical cylinders in waves. In

the early 1990s model tests in Norway revealed that high nonlinear excitation

of deepwater dynamically sensitive large volume structures was possible -

this became known as “ringing”. In certain wave conditions, especially when

the wave height is approximately equal to the cylinder diameter, it breaks

behind the cylinder when the crest passes the structure and thereby induces

a secondary loading on the structure. This can influence the structure in

such a way that it oscillates even after the wave has vanished. This so
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called “ringing” may damage the structure more that the impact of the wave

itself. This highly non-linear effect is described by Chaplin et al. (1997) and

Rainey (2007), who carried out tank tests to reproduce this phenomenon.

They investigated a vertical cylinder in steep focused waves.

Section 4 deals with vertical cylinders in regular waves. Physical experi-

ments described in Kriebel (1998) are reproduced numerically here, and the

horizontal forces on the cylinder during the wave cycle are explored. Here

the cylinder is large but still in the inertia regime. Further results are pre-

sented for a slender cylinder in steep regular waves to show the secondary

load cycle.

1. Numerical Methods

1.1. Governing equations

Two commercial CFD packages are used in this work, Ansys CFX 11

(Ansys , 2006) and STAR-CCM+ by CD-Adapco (CD-Adapco , 2008). Both

CFD solvers use the Navier-Stokes equations discretised on a 3-D mesh in

order to calculate the velocities and pressures in the flow field. The flow is

described by the equation of mass conservation as

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (3)

and the three momentum conservation equations as

∂uρ

∂t
+ div (ρuuuu) = −∂p

∂x
+ div (µgrad u) + Sx, (4)
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∂vρ

∂t
+ div (ρvuuu) = −∂p

∂y
+ div (µgrad v) + Sy (5)

and

∂wρ

∂t
+ div (ρwuuu) = −∂p

∂z
+ div (µgrad w) + Sz. (6)

where u, v and w are the components of the velocity vector uuu in the x, y and

z directions, respectively. ρ is the fluid density, p the pressure, µ the fluid

viscosity and t is time. Si, with i being x, y or z, is the source term acting in

i-direction, in which gravity forces are included. In integral form equations

(3), (4), (5) and (6) can be rewritten as the general transport equation

∫
∆t

∂

∂t

(∫
CV

ρφdV
)
dt+

∫
∆t

∫
A
nnn. (ρφuuu) dAdt =

∫
∆t

∫
A
nnn. (Γgrad φ) dAdt+

∫
∆t

∫
CV

SφdVdt, (7)

which is the starting point for discretising them either using the Control-

Volume Finite Element method (CV-FE) or a Finite Volume method (FVM).

Here, φ is the transported flow property such as velocity or pressure, Γ is the

diffusion coefficient, A is the surface area of the control volumes (CV) face,

V is the volume of the CV. Sφ is the source term and nnn is the outward-facing

normal vector to a CV face.

Key differences between the FVM and CV-FE methods as implemented

in the commercial CFD packages relate to the discretisation of the governing

equations, the solution method and the free surface scheme. Both methods
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solve the Navier Stokes equations, (3) - (6), and use the Volume of Fluid

(VoF) method for the free surface, solving the equations in both air and wa-

ter and capturing the interface between them. In the CV-FE method, the

equations are discretised using a control-volume based Finite Element ap-

proach (Ansys , 2006) that uses a shape function description of variables and

a coupled solver, whereas the FVM applies surface and volume integrals to

obtain cell centre values (CD-Adapco , 2008) and uses a segregated iterative

solver.

1.2. Finite Volume Method (FVM)

The domain, here a numerical wave tank (NWT) and the structure such

as a cylinder at the water surface, is subdivided into discrete volumes. The

surface and volume integrals (7) performed on the control volumes are used

to calculate the variable values at the centre node of the CV. This approach

makes the Finite Volume method conservative by construction.

In discrete form for a cell-centred control volume with centre node 0 the

general transport equation becomes

∂

∂t
(ρφV)0 +

∑
f

(ρφuuunnn)f =
∑
f

(Γgrad nnn)f + (SφV)0 . (8)

The transient term in (8) is solved via a second-order scheme using the solu-

tion at the current time as well as those from the previous two. The advective

term is solved by a second-order upwind scheme. Here the face values for

the convective fluxes are interpolated linearly from the cell values of the
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surrounding cells.

To compute the gradients two methods are used for the FVM solver. The

pressure gradients are computed using the weighted least squares method,

which for a cell 0 can be expressed as

(gradφ)ur =

[∑
f

(xn − x0)⊗ (xn − x0)

(xn − x0) · (xn − x0)

]−1 [∑
f

(φ0 − φn) (xn − x0)

(xn − x0) · (xn − x0)

]
(9)

where x0 and xn represent the centroids of cell 0 and the neighbour cell

respectively. f stands for a control volume face and φ0 and φn represent

the data values for cell 0 and its neighbour, here the pressure. For all other

variables the gradients are approximated using Gauss’ method as described

by

(gradφ)ur =
1

V0

∑
f

φfaaaf (10)

where φf is the arithmetic average of the adjacent cells. To avoid non-physical

behaviour the reconstruction gradients are limited. This might occur when

the face values are calculated from the gradients and the reconstruction values

exceed the cell values.

The FVM uses the well-known segregated, iterative scheme SIMPLE

(Baliga and Patankar , 1980) to solve the Navier-Stokes equations. For

capturing the free surface, the scheme developed by Ubbink (1997) and

enhanced by Muzaferija and Perić (1999) is used, which requires a smaller

time step than used by the coupled solver in the CV-FE method. The free
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surface reconstruction scheme does not smear the interface.

The free surface is calculated using a Volume of Fluid approach (VoF) in

combination with a second-order high resolution interface capturing scheme.

This results in an additional equation for each fluid phase, which needs to

be solved. The change of the volume fraction c of one phase is governed by

the transport equation

∂

∂t

∫
CV

c dV +

∫
A
c (uuu− uuuf ) · aaa dA. (11)

For a CV that is fully filled with one fluid c is 1, if no fraction of that fluid

is present c is 0. This means that c is bound between 0 and 1 and the free

surface lies in a cell that is partially filled with both fluids. The exact position

of the free surface is reconstructed using the scheme proposed by Ubbink

(1997) and Muzaferija and Perić (1999), which does not smear the interface

as a first-order upwind scheme would and also does not produce over- or

undershoots. It takes into account the orientation of the fluid interface and

the local Courant number Co,

Co =
uuu · nnn Sf∆t

∆Vc
. (12)

To avoid over- or undershoots the approximation of the cell-face value is lim-

ited using a normalized variable formulation, which ensures that the com-

puted value lies within the grey shaded area in the Normalized Variable Di-

agram (NVD), as shown in Figure 1. Effectively this scheme blends between
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central differencing (CD), upwind differencing (UD), downwind differencing

(DD) and lower upwind differencing (LUD) to ensure boundness of the vari-

able and stability of the calculation at the same time.

To calculate the cell-face values cf the following corrections are applied

to ensure it is bound between 0 and 1:

c̃f =



c̃C if c̃C < 0

2c̃C if 0 ≤ c̃C < 0.5

1 if 0.5 ≤ c̃C < 1

c̃C if 1 ≤ c̃C

(13)

c̃∗f =


c̃f if Co < Col

c̃C + (cf − cC) Cou−Co
Cou−Col

if Col ≤ Co < Cou

c̃C if Cou ≤ Co

(14)

c̃∗∗f = c̃∗f
√

cos θ + c̃C

(
1−
√

cos θ
)

(15)

By using the Courant number the scheme ensures that only such an

amount of fluid leaves a cell as can be accommodated by the the accep-

tor cell or vice versa. θ is the angle between the normal of the fluid interface

and the cell-surface vector nnn. Finally the cell-face value is calculated as

cf = c̃∗∗f (cD − cU) + cU . (16)

Subscripts U , C and D denote the upstream, cell-centre and downstream
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cell values. Col and Cou are the lower and upper limits of the Courant

number. For values Co < Col HRIC is used, for Col < Co < Cou HRIC and

UD are blended and for Cou < Co UD is used.

1.3. Control-Volume Finite Element Method (CV-FE)

The control-volume Finite Element approach combines the Finite Volume

method considering the control volumes and the Finite Element method by

using shape functions and finite element discretisation. The shape functions

are used to calculate the change of a variable across the CV Ansys (2006);

Baliga and Patankar (1983, 1980).

Figure 2 shows a 2D mesh section with unit depth. All nodes are sur-

rounded by element surfaces that define a control volume around it, which

is represented by the grey shaded area. All solution and fluid properties are

stored in the mesh nodes. To solve the general transport equation (7) the

terms have to be discretised on the mesh, i.e. the volumetric and surface flow

terms have to be approximated over the control volume faces to obtain a set

of linear equations, which can be solved. The volume terms are converted

into their discrete form by approximating specific values in each sector and

then integrating them over the control volume surface. The surface terms

are obtained by first approximating the fluxes at the integration points (see

Figure 2) from where the flows are calculated by integrating the fluxes over

the appropriate control volume surface segment.

To overcome pressure-velocity decoupling on a non-staggered grid, a simi-
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lar scheme as described by Rhie and Chow (1982) and modified by Majumdar

(1988) is applied.

Although the solution variables are saved in the mesh nodes, it is neces-

sary to calculate gradients at the integration points. Here the CV-FE solver

combines the FE with the FVM method by making use of shape functions,

which are typical for the FE approach. Across a mesh element a general flow

variable φ varies as described by

φ =

NNode∑
i=1

Niφi, (17)

with N being the shape function for node i and φi is the value of φ at node i.

The shape functions are used to calculate geometric quantities, such as the

coordinates of the integration points and surface area vectors ~n. Also the

summation of the shape function over all element nodes gives unity. Figure

3 shows the geometry of the shape function for a hexahedral control volume.

Ni is given by

N1 (r, s, t) = (1− r) (1− s) (1− t) , (18)

N2 (r, s, t) = r (1− s) (1− t) ,

N3 (r, s, t) = rs (1− t) ,

N4 (r, s, t) = (1− r) s (1− t) ,

N5 (r, s, t) = (1− r) (1− s) t,
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N6 (r, s, t) = r (1− s) t,

N7 (r, s, t) = rst

and

N8 (r, s, t) = (1− r) st.

As in a standard FE approach, the shape functions are used to evaluate the

spatial derivatives of the diffusion terms and the pressure gradients. The

discretisation of the advection terms uses a high resolution scheme similar to

the one described by Barth and Jesperson (1989).

The CV-FE method uses the Barth and Jesperson (1989) scheme to re-

construct the free surface from the VoF results. This scheme is dependent on

the filling level of the surrounding cells rather than the Courant number as

in the Ubbink (1997) method used by the FVM, and so not timestep depen-

dent. Additionally the solver used by the CV-FE method is fully coupled,

meaning that all equations are solved in one large matrix at once (Zwart ,

2005; Zwart et al., 2003). To take advantage of these properties, the timestep

may be chosen to be relatively large compared to a segregated solver.

2. Wave-wave interaction in focused wave groups

In this work, we follow the wave tank geometry and set up used in physical

experiments described in Ning et al. (2009). They used a wave tank with

plan dimensions of 69 m x 3 m and a water depth of 0.5 m. The waves were
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generated by a piston wavemaker and wave reflections were absorbed by a

4 m foam layer placed at the downstream end of the flume. Wave gauges

(WG) were used to measure the surface elevation around the point of the

maximum wave elevation and the layout is shown in Figure 4. In the study

by Ning et al. (2009), four NewWave cases are investigated with different

input amplitudes; here we reproduce numerically cases 2, 3 and 4.

The NewWave theory describes the surface elevation and wave velocity

components of a focused group of localised waves derived from a measured or

theoretical spectrum, such as JONSWAP or Pierson-Moskowitz. The waves

are superposed and brought into phase at one point in the tank at a specified

time. This generates an extreme wave event, which represents the wave en-

vironment of the underlying spectrum. By increasing the applied maximum

focused wave height, wave breaking at a defined location can be achieved.

In the physical experiment the focus point was set to 11.4 m downstream

of the wavemaker, which is the position of wave gauge no. 5. The distances

to the other wave gauges, measured from WG 5, may be taken from Table 1.

2.1. Domain

For both software packages similar domains are used, as shown in Fig-

ure 4. To save computational resources the domain is shortened to 13 m,

following the approach taken by Ning et al. (2009) in their fully non-linear

potential flow simulations. The entire domain is 1m high with a water depth

of 0.5 m. Between x = 10 m and x = 13 m, a damping layer is installed
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which prevents reflections from the right-hand boundary. In this area the

dynamic viscosity of the water fraction increases linearly from 8.94 x 10−4

Pa s up to 1600 Pa s.

The left-hand boundary is a velocity inlet, where the horizontal and ver-

tical velocity components are applied together with the volume fraction of

air and water. These are calculated following the derivations described by

Dalzell (1999), which are extended to the number of wave components N

required for this experiment (see section 2.2). The velocities are applied for

the water fraction only and the velocity of the air fraction at the inlet bound-

ary is set to zero. The top boundary is a pressure outlet, allowing only air

to leave or enter the domain. The remaining boundaries at the bottom and

right-hand side are walls. No turbulence model is applied.

Although a piston wavemaker is used in the physical experiment, wave

height data is extracted at wave gauge 5, located 11.4 m downstream from

the wavemaker. It is assumed that when the wave has travelled to gauge

5, it will have developed and be reasonable approximated by Stokes theory.

Applying piston wavemaker characteristics would only be accurate, if the

entire length of the wave tank were modelled, but here only a shortened part

of the tank has been modelled in order to conserve the computational cost.

The vertical coordinates where the water volume fraction is equal to 0.5

are taken to be the position of the free surface and are extracted at the

positions of the wave gauges for every time step. These are given as surface

elevation time history plots shown in section 2.3.
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The CV-FE calculations are carried out on a uniform hexahedral mesh.

Simulations are done on a pseudo 2D mesh with one cell layer thickness. For

all NewWave cases the same mesh is used. Grid convergence studies have

been reported in previous work by the authors, Westphalen et al. (2007) and

Westphalen et al. (2008), and found that the number of cells needed in the

vertical direction is 110 over the entire domain height. Thus for case 2 the

wave height is resolved by 14 cells in the vertical direction, this is sufficient to

resolve the free surface accurately. For case 3 and 4 with A = 0.0875 m and

0.1031 m this gives 9.6 and 11.3 cells to resolve the wave height respectively.

The CV-FE approach uses the Barth and Jesperson (1989) scheme to re-

construct the free surface from the VoF results. This scheme is not timestep

dependent. Additionally the solver is fully coupled, meaning that all equa-

tions are solved in one large matrix at once (Zwart , 2005; Zwart et al.,

2003). To take advantage of these properties, the timestep may be chosen

to be relatively large compared to a segregated solver. For cases 2 and 3 the

timestep is set to 0.01 s and for case 4 is 0.005 s. For all CV-FE cases, high

performance computing is used and the simulations are run in parallel mode

using 16 processors.

The FVM method uses the well-known segregated, iterative scheme SIM-

PLE to solve the Navier-Stokes equations. For capturing the free surface the

scheme developed by Ubbink (1997) and enhanced by Muzaferija and Perić

(1999) is used, which requires a smaller time step than used by the CV-FE

method to ensure the Courant number is less than or equal to 1.0. The cal-
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culation for case 2 is made with a timestep of 0.001 s. Case 3 and case 4 are

started with the same timestep for the first 5 s of the simulation and then the

timestep is reduced to 0.00025 s. FVM simulations are run in parallel mode

on a modern desktop PC with Intel Pentium Duo Core Processors, each 2.4

GHz, and 2 Gb RAM.

The calculations are carried out on a hexahedral mesh, that is refined

around the free surface. Due to the increase in the expected wave height,

the refined area is vertically extended from case 2 to case 4. Additionally

the cells at the inlet are refined for better definition of the velocity field and

the rapidly moving free surface during the calculation. The refined area ends

at x = 4.5 m. Beyond that point the mesh is uniform having the same cell

size as the regions above and below the refined region. The calculation for

case 2 is made with a timestep of 0.001s. Case 3 and case 4 are started with

the same timestep as case 2 for the first 5s of the simulation. After that the

timestep is reduced to 0.00025 s. These settings ensure a Courant number

smaller than or close to 1.

2.2. Generation of focused wave groups (NewWave)

The concept of the NewWave formulation is to generate several waves of

relatively small amplitudes and different periods. These waves interact and

constructively interfere to build up a localised extreme wave, larger than any

individual wave created at the paddle, focused at a specified position and

time in the tank. In the numerical calculations the waves are generated from
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the spectra shown in Figure 5. These spectra are obtained by Fourier trans-

formation of the free surface data measured in the experiments as described

by Ning et al. (2009) and Zang et al. (2006).

For each wave component n the amplitude an is defined as

an = A
Sn (f) ∆f∑
n Sn (f) ∆f

(19)

where S(f) is the spectral density, ∆f is the frequency step depending

on the number of wave components N and bandwidth. A is the target lin-

ear amplitude of the focused wave. Thus, the amplitude of every spectral

component in the NewWave group sclaes as the power density within that

frequency band in the assumed sea-state. Equivalently, NewWave is simply

the scaled auto-correlation function corresponding to a specified frequency

spectrum such as JONSWAP, Pierson-Moskowitz etc. The properties for

each case considered can be seen in Table 2.

The underlying equations, from which the signal of the physical wave-

maker is derived, come from second order Stokes theory and are given by

Ning et al. (2009) and Dalzell (1999). The input signal for the CFD runs is

the sum of the first (1) and the second (2) order component for the horizontal

and vertical water velocity component u and w and the surface elevation η:

η = η(1) + η(2), (20)

u = u(1) + u(2) (21)
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and

w = w(1) + w(2). (22)

The first order component for the surface elevation is

η(1) =
N∑
i=1

ai cosψi (23)

with ψi as

ψi = kix− ωit+ εi. (24)

The first order velocities u(1) and w(1) are

u(1) =
N∑
i=1

aikig

ωi

cosh ki (z + h)

cosh kih
cos (ki (x− x0)− ωi (t− t0) + εi) (25)

and

w(1) =
N∑
i=1

aikig

ωi

sinh ki (z + h)

cosh kih
sin (ki (x− x0)− ωi (t− t0) + εi). (26)

The second order parts for the surface elevation η(2) and the velocities

u(2) and w(2) are given by

η(2) =
N∑
i=1

∑
j=i+1

aiajB
+
i,j cos (ψi + ψj) +

N∑
i=1

∑
j=i+1

aiajB
−
i,j cos (ψi − ψj)
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+
N∑
i=1

a2
jki

4 tanh (kih)

[
2 +

3

sinh2 (kih)

]
cos (2ψi)−

N∑
i=1

a2
jki

2 sinh (2kih)
(27)

and

φ(2) =
N∑
i=1

∑
j=i+1

aiajA
+
i,j

cosh ((ki + kj) (z + h))

cosh ((ki + kj)h)
sin (ψi + ψj)

+
N∑
i=1

∑
j=i+1

aiajA
−
i,j

cosh ((ki − kj) (z + h))

cosh ((ki − kj)h)
sin (ψi − ψj)

+
N∑
i=1

a2
i

3ωi
8

cosh (2ki + kjh)

sinh4 (kih)
sin (2ψi), (28)

with components of the interaction kernels A
+/−
i,j , B

+/−
i,j and D

+/−
i,j defined as

A+
i,j = −ωiωj (ωi + ωj)

D+
i,j

[
1− 1

tanh (kih) tanh (kjh)

]

+
1

2D+
i,j

[
ω3
i

sinh2 (kih)
+

ω3
j

sinh2 (kjh)

]
(29)

A−i,j =
ωiωj (ωi − ωj)

D−i,j

[
1 +

1

tanh (kih) tanh (kjh)

]

+
1

2D−i,j

[
ω3
i

sinh2 (kih)
−

ω3
j

sinh2 (kjh)

]
(30)

B+
i,j =

(
ω2
i + ω2

j

)
2g

− ωiωj
2g

[
1 +

1

tanh (kih) tanh (kjh)

]

·

[
(ωi + ωj)

2 + g (ki + kj) tanh ((ki + kj)h)

D+
i,j

]
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+
(ωi + ωj)

2gD+
i,j

[
ω3
i

sinh2 (kih)
+

ω3
j

sinh2 (kjh)

]
(31)

B−i,j =

(
ω2
i + ω2

j

)
2g

+
ωiωj
2g

[
1− 1

tanh (kih) tanh (kjh)

]

·

[
(ωi − ωj)2 + g (ki − kj) tanh ((ki − kj)h)

D−i,j

]

+
(ωi − ωj)

2gD−i,j

[
ω3
i

sinh2 (kih)
−

ω3
j

sinh2 (kjh)

]
(32)

D+
i,j = (ωi + ωj)

2 − g (ki + kj) tanh ((ki + kj)h) (33)

and

D−i,j = (ωi − ωj)2 − g (ki − kj) tanh ((ki − kj)h) (34)

The second order velocity components are obtained by the relevant spatial

derivatives of the second order potential φ(2) to be differentiated with respect

to x and z

The wavemaker is located at x = 0 m; x0 is the focus point, which is set

to 3 m for case 2 and to 3.27 m for cases 3 and 4; t is the time; t0 is the

focus time, which is 9.2 s for case 2 and 10s for cases 3 case 4. Also in the

formulae are the wavenumber ki, the frequency ωi , the phase angle εi (which

is set to 0 for the calculations), the water depth h, vertical position z and

the number of wave components N .

In this work, the incoming wave entering the computational domain is
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fluxed in through a transparent boundary. This flux is defined in terms of

either linear theory, or linear theory with second order corrections.

2.3. NewWave generation results

For this paper crest and trough focused wave groups with three different

levels of linearity or non-linearity were simulated. 16 simulations using the

FVM and CV-FE solvers were performed to compare the surface elevations

at the focus point with the experimental results by Ning et al. (2009). For

each solver results are shown corresponding to input waves defined using

linear and linear plus second order theory. The surface elevations are non-

dimensionalised in terms of the wave crest of the target NewWave A, and

time is defined in terms of the appropriate wave period, as shown in Table

2. Table 3 shows the maximum surface elevations for these cases. As the

actual focus point and time differ for every simulation, which has also been

reported by Baldock et al. (1996), all graphs are shifted in time to coincide

with one another. The graphs are adjusted at t/T = 0, which is the time

when the maximum surface elevation occurs. Figures 6 - 8 show the water

surface elevation from the two solvers compared with the measured results

from the physical experiment for all crest focused cases 2, 3 and 4.

For case 2, the case of the weakest non-linearity, the FVM with first

order wave input signal does not reach the required height. The simulation

including the second order wave components, however, overestimates the

crest elevations by approximately 24%, with a value of 0.015 m for an input
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wave crest of 0.0632 m. The trough elevations for the surrounding troughs

improve from first order to first plus second order wave setup for the FVM

solver in terms of matching with the physical experiments. The CV-FE solver

predicts surface elevations for both wave signals slightly higher than those

measured in the physical tank tests. Here the troughs that surround the

central wave are higher and do not exactly coincide with the results of the

experimental results, although one can see an improvement from first order

to second order wave signal.

The numerical results for case 3 generally show the best agreement with

the physical experiments; particularly the crest elevations are predicted with

only a slight difference for both input signals. Moving from first to second

order wave input also improves the trough elevations.

Case 4 is the test with the steepest wave, which almost broke in the

physical experiment. The numerical results are very good for the maximum

crest elevations. However, the surrounding wave train does not agree as well

as the previous tests, though the trends are the same. The wave preceding

the central wave is much larger than the measured values for both codes, but

still smaller and not symmetric to the wave that follows the main wave, as

it can also be observed in Figures 6 and 7. The strong asymmetry around

the main wave crest is predicted less well for steeper wave cases, and this is

evident for both FVM and CV-FEM methods, however, the peak is predicted

well for all cases.

The actual focus point in the numerical calculations lies further down-
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stream than specified, as can be seen from Table 3. Also, it is further away

for the simulations with higher order wave signal.

A useful tool to assess the non-linearity of results is the comparison of

the sum and difference plots. Therefore additional simulations were carried

out, with trough focused instead of crest focused waves. By subtracting and

summing the crest and trough focused wave time histories (and dividing them

by two), as described by Zang et al. (2006), the plots for cases 2 and 4, shown

in Figure 9, are obtained. By subtracting the signals from one another the

the linear part of the solution plus the odd harmonics is obtained (solid line)

and by adding the signals, the even harmonics of the wave time history are

extracted (dashed line). As it is expected the non-linearities increase from

case 2 to case 4, which has a greater NewWave target amplitude. The dashed

line in Fig. 9b for case 4 has a greater amplitude and is less smooth than

that in Fig. 9a for case 2. Similarly, the odd harmonic component for case 4

has a spiked peak typical for higher order effects.

3. Fixed horizontal cylinder in regular waves

3.1. Computational domain

For the numerical simulations 3-dimensional meshes containing mostly

hexahedral cells are used. However, as the domain is very thin the simulation

is in fact 2-dimensional. It is 10 m long, 2 m high and has a width of 0.1

m. The cylinder axis is perpendicular to the plane of the domain and sits

one wavelength λ downstream of the inlet and is defined as a wall. The
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diameter of the cylinder D is 0.25 m. In both codes the bottom and far side

boundary are walls as well. The sides are set up as symmetry boundaries.

The waves are generated at the velocity inlet on the left-hand side. The top

boundary is a pressure outlet with only air being allowed to leave or enter

the domain. The general arrangement is similar to those of the NewWave

simulations described previously (see Fig. 4).

Meshes are generated using the automatic mesh generation packages and

Cartesian hexahedral cells are used as the basis for wave and wave-structure

interaction simulations as these work best with VOF schemes. Where a

cylinder is included in the domain, hexahedral cells are deformed around the

cylinder in the CV-FE method, whereas in the FVM method, the cylinder

is cut out of the background mesh and has a prism layer of cells around it

to reduce the influence of deformed cells and optimise the computation of

boundary flows. Portions of the meshes close to the cylinder are shown in

Figures 10 and 11. For the three horizontal cylinder cases presented here,

the CV-FE meshes contain 79495, 69537 and 69537 cells and a timestep of

0.005 s was used; the FVM meshes have 113856, 113606 and 114599 cells and

are calculated with a timestep of 0.001 s.

The deformed cells around the cylinder occurring in the CV-FE method

influence the initial water surface for some cases, notably for the numerical

experiments where the cylinder is 3/4 and fully submerged. Nevertheless, as

it takes some time for the water to travel down the numerical tank, this effect

can be neglected because the water has enough time to settle and adjust itself
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to a physical behaviour before the wave arrives at the cylinder.

3.2. Generation of regular waves

The water depth h for all numerical simulations is 1 m, the wave period

T is 1.646 s with wave amplitudes A being 0.125 m, 0.05 m and 0.075 m. The

properties including the fixed displacement of the cylinder below still water

level d, kA, kh and the Keulegan-Carpenter numbers NKC for each case are

shown in Table 4. According to the physical experiments by Dixon et al.

(1979) the wave signal is accurate to first order. The waves are generated

using the vertical and horizontal water velocity components u and w, with

u =
gAk cosh (k (z + h)) cos (kx− ωt)

ω cosh (kh)
(35)

and

w = −gAk sinh (k (z + h)) sin (kx− ωt)
ω cosh (kh)

. (36)

These are applied for the water fraction only, which is defined using the

surface elevation η from first order wave theory, with

η = A cos (kx− ωt) . (37)

A is the wave amplitude, g is the acceleration due to gravity, k is the

wavenumber, h the water depth, z the vertical position and ω is the wave

frequency. To avoid reflections from the far end boundary a damping zone
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is defined. This is done by increasing the dynamic viscosity, µ, of the water

linearly from 8.8871 x 10−4 Pa s to 800.0 Pa s over the last 3 m of the domain.

3.3. Horizontal cylinder results

To compare the numerical results with those obtained by Dixon et al.

(1979) the vertical forces Fz on the cylinder resulting from drag and pressure

on the surface are extracted. The forces F ′ shown in all figures are non-

dimensionalised using the following expression

F ′ =
Fz

gρ
(
1/4πD2l

) (38)

where Fz is the measured vertical force on the cylinder, ρ is the density of

water, D is the cylinder diameter and l is the length of the cylinder. Figure

12 shows the non-dimensionalised vertical force time histories as predicted

using each code compared to that measured experimentally for d = 0.0. For

longer time simulations, there is likely to be reflection from the cylinder

that would in turn reflect from the wavemaker and alter the generated wave.

For this reason, results were extracted from simulation of only the first two

steady-state waves interacting with the cylinder.

For the case d= 0.0 m the numerical predictions fit well with the measured

ones. At the beginning of the wave cycle heave forces are dominant. Once

past the instant of peak force, the force time history exhibits a saddle point

and then becomes negative as the wave trough passes. When the wave passes

further and the water level rises, the downward force reduces. This can also
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be seen in Figure 13, which shows the surface profiles around the cylinder at

d = 0.0 m throughout the wave cycle, predicted using the FVM.

Figure 12 also shows the vertical forces for the horizontal cylinder, which

is positioned with its axis 0.075 m below the still water level. Here the

qualitative characteristics are the same as for the half-submerged cylinder

but the actual values are much smaller.

The match between numerical simulation and physical experiment is very

good.

The last set of numerical results, however, do not agree so well with

the physical experiments. For the cylinder positioned at d = -0.15 m, which

makes the structure fully submerged, the differences for both numerical meth-

ods are significant. The forces have the correct phase relative to the wave

motion and the numerical time histories are in reasonable agreement with the

measurements presented by Dixon et al. (1979). In Figure 14, the surface

profiles close to the cylinder predicted for the case d = -0.15 m throughout

the wave cycle are shown. It is evident that the cylinder surface becomes

partially exposed during the wave cycle.

4. Vertical cylinders in regular waves

This section describes the numerical simulations of a vertical cylinder

in two regular wave environments. The first set of tests aims to reproduce

the measured results of physical experiments by Kriebel (1998), who also

compares the horizontal forces on a vertical circular cylinder in regular waves
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with computations using first and second order diffraction theory. From this

publication two cases are chosen as described in Table 5.

4.1. Computational Domain

The numerical wavetanks for both solvers are identical. The simulations

are performed in a 3-dimensional domain with the dimensions x, y and z

equal to 12, 1.65 and 0.9 m. The still water level is 0.45 m. The diameter

of the cylinder is 0.325 m as in the physical experiments. The centre of it

is located 3.77 m downstream from the inlet, which is equal to 1 wavelength

for the first wave setup and approximately 2 wavelengths for the second.

As with the horizontal cylinder cases (see Section 3) the waves are gener-

ated using the horizontal and vertical velocity components, which are applied

underneath the appropriate surface elevations at the left hand side velocity

inlet (see Section 3.2). The sides are symmetry planes and the top is a

pressure outlet, with air being allowed to leave or enter the domain. The

remaining boundaries are modelled as walls, i.e. the cylinder, the bottom

and the far end boundary.

The meshes, however, are different for both solvers. The grid that is

used for the CV-FE solver contains 570000 hexahedral cells. It is refined

around the cylinder and the area where the free water surface is expected

to travel upstream of the cylinder. Downstream of the cylinder the mesh is

relatively coarse to save computational resources. The cell size around the

free surface upstream of the cylinder is 0.011 m. The cylinder is discretised
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by 3240 quadrilateral elements. The number of cells covering the perimeter

is 72, which is constant over the entire cylinder height. The refinement of

the cylinder in the area where the waves hit the structure is in the vertical

direction only. The timestep for the CV-FE solver is 0.005 s.

The mesh used for the FVM solver contains 870000 mostly hexahedral

cells. The cells around the water surface area are isotropically refined to an

edge length of 1.25 cm, which gives the necessary resolution of approximately

10 cells per wave height (Westphalen et al., 2008). The cylinder itself is

modelled with 3005 faces of which 37 are triangular, 2898 quadrilateral and

70 polygonal. The different cell types result from the meshing algorithm,

which cuts the geometry out of the initial hexahedral mesh rather than using

a body fitted grid as it is done for the CV-FE solver. At the top and the

bottom the cylinder contains 52 faces around the perimeter. In the central

region of the cylinder the mesh is refined not only in the vertical direction,

as is done for the CV-FE solver, but also tangentially. Between the vertical

positions of 0.35 m and 0.55 m,104 cells wrap the cylinder perimeter.

4.2. Results

The validation of the codes is done by comparing the total horizontal

forces on the cylinder due to the waves with the measured results from Kriebel

(1998). As described by Kriebel the forces are normalised with the analytic
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results from linear diffraction theory, which is given by

F

F0

= F
kh

ρgaHh tanh kh
. (39)

F is the measured or extracted horizontal force on the cylinder, a the radius

of the cylinder and H the wave height.

Figure 15 shows the comparison between the measured data and the nu-

merical simulations for both codes and the two wave conditions described

in Table 5. Both numerical methods show good agreement for both cases,

slightly better for the second one. Small differences in the results are ex-

pected because the physical data is averaged over 10 wave periods, whereas

the numerical results represent one wave cycle only. For the second case

where NKC is larger, i.e. the drag forces dominate, the physical experiments

and the calculations reach a maximum value almost twice that predicted by

linear diffraction theory.

4.3. Secondary load cycle

The aptly named “ringing” of vertical surface piercing cylinders in steep

waves is a highly nonlinear effect. It was discovered during design work on

deepwater concrete platforms in Norway in the early 1990s and is described

by Stansberg (1997) and Grue and Huseby (2002). The ringing itself only

occurs when the cylinder is mounted elastically, which is not the case for the

simulations presented here. However, Chaplin et al. (1997) have carried out

tank tests to reproduce this effect. First they studied fixed vertical cylinders
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in steep focused waves and then cylinders mounted elastically in order to

measure the response. Thus they were able to identify secondary loading

within the measured force curve. Chaplin et al. (1997) present the definition

of the secondary load cycle reproduced in Figure 16a, where the horizontal

force on the cylinder is plotted against time. They state that this effect

occurs when the wave height is equal to the cylinder diameter. Using the

FVM solver the horizontal force predicted for a slender cylinder of diameter

equal to 0.1625 m in the same wave climate as described above can be seen

in Figure 16b. The secondary load cycle is present for this wave, although

it cannot be compared exactly with 14a as the input wave conditions are

different.

5. Conclusions

This work describes an investigation of the suitability of the use of the

numerical techniques implemented in commercial CFD packages for design

of offshore structures under extreme waves. Simulations of extreme focused

wave events and wave-structure interaction of regular waves with fixed hori-

zontal and vertical cylinders are presented and the predicted results compared

with physical experiment data. Comparison is drawn between predicted and

measured wave surface elevation for wave-only cases. It is found, that use

of second order theory to supply leading order approximations to the bound

wave structure at the inlet to the computational domains leads to signifi-

cantly improved agreement in comparison with linear wave theory. However,
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some asymmetry exists in the numerical predictions of surface elevation in

the most extreme wave focussing case.

Simulations of fixed horizontal and vertical cylinders in regular waves are

investigated to explore the loading on the structures. The vertical and hor-

izontal forces are compared with physical experiments described by Dixon

et al. (1979), Kriebel (1998) and Chaplin et al. (1997) and show very good

agreement. In particular, the highly non-linear effects of the wave-structure

interaction cases were picked up very satisfactorily. These are the double

frequency force oscillation on the horizontal cylinder and the secondary load

cycle for the vertical cylinder case, which may cause severe damage due to

the ringing of the structure after being passed by the wave. Some differences

remain in the prediction of loading on the initially submerged horizontal

cylinder and inspection of the surface profiles for this case reveal that partial

wetting and drying of the cylinder surface occurs during the wave cycle. Nev-

ertheless, when run in parallel, the numerical techniques considered here and

implemented in commercial CFD packages are demonstrated to be powerful

tools for offshore structure design, and able to predict highly non-linear wave

interaction.
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