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Abstract  21 

Biological control can assist in the management of disease vector mosquitoes. However, we urgently 22 

require the identification of novel and effective agents to aid population management strategies. 23 

Previously, predatory biocontrol of disease vector mosquito species has focused extensively on 24 

cyclopoid copepods, but prey size refuge effects have been identified as a hindrance to their predatory 25 

efficacy. Calanoid copepods have yet to be examined in the context of mosquito control, despite their 26 

high prevalence, diversity and distribution. Here, we apply functional responses (FRs; resource use as a 27 

function of resource density) to examine predation efficiencies of a recently described ephemeral pond 28 

specialist species, the freshwater calanoid copepod Lovenula raynerae Suárez-Morales, Wasserman & 29 

Dalu 2015, using different size classes of larvae of the disease vector complex Culex pipiens as prey. 30 

Lovenula raynerae effectively consumed C. pipiens larvae across their ontogeny. A potentially 31 

population destabilising Type II FR was exhibited towards both early and late instar mosquitoes, 32 

indicative of a lack of prey refuge across ontogenetic stages. Attack rates were greatest and handling 33 

times lowest for early instar larvae compared to late instar larvae. These traits contrast to other copepods 34 

commonly applied in biocontrol, which are only able to handle early instars, and in much smaller 35 

numbers. We thus advocate that calanoid copepods can exert particularly marked predatory impact on 36 

lower trophic groups, and that their use in disease vector mosquito control strategies should be further 37 

explored. 38 

Keywords: 39 

Biological control; functional response; copepod; mosquito; disease vector; Lovenula raynerae  40 
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 44 

Introduction 45 

Predation is a key biotic process underpinning structuring of populations and communities within 46 

ecosystems (Solomon, 1949; Murdoch, 1969; Carpenter et al. 1985), and can be an effective means of 47 

vector control (e.g. Marten & Reid, 2007).  In their most basic form, interactions between consumers 48 

and prey can be quantified by the functional response (FR; resource use as a function of resource 49 

density), and the derivation of FRs has been integral to the development of predator-prey theory 50 

(Holling, 1959). Three broad forms of FR have been frequently observed: linear Type I; hyperbolic Type 51 

II; sigmoidal Type III (Murdoch & Oaten, 1975). Within the context of predatory biocontrol, Type II 52 

FRs are desirable given that these predator-prey relationships are, theoretically, associated with localised 53 

prey extinction (Dick et al. 2014). 54 

Biological control of mosquito-borne disease vectors has often integrated copepods as predatory agents 55 

(Marten & Reid, 2007). While the efficacy and viability of copepods in the biocontrol of disease vectors 56 

has been frequently explored (e.g. Cuthbert et al. 2018a, b), this work has all focused on cyclopoid 57 

copepods, ignoring other copepod groups (Marten & Reid, 2007). Freshwater calanoid copepods have 58 

remained unexamined in mosquito biocontrol (but see Cuthbert et al. 2018d), labelled as a herbivorous 59 

group that is unable to handle mosquito prey (e.g. Marten & Reid, 2007). Predatory calanoid copepods 60 

do, however, exist and can be relatively large in size (Suárez-Morales et al. 2015; Wasserman et al. 61 

2015), making them biocontrol candidates. Further, cyclopoid copepods have been shown to be unable 62 

to effectively handle late instar larval mosquito prey (Marten & Reid, 2007), and predators often display 63 

reduced capture efficacy towards resources which are relatively large or small (Vonesh & Bolker, 2005). 64 

Thus, identifying agents that can handle larval mosquito prey throughout ontogenetic variation is 65 

important for reducing size refuge effects.  66 
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Calanoid copepods form part of zooplankton assemblages which dominate ephemeral aquatic 67 

ecosystems, facilitated through in situ hatching of dormant eggs (Dalu et al. 2017). These atypical 68 

ecosystems are understudied given their impermanency and spatial heterogeneity, with interaction 69 

strengths between predators and their prey poorly constrained (though see Wasserman et al. 2015). 70 

Thus, examining the predatory potential of calanoids towards basal mosquito prey at differing 71 

ontogenetic stages would be informative towards interaction strength quantifications within ephemeral 72 

systems where mosquitoes often breed, further to the potential role of calanoid copepods in biocontrol. 73 

Accordingly, in this study we examine, using FRs, the predatory potential of Lovenula raynerae Suárez-74 

Morales, Wasserman & Dalu 2015, a recently described and remarkably large freshwater calanoid 75 

(Suárez-Morales et al. 2015), towards different sized larvae of the vectorially-important Culex pipiens 76 

mosquito complex in order to constrain biocontrol efficacy and potential size refuge effects.  77 

Materials and Methods 78 

Adult L. raynerae were collected from an ephemeral pond in Bathurst, Eastern Cape, South Africa 79 

(33°29'21.4"S 26°49'48.4"E) using a 200 μm mesh net and transported in source water to a controlled 80 

environment room at Rhodes University, Grahamstown. Copepods were acclimated at 25 ±1 °C and 81 

under a 12:12 light:dark regime for 7 days, being fed on a standard diet of crushed fish flakes for the 82 

first 5 days (Aqua Plus, Grahamstown) and starved for the last 2 days in continuously aerated 25 L tanks 83 

containing dechlorinated tapwater. The focal prey, larvae of the C. pipiens complex, were cultured using 84 

egg rafts collected from artificial containers within the Rhodes University campus, and reared to the 85 

desired size class in the same laboratory using a diet of crushed rabbit pellets (Agricol, Port Elizabeth), 86 

supplied ad libitum. Non-gravid adult female copepods (5.1 ± 0.1 mm) were selected for 87 

experimentation and provided either early (1.4 ± 0.1 mm) or late (4.4 ± 0.2 mm) instar mosquito prey at 88 

six densities (2, 4, 8, 16, 32, 64; n = 4 per treatment group) in arenas of 5.6 cm diameter containing 80 89 

mL dechlorinated tapwater from a continuously aerated source. Prey were allowed to settle for two 90 
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hours before the addition of predators. Once predators were added they were allowed to feed 91 

undisturbed for 5 hours, after which they were removed and remaining live prey counted. Controls 92 

consisted of a replicate at each density and prey size class without a predator.  93 

All statistical analyses were conducted using ‘R’. Overall prey consumption with respect to ‘prey size’ 94 

and ‘prey density’ factors and their interactions was analysed using generalised linear models (GLMs) 95 

assuming a Poisson error distribution. We removed non-significant terms and interactions stepwise to 96 

obtain the minimum adequate model using likelihood ratio tests. We used the package ‘frair’ (Pritchard 97 

et al. 2017) for FR analyses. Here, our approach to FR analysis is phenomenological as opposed to 98 

mechanistic, and thus our results are comparative across standardised experimental conditions (see 99 

Jeschke et al. 2002; Dick et al. 2014). Logistic regression of proportional prey consumption as a 100 

function of prey density was used to derive FR types (frair::frair_test), wherein, categorically, a Type II 101 

FR is identified by a significantly negative first order term, whilst a Type III FR is ascribed from a 102 

significantly negative second order term following a positive first order term. As prey supplies were not 103 

replenished, the Rogers’ random predator equation was used to fit FRs (Juliano, 2001; frair::frair_fit): 104 

𝑁𝑒 = 𝑁0(1 − exp(𝑎(𝑁𝑒ℎ − 𝑇))) 105 

Eqn. 1. 106 

where Ne is the number of prey eaten, N0 is the initial density of prey, a is the attack constant, h is the 107 

handling time and T is the total experimental period. We used a non-parametric bootstrap procedure (n = 108 

2000; frair::frair_boot) to generate FR confidence intervals, enabling their consideration in population 109 

terms. We subsequently used the difference method (see Juliano, 2001) to undertake pairwise 110 

comparisons of FRs with respect to the attack rate and handling time parameters.  111 

Results and Discussion 112 
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No prey deaths occurred in controls and so mortality was deemed a result of predation by copepods, 113 

which was directly observed towards both prey sizes. Overall predation was significantly greater 114 

towards early instar prey compared to later instar prey (χ2 = 79.39, df = 1, p < 0.001) and increased 115 

significantly with increasing prey supplied (χ2 = 200.03, df = 5, p < 0.001). No significant ‘prey size × 116 

prey supply’ interaction was detected (χ2 = 4.06, df = 5, p = 0.54). Type II FRs were detected for both 117 

prey sizes (Table 1; Fig. 1), and 95% confidence intervals did not overlap across any prey supplies. 118 

Attack rates were significantly higher towards early instar prey (z = 3.65, p < 0.001), evidenced by the 119 

steeper initial gradient in the FR curve. Handling times were significantly reduced for smaller prey items 120 

(z = 3.15, p = 0.002), with a greater maximum feeding rate reached here.  121 

The application of FRs is relevant within the predatory biocontrol context, providing a mainstay to the 122 

derivation of predator-prey interactions (Murdoch & Oaten, 1975). Here, we demonstrate that the 123 

calanoid copepod L. raynerae can handle mosquito larvae throughout their ontogeny, with a potentially 124 

population-destabilising Type II FR exhibited towards both early and late instar mosquito prey. These 125 

results are promising when compared to similar studies on cyclopoid copepod predation efficiency (e.g. 126 

Cuthbert et al. 2018a, b, c). Indeed, when prey was not limited, L. raynerae individuals consumed 127 

several multitudes more culicid larvae than all cyclopoids investigated (Marten & Reid, 2007). In 128 

addition, unlike L. raynerae predation as highlighted in this study, studies on cyclopoids have shown 129 

that late-stage mosquito larvae experience refuge given the relatively large size of these prey (Marten & 130 

Reid, 2007). 131 

Lovenula raynerae attack rates were significantly greater, whilst handling times significantly lower and, 132 

inversely, maximum feeding rates higher, for small prey compared to large prey. However, the calanoid 133 

copepod examined here may foster localised extinctions of mosquito populations under certain 134 

conditions across their ontogeny. This is due to high levels of consumption at low resource densities, in 135 

light of the Type II FR form exhibited for each prey size (Murdoch & Oaten, 1975). Indeed, these results 136 
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corroborate with those of Wasserman et al. (2015) whereby a destabilising Type II FR towards 137 

daphniids was exhibited by L. raynerae. Though L. raynerae can handle particularly large quantities of 138 

early instar prey, predation on late instars was marked relative to the predator size. As such, the strength 139 

of these biotic interactions may drive profound impacts upon mosquito prey in aquatic systems, 140 

particularly as their predation has proven robust to environmental variations (Cuthbert et al. 2018d). 141 

However, as context-dependencies e.g. temperature (Cuthbert et al., 2018a) and alternative prey 142 

(Cuthbert et al., 2018e) can influence predator-prey interaction strengths, examinations of additional 143 

environmental effects on predation rates of such calanoid copepods towards target prey are urgently 144 

required. 145 

In summary, we demonstrate that, contrary to suggestions that freshwater calanoids offer little value for 146 

biocontrol (Marten & Reid, 2007), L. raynerae offers much potential. The species is a voracious, 147 

carnivorous copepod, able to consume much higher numbers of mosquito prey than cyclopoid copepods 148 

which are frequently considered in vector control strategies. Our findings suggest high and destabilising 149 

predatory pressures from L. raynerae towards mosquito prey, with the potential to drive eradications. 150 

Moreover, as L. raynerae is an ephemeral pond specialist species and lays desiccation-resistant eggs, 151 

applications of their dormant eggs to transient aquatic habitats which foster mosquitoes may be 152 

efficacious for vector control strategies. Thus, we propose further investigation into the predatory role of 153 

calanoid copepods, an extremely diverse and widespread crustacean group, in the structuring of 154 

populations and communities within aquatic ecosystems, alongside examinations of their efficacy as part 155 

of vector control strategies.  156 
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Table 1. First order terms and significance levels resulting from logistic regression of the proportion of 223 

prey eaten as a function of prey density, and FR parameter estimates (attack rate, a; handling time, h) 224 

across differing prey treatments with significance levels resulting from Rogers’ random predator 225 

equation with bootstrapped (n = 2000) 95% confidence intervals (CIs). Functional response parameters 226 

are estimated per hour (T = 5). 227 

Prey size 1st order term, 

p 

a, p 

 

95% CIs (a) h, p 95% CIs (h) 

Small -0.04, < 0.001 1.08, < 0.001 

 

0.55–3.07 0.19, < 0.001 

0.03–0.05 

0.13–0.25 

Large -0.03, < 0.001 0.20, < 0.001 

 

0.11–0.42 0.47, < 0.001 

 

0.30–0.69 

 228 
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 241 

 242 

Fig. 1. Functional responses of non-gravid adult female Lovenula raynerae towards early and late instar 243 

larval Culex prey over the total 5 hour experimental period. Shaded areas represent bootstrapped (n = 244 

2000) confidence intervals. Points are raw residuals (n = 4 per treatment group). 245 


