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ON L1 LIMIT SOLUTIONS IN IMPULSIVE CONTROL

Monica Motta∗ and Caterina Sartori

Dipartimento di Matematica “Tullio Levi-Civita”
Università di Padova

Via Trieste, 63, Padova 35121, Italy

Abstract. We consider a nonlinear control system depending on two controls
u and v, with dynamics affine in the (unbounded) derivative of u, and v ap-
pearing initially only in the drift term. Recently, motivated by applications to
optimization problems lacking coercivity, Aronna and Rampazzo [1] proposed
a notion of generalized solution x for this system, called limit solution, asso-
ciated to measurable u and v, and with u of possibly unbounded variation in
[0, T ]. As shown in [1], when u and x have bounded variation, such a solution
(called in this case BV simple limit solution) coincides with the most used
graph completion solution (see e.g. Rishel [25], Warga [27] and Bressan and
Rampazzo [8]). In [24] we extended this correspondence to BVloc inputs u

and trajectories (with bounded variation just on any [0, t] with t < T ). Here,
starting with an example of optimal control where the minimum does not exist
in the class of limit solutions, we propose a notion of extended limit solution

x, for which such a minimum exists. As a first result, we prove that extended
BV (respectively, BVloc) simple limit solutions and BV (respectively, BVloc)
simple limit solutions coincide. Then we consider dynamics where the ordi-
nary control v also appears in the non-drift terms. For the associated system
we prove that, in the BV case, extended limit solutions coincide with graph
completion solutions.

1. Introduction. We consider a control system of the form

ẋ(t) = g0(x(t), u(t), v(t)) +
m
∑

i=1

gi(x(t), u(t))u̇i(t) a.e. t ∈ [0, T ], (1)

x(0) = x̄0, u(0) = ū0, (2)

where x ∈ Rn, (u(t), v(t)) ∈ U × V and U , V are compact sets. System (1) is a
so-called impulsive control system, where a solution x can be provided by the usual
Carathéodory solution only if u is an absolutely continuous control. For less regular
u, several concepts of impulsive solution have been introduced in the literature,
either for commutative systems, where the vector fields g0, . . . , gm depend only on
x and Lie brackets [gi, gj] ≡ 0 for all i, j = 1, . . . ,m (see e.g. [9]), or assuming u (and
x) to be functions of bounded variation, when the Lie Algebra is non trivial. These
solutions are described by different authors in fairly equivalent ways, and we will
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1202 MONICA MOTTA AND CATERINA SARTORI

refer to them as graph completion solutions, since they are obtained by completing
the graph of u (see e.g. [8], [20], [26], [19], [29], [3], [14], [16]). In the less studied
non commutative case with measurable controls u of unbounded variation, let us
mention [10], [18], and the definition of limit solution due to [1]. In the special case
of BV simple limit solutions, in which u and x are of bounded variation, in [1] the
authors showed that any limit solution is a graph completion solution and vice-versa
(see Definitions 3.1, 5.3, 5.4 below). This is an important result, since, on the one
hand, graph completion solutions have a simple explicit representation formula, not
available for general limit solutions. On the other hand, it proves that (pointwisely
defined) graph completion solutions are well-posed, in the sense that they coincide
with all and only pointwise limits of classical solutions. In [24] we extended such a
result to a case of unbounded variation, by introducing graph completion solutions
associated to BVloc inputs u (and trajectories) and we proved that they coincide
with a special subset of simple limit solutions, the BVloc simple limit solutions (see
Definition 3.2 below).

In this paper we analyse the concept of limit solution and, starting from an
example in optimal control for which the infimum over limit solutions is not a
minimum, we introduce a notion of extended limit solution, where such a minimum
does exist. As a first result, in Theorem 4.3 we prove that this new definition
coincides with the original one in the special cases of BV simple or BVloc simple
limit solutions (see Definitions 3.1, 3.2 below). As a consequence, all the results
available for these two classes of limit solutions are still valid for their extended
counterpart.

Furthermore, we investigate control systems of the form

ẋ(t) = g0(x(t), u(t), v(t)) +
m
∑

i=1

gi(x(t), u(t), v(t))u̇i(t) a.e. t ∈ [0, T ], (3)

where all the g0, g1, . . . , gm depend on the control v. The definition of limit solution
for (3) was left as an open problem in [1]. Indeed, our notion of extended limit
solution can be adapted to this case, allowing us to show, in Theorem 5.2, that
extended BV simple limit solutions and graph completion solutions to (3)-(2) coin-
cide. This result extends to system (3) the analogous of [1, Thm. 4.2] regarding (1).
As remarked in [1], already when u (and x) has bounded variation, the dependence
of g1, . . . , gm on v is much more critical than just the v-dependence of g0, in that a
simultaneous jump of u and v makes the determination of the corresponding jump
of x quite delicate.

The precise definitions of limit solution and extended limit solution will be given
in Sections 3, 4, respectively. Here we just point out that the notion of limit so-
lution involves a control v which is measurable and defined a.e. while the control
u and the corresponding solution x are pointwisely defined and belong to the set
L1 of everywhere defined integrable functions. Let us describe a special case of
extended limit solution. An extended simple limit solution x to (1)-(2) associated
to (u, v), is the pointwise limit of a sequence of classical trajectories (xk) to (1)-(2),
corresponding to controls (uk, vk) with uk absolutely continuous and pointwisely
converging to u and vk → v in L1-norm (see Definition 4.1 below). We recall that a
simple limit solution x is instead defined in [1] as the pointwise limit of a sequence
of classical trajectories associated to controls (uk, v) with uk as above and v fixed
(see Definition 3.1 below). Our extension is motivated by the observation that in
optimal control problems minimizing sequences (xk, uk, vk) with absolutely contin-
uous inputs uk, might converge to a map which is not a limit solution. Precisely,
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in Example 1 we have that the infimum value of an optimal control problem over
limit solutions and extended limit solutions is the same, but it is a minimum only
within the larger class of extended limit solutions. The two infima may be actually
different, as shown in Example 2.

The need of considering generalized solutions to (1)- (2) or (3)- (2), associated
to discontinuous u comes, for instance, from optimal control, where, in absence of
coercivity assumptions, it is reasonable to expect the existence of optimal solutions
only in some enlarged class. The impulsive control theory, studied since the 50s,
received in the past years a renewed attention because of the increasing number of
applications in different fields, from Lagrangian mechanics with moving constraints
[7], [6], or impactively blockable degrees of freedom [30], [13], to alternative models
for hybrid systems [4], [12], [17], [15], just to give some examples. These applications
set new problems also from the theoretical point of view, in particular since they
lead to consider control systems that are nonlinear in the state variable like (1) or
(3), and various types of constraints.

The paper is organized as follows. We end this section with some notation and
the precise assumptions. In Section 2 we present two examples that motivate the
notions of extended limit solutions, which we propose in Section 4. Section 3, is
devoted to recall the original concepts of limit solution due to [1] and the recent
definition of BVloc limit solution introduced in [24]. In Theorem 4.3 of Section
4 we prove that extended BV (respectively, BVloc) simple limit solutions and BV
(respectively, BVloc) simple limit solutions coincide. In Section 5 we introduce the
v-dependent control system (3) and in Theorem 5.2 we establish that a map x is
an extended BVS limit solution to (3)-(2) if and only if it is a graph completion
solution.

1.1. Notation. Let E ⊂ RN . Given T > 0, let AC([0, T ], E) := {f : [0, T ] →
E, f absolutely continuous}, BV ([0, T ], E) := {f : [0, T ] → E : V ar[0,T ](f) < +∞},
where V ar[0,T ](f) denotes the (total) variation of f in [0, T ], and

BVloc([0, T [, E) := {f ∈ BV ([0, t], E) ∀t < T : ∃ limt→T− V ar[0,t][f ] ≤ +∞}.
We use L1([0, T ], E) to denote the set of the everywhere defined integrable func-

tions on [0, T ] with values in E, while L1([0, T ], E) is its usual quotient space with
respect to the Lebesgue measure. When no confusion on the codomain may arise,
we omit it and write, for instance, AC(T ) in place of AC([0, T ], E). Let us set
R+ := [0,+∞[. For any g : E → RM we call modulus (of continuity) of g any
increasing, continuous function ωg : R+ → R+ such that ωg(0) = 0, ωg(r) > 0 for
every r > 0 and |g(x1)− g(x2)| ≤ ωg(|x1 − x2|) for all x1, x2 ∈ E.

For any control (u, v) ∈ AC(T )× L1(T ) with u(0) = ū0, we let

x = x[x̄0, ū0, u, v]

denote the (unique) Carathéodory solution to (1)–(2), defined on [0, T ]. We will
say that such (u, v) and x are regular.

1.2. Assumptions. Let us recall the so–called Whitney property (see [28]).

Definition 1.1 (Whitney property). A compact subset U ⊂ Rm has the Whitney
property if there is some C ≥ 1 such that for every pair (u1, u2) ∈ U × U , there
exists an absolutely continuous path ũ : [0, 1] → U verifying

ũ(0) = u1, ũ(1) = u2, V ar[ũ] ≤ C|u1 − u2|. (4)
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For instance, compact, star-shaped sets enjoy the Whitney property.
Throughout the paper we assume the following hypotheses:

(H0) (i) the sets U ⊂ Rm, V ⊂ Rl are compact and U has the Whitney property;
(ii) the control vector field g0 : Rn×U×V → Rn is continuous and, moreover,

(x, u) ,→ g0(x, u, v) is locally Lipschitz on Rn × U uniformly in v ∈ V ;
(iii) for each i = 1, . . . ,m the control vector field gi : Rn ×U → Rn is locally

Lipschitz continuous;
(iv) there exists M > 0 such that

|g0(x, u, v)|, |g1(x, u)|, . . . , |gm(x, u)| ≤ M(1 + |(x, u)|),

for every (x, u, v) ∈ Rn × U × V .

2. Examples. This section is devoted to motivate, by means of two simple ex-
amples, the need of enlarging the class of limit solutions, introducing a notion of
extended limit solution. Precisely, in Example 1 we exhibit an optimal control prob-
lem where the infimum value over limit solutions and extended limit solutions is
the same, but the minimum is achieved only within the larger class of extended
limit solutions. In Example 2 we present a minimum problem where there is a gap
between the infimum over limit solutions and extended limit solutions and a gap
between the infimum over regular solutions and limit solutions.

These phenomena may happen since in both examples any regular minimizing
control sequence (uk, vk) verifies lim

k→+∞
Var(uk) = +∞.

Example 1. Let us consider the control system in R4,

ẋ = g0(x, v) + g1(x) u̇1 + g2(x) u̇2 a.e. t ∈ [0, 2π], |u|, |v| ≤ 1, (5)

with
g0(x, v) := η(x)(0, 0, 0, v)T

g1(x) := η(x)(1, 0, x3x2,−x4x2)T

g2(x) := η(x)(0, 1,−x3x1, x4x1)T

(η is a smooth cut-off function sufficient to guarantee the sublinearity hypothesis
on the dynamics) and initial condition

(x, u)(0) := (x̄0, ū0) = ((0, 0, 1, 0), (0, 0)).

Let us introduce the Bolza optimization problem

inf
(x,u,v)

J(x, u, v),

where

J(x, u, v) :=

∫ 2π

0
(|u(t)|+ |v(t)|) dt + (2π − x4(2π))

2.

We now construct a minimizing sequence (xk, uk, vk) within the class of regular
trajectory-control pairs. For every k, let us set, for t ∈ [0, 2π],

(uk, vk)(t):=

(

1
3
√
k

(

cos(kt)− 1, sin(kt)
)

χ
[2π/k,2π]

(t) , k e−2π 3√
kχ

[0,2π/k]
(t)

)

. (6)

The corresponding solution xk := x[x̄0, ū0, uk, vk] is given, for t ∈ [0, 2π], by
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1k(t) = u1k(t),

x2k(t) = u2k(t),

x3k(t) = χ
[0,2π/k[

(t) + e−
3√
k(t− sin(kt)

k − 2π
k )χ

[2π/k,2π]
(t),

x4k(t) = k e−2π 3√
k tχ

[0,2π/k[
(t) + 2π e

3√
k(t−2π− sin(kt)

k − 2π
k )χ

[2π/k,2π]
(t).

One has that
lim

k→+∞
J(xk, uk, vk) = 0,

so that the infimum of the cost over regular trajectory-control pairs turns out to be
0. Clearly, this is not a minimum, since the unique optimal control must be u ≡ 0
and v = 0 a.e., whose associated Charathéodory solution to (5) gives a cost equal to
4π2. A minimum can be reached only over some enlarged set of generalized controls
and solutions. Notice that

lim
k→+∞

uk(t) = 0 ∀t ∈ [0, 2π], lim
k→+∞

∥vk − v∥
L1(2π)

= 0.

Hence if we define as extended limit solution to (5) associated to the controls u = 0
everywhere and v = 0 a.e., the limit function

x(t) := lim
k→+∞

xk(t) = (0, 0, 1, 0)χ
{t=0}

(t) + (0, 0, 0, 0)χ
]0,2π[

(t) + (0, 0, 0, 2π) (7)

for t ∈ [0, 2π], we obtain
J(x, 0, 0) = 0.

Therefore in the class of extended limit solutions the minimum does exist (see
Definition 4.1 below).

Let us point out that x is not a limit solution as defined in [1], because of the vary-
ing vk (see Definition 3.1 below). Indeed, as already observed, the optimal control
has to be u = 0 everywhere and v = 0 a.e., but any sequence x̃k := x[x̄0, ū0, ũk, 0]
associated to an arbitrary sequence (ũk) pointwisely converging to 0, verifies

x̃4k ≡ 0 for every k,

so that J(x̃k, ũk, 0) = 4π2 for every k. Thus the minimum of the above optimization
problem does not exist in the class of limit solutions.

Slightly modifying the previous example and adding some constraints, we can
provide a case where the infima over regular solutions, over limit solutions and over
extended limit solutions are all different.

Example 2. Let us introduce the control system in R5, obtained by adding to (5)
the equation

ẋ5(t) = |v(t)|+ |u(t)| for a.e. t ∈ [0, 2π],

with initial and end-point conditions

(x, u)(0) := (x̄0, ū0) = ((0, 0, 1, 0, 0), (0, 0)), x(2π) ∈ R
4 × {0}.

Let us now set Ψ(x) := |x3| + |2π − x4| for any x ∈ R5 and consider the Mayer
problem

inf
(x,u,v)

Ψ(x(2π)).

Let us call admissible the trajectory-control pairs satisfying the constraints. Since
only controls (u, v) with u = 0 everywhere and v = 0 a.e. give rise to admissible
trajectories, the calculations in Example 1 imply that the unique admissible regular
solution x = x[x̄0, ū0, 0, 0] has (x3, x4) ≡ (1, 0). Hence the infimum of the cost over
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regular solutions is equal to 1 + 2π. All admissible limit solutions x̃ are pointwise
limits of regular solutions x̃k := x[x̄0, ū0, ũk, 0], associated to regular control se-
quences (ũk) converging to u = 0 (and fixed v = 0). Hence x̃4 ≡ 0 in any case,
but taking ũk := uk defined by (6), one has x̃3(2π) = 1, so that the minimum in
the class of limit solutions is Ψ(x̃(2π)) = 2π. Finally, the extended limit solution
x = (x1, . . . , x4, x5) = (x1, . . . , x4, 0), where (x1, . . . , x4) are given by (7), is asso-
ciated to the control u = 0 everywhere and v = 0 a.e., verifies the constraints and
has cost Ψ(x(2π)) = 0. Therefore the minimum over extended limit solutions exists
and is equal to 0.

Let us point out that when there are no end-point or state constraints and the
cost is continuous, by the very definition of limit solution, the infimum value over
the different classes of solutions considered above is always the same. The difference
between the infima, as in Example 2, is instead a generic situation in the presence
of end-point or state constraints, which are unavoidable in most applications. In
this note we do not discuss the Lavrentiev-type gap issue, that is, the occurrence of
infimum gaps (see e.g. [2]). Let us just observe that in several real models, as for
instance the mechanical examples in [6], only absolutely continuous controls u are
implementable. In these cases, the no-gap requirement is mandatory.

3. Definitions and preliminary results. We start recalling the concept of limit
solution, given in [1] for vector fields g1, . . . , gm depending on x only and extended
to (x, u)-dependent data in [2]. We will write L1(T ) := L1([0, T ], U) to denote the
set of pointwisely defined Lebesgue integrable functions with values in U and set
L1(T ) := L1([0, T ], V ), AC(T ) := AC([0, T ], U).

Definition 3.1 (Limit solutions). Let (x̄0, ū0) ∈ Rn×U and let (u, v) ∈ L1(T )×
L1(T ) with u(0) = ū0.

1. (Limit Solution) A map x belonging to L1([0, T ],Rn) is called a limit
solution of the Cauchy problem (1)-(2) corresponding to (u, v) if, for every
τ ∈ [0, T ], there is a sequence of controls (uτ

k) ⊂ AC(T ) such that uτ
k(0) = ū0

and
(iτ ) the sequence (xτ

k) of the Carathéodory solutions xτ
k := x[x̄0, ū0, uτ

k, v] to
(1)-(2) is equibounded in [0, T ];

(iiτ ) |(xτ
k, u

τ
k)(τ) − (x, u)(τ)| + ∥(xτ

k, u
τ
k)− (x, u)∥

L1(T )
→ 0 as k → +∞.

2. (S limit solution) A limit solution x is called a simple limit solution of (1)-
(2), shortly S limit solution, if the sequences (uτ

k) can be chosen independently
of τ. In this case we write (uk) to refer to the approximating sequence.

3. (BVS limit solution) An S limit solution x is called a BVS limit solution
of (1)-(2) if the approximating inputs uk have equibounded variation in [0, T ].

Let Σ, ΣS and ΣBV S denote the sets of limit solutions, S limit solutions, and
BVS limit solutions, respectively, corresponding to the input (u, v) and the initial
condition (x̄0, ū0). For a detailed discussion on the notion of limit solution we refer
the reader to [1], [2]. Here let us just underline that one has Σ ⊇ ΣS ⊇ ΣBV S , the
inclusion being strict in general. Moreover, the limit solution is not unique, namely
ΣBV S is not a singleton, unless the system is commutative.

The density approach adopted in Definition 3.1 allows a unified notion of trajec-
tory (for commutative and non commutative systems with u of possibly unbounded
variation), but it does not give any explicit representation formula for the solution.
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In fact, such a representation exists if either the control system is commutative or
if there are a priori bounds on the variation of the controls u. In particular, in
the latter case [1] proves that BVS limit solutions coincide with graph completion
solutions. The graph completion approach is traditionally used to study impulsive
control systems with bounded variation on u (see the seminal works [25], [27], [8]).
It provides a nice representation formula, suitable to derive, for instance, necessary
and sufficient optimality conditions for several optimization problems, both in terms
of Pontrjagin Maximum Principle and of Hamilton-Jacobi-Bellman equations (see
e.g. [26], [19], [16] and [21], [22]). In order to have a representation formula for limit
solutions associated to controls with unbounded variation, in [24] we singled out the
following set of controls, for which we extended the graph completion approach:

BV loc(T ) := {u : [0, T ] → R
m : u ∈ BV loc([0, T [, U), u(T ) ∈ U}

(for the definition of BV loc([0, T [, U), see the Notation). Precisely, in [24] we in-
troduced graph completions solutions associated to these controls and proved that
they coincide with the following subset of S limit solutions.

Definition 3.2. (BVlocS limit solution) Let (x̄0, ū0) ∈ Rn × U and let (u, v) ∈
BV loc(T ) × L1(T ) with u(0) = ū0. An S limit solution x is called a BVlocS limit
solution of (1)-(2):

(i) on [0, T [, if there exists a sequence of controls (uk) as in the definition of S
limit solution, such that for any t ∈]0, T [ the approximating inputs uk have
equibounded variation on [0, t];

(ii) on [0, T ], if, in addition to (i), either supk∈N V ar[0,T ](uk) < ∞, or when the
sequence (V ar[0,T ](uk))k is divergent and strictly increasing 1, x is bounded
and there exists a decreasing map ε̃ with lims→+∞ ε̃(s) = 0 and there exist
two strictly increasing, diverging sequences (s̃j) ⊂ R+, (kj) ⊂ N, kj ≥ j, such
that, for every k > kj there is τ jk < T with τ jk + V ar[0,τ j

k]
(uk) = s̃j and

|(xk, uk)(τ
j
k )− (xk, uk)(T )| ≤ ε̃(j). (8)

The subclass of BVlocS limit solutions is relevant in controllability issues, like
approaching a target set, and in optimization problems with endpoint constraints
and certain running costs lacking coercivity (see e.g. Example 3.1 in [24], involving
the Brockett nonholonomic integrator).

Remark 1. Condition (ii) in Definition 3.2 is an equiuniformity condition on the
sequence (xk, uk) in a neighborhood of the final time T . We point out that without
(8), a BVlocS limit solution x is a BVloc graph completion solution only on [0, T [.
Condition (ii) guarantees the equivalence of the two concepts on the closed interval
[0, T ] (see [24]).

To better understand condition (ii) in Definition 3.2, for any trajectory-control
pair (x, u, v) let us introduce the following parametrization of the graph of (x, u),
useful also in the sequel.

Definition 3.3 (Arc-length parametrization). Let (u, v) ∈ AC(T ) × L1(T ) with
u(0) = ū0 and set x := x[x̄0, ū0, u, v]. We call arc-length graph-parametrization of

1Passing eventually to a subsequence, we can always assume (V ar[0,T ](uk)) strictly increasing.
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the trajectory-control pair (x, u, v), the element (ξ,ϕ0,ϕ,ψ, S) defined by 2

σ(t):=
∫ t

0 (1 + |u̇(τ)|)dτ ∀t ∈ [0, T ], S := σ(T )

ϕ0:=σ−1, ϕ:=u ◦ ϕ0, ψ:=v ◦ ϕ0, ξ := x ◦ ϕ0.
(9)

Of course, (ξ,ϕ,ψ) ◦ σ = (x, u, v).

Notice that, given (ξ,ϕ0,ϕ,ψ, S) defined as above, (ϕ0,ϕ)(0) = (0, ū0), ϕ0(S) =
T and ξ solves the following control system

⎧

⎨

⎩

ξ′(s) = g0(ξ,ϕ,ψ)ϕ′
0(s) +

∑m
i=1 gi(ξ,ϕ)ϕ

′
i(s) s ∈]0, S[,

ξ(0) = x̄0.
(10)

Here differentiation with respect to the parameter s is denoted by a prime, while
time differentiation is denoted by a dot.

Differently from the original solution x, which is defined on the fixed time interval
[0, T ] and depends on an unbounded control derivative u̇, the map ξ is defined on
a control-dependent interval [0, S] with S = T + V ar[0,T ](u) ≥ T but with (ϕ′

0,ϕ
′)

bounded-valued, since ϕ′
0 + |ϕ′| = 1 a.e. in [0, S].

Condition (ii) in Definition 3.2 is more meaningful once we read it as an hy-
pothesis on the graphs of the approximating sequence (xk, uk)k. Precisely, for any
trajectory-control pair (xk, uk, v) as in Definition 3.2, let (ξ,ϕ0k ,ϕk, v ◦ ϕ0k , Sk) be
its arc-length graph parametrization (see Definition 3.3). Then (ii) is equivalent to:

the existence of a positive, decreasing map ε̃ with lims→+∞ ε̃(s) = 0 and of two
strictly increasing, diverging sequences (s̃j) ⊂ R+ and (kj) ⊂ N, kj ≥ j, such that,
for every k > kj :

|(ξk,ϕk)(s̃j)− (ξk,ϕk)(Sk)| ≤ ε̃(j). (11)

Clearly, (11) holds true when the sequence (ξk,ϕk) is uniformly convergent on
R+ (by considering, for every k, the extension (ξk,ϕk)(s) := (ξk,ϕk)(Sk) for every
s ≥ Sk).

4. Extended limit solution. Motivated by Examples 1, 2, we extend here the
notions of limit solution given in [1], [24], by approximating the ordinary control v
in L1, which in the original definitions was kept fixed. Furthermore, in Theorem
4.3 we prove that extended BV S (respectively, BVlocS) limit solutions and BV S
(respectively, BVlocS) limit solutions coincide. Hence the results in [1], [2] and in
[24], dealing with BV S and BVlocS limit solutions, remain unchanged in the new
extended framework.

Definition 4.1 (Extended limit solutions). Let (x̄0, ū0) ∈ Rn × U and let
(u, v) ∈ L1(T )× L1(T ) with u(0) = ū0.

1. (E-Limit Solution) A map x ∈ L1([0, T ],Rn) is called an extended limit
solution, shortly E-limit solution, of the Cauchy problem (1)-(2) corresponding
to (u, v) if, for every τ ∈ [0, T ], there is a sequence of controls (uτ

k, v
τ
k ) ⊂

AC(T )× L1(T ) such that uτ
k(0) = ū0 and

(iτ ) the sequence (xτ
k) of the Carathéodory solutions xτ

k := x[x̄0, ū0, uτ
k, v

τ
k ] to

(1)-(2) is equibounded on [0, T ];
(iiτ ) |(xτ

k, u
τ
k)(τ)− (x, u)(τ)|+ ∥(xτ

k, u
τ
k, v

τ
k)− (x, u, v)∥

L1(T )
→ 0 as k → +∞.

2 Since every L1 equivalence class contains Borel measurable representatives, here and in the
sequel we tacitly assume that the maps v and ψ are Borel measurable, when necessary.
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2. (E-S limit solution) A limit solution x is called an E-simple limit solution
of (1)-(2), shortly E-S limit solution, if the sequences (uτ

k, v
τ
k) can be chosen

independently of τ. In this case we write (uk, vk) to refer to the approximating
sequence.

3. (E-BVS limit solution) An E-S limit solution x is called an E-BVS limit
solution, of (1)-(2) if the approximating inputs uk have equibounded variation
on [0, T ].

Definition 4.2 (Extended BVlocS limit solution). Let (x̄0, ū0) ∈ Rn ×U and
let (u, v) ∈ BV loc(T )× L1(T ) with u(0) = ū0. An E-S limit solution x is called an
extended BVlocS limit solution, shortly E-BVlocS limit solution, of (1)-(2):

(i) on [0, T [, if there exists a sequence of controls (uk, vk) as in the definition of
an E-S limit solution, such that for any t ∈]0, T [ the approximating inputs uk

have equibounded variation on [0, t];
(ii) on [0, T ], if, in addition to (i), either supk∈N V ar[0,T ](uk) < ∞, or when the

sequence (V ar[0,T ](uk)) is divergent and strictly increasing, x is bounded and
there exists a decreasing map ε̃ with lims→+∞ ε̃(s) = 0 and there exist two
strictly increasing, diverging sequences (s̃j) ⊂ R+, (kj) ⊂ N, kj ≥ j, such

that, for every k > kj there is τ jk < T with τ jk + V ar[0,τ j
k]
(uk) = s̃j and

|(xk, uk)(τ
j
k )− (xk, uk)(T )| ≤ ε̃(j). (12)

Analogously to the case of limit solutions, the extended limit solution associated
to a control (u, v) ∈ L1(T )×L1(T ) and to an initial condition (x̄0, ū0) is not unique,
unless the system is commutative; moreover, the sets of E limit solutions, E-S limit
solutions, E-BVlocS limit solutions, and E-BVS limit solutions form a decreasing
nested sequence.

Theorem 4.3. Let T > 0, (x̄0, ū0) ∈ Rn × U and let (u, v) ∈ L1(T ) × L1(T ) be
such that u(0) = ū0. Then a map x : [0, T ] → Rn is an E-BVS limit solution
[resp. E-BVlocS limit solution] corresponding to (u, v) if and only if it is a BVS
limit solution [resp. BVlocS limit solution] corresponding to the same input.

Proof. The “ if” part is obvious for both cases. Let us prove the “only if” part.

Case 1. Let x be an E-BVS limit solution corresponding to (u, v) and let (uk, vk)
and (xk) be as in Definition 4.1, so that, in particular, there is some constant
K > 0 such that V ar[0,T ](uk) ≤ K for every k. Then, setting x̂k := x[x̄0, ū0, uk, v],
by standard estimates it follows that

|xk(t)|, |x̂k(t)| ≤ R′ (13)

with R′ := [|x̄0|+ (m+ 1)M(T +K)]e(m+1)M(T+K). Let us denote by ωg0 and L a
modulus of continuity of g0 and a Lipschitz constant (in (x, u)) for the vector fields
gi, i = 0, . . .m when |x| ≤ R′, respectively. Gronwall’s Lemma yields that

|x̂k(t)− xk(t)| ≤
(

∫ t

0 ωg0(|vk(t′)− v(t′)|) dt′
)

e(m+1)L(t+
∫ t
0 |u̇k(t

′)| dt′).
(14)

Since there exists a subsequence of (vk) such that vk(t) → v(t) a.e. in [0, T ] and v,
vk take values in the compact set V , the Dominated Convergence Theorem and the
continuity of ωg0 let us conclude that, for such a subsequence (we do not relabel),

∫ T

0
ωg0(|vk(t)− v(t)|) dt → 0, as k → +∞ (15)
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so that limk |x̂k(t) − xk(t)| = 0 for every t ∈ [0, T ]. Therefore, limk x̂k(t) =
limk xk(t) = x(t) for any t ∈ [0, T ] and x is a BV S limit solution corresponding to
(u, v).

Case 2. Let now x be an E-BVlocS, not E-BVS, limit solution and let (uk, vk),
(xk), (kj) and (s̃j) be as in Definition 4.2. For every k, set Vk := V ar[0,T ](uk) and
assume that (Vk) is increasing and diverging. By (i) in Definition 4.2 there exists
an increasing function V : [0, T [→ R+ with V (0) = 0, limt→T− V (t) = +∞ and
such that, for every k,

V ar[0,t](uk) ≤ V (t) for every t ∈]0,T[.

Then by the proof of Case 1 we derive that

x̂k(t) := x[x̄0, ū0, uk, v](t) → x(t) for every t ∈ [0,T[.

To handle the convergence at t = T , we use part (ii) of the definition of E-BVlocS
limit solution. Let us introduce, for every k, the arc-length graph parametrizations
(ξk,ϕ0k ,ϕk, vk ◦ ϕ0k , T + Vk) and (ξ̂k,ϕ0k ,ϕk, v ◦ ϕ0k , T + Vk) of (xk, uk, vk) and
(x̂k, uk, v), respectively (see Definition 3.3). Let us suppose that ξk, ξ̂k, ϕ0k , and
ϕk are extended to [T + Vk,+∞[ by the constant value assumed at T + Vk. By
assumption, there exists a constant R > 0 such that

sup
s∈R+

|ξk(s)| = sup
t∈[0,T ]

|xk(t)| ≤ R for every k

and, recalling that ϕ′
0k(s) + |ϕ′

k(s)| ≤ 1 a.e., standard estimates imply that for any
j there is some Rj > 0 such that

sup
s∈[0,s̃j ]

|ξ̂k(s)| ≤ Rj for every k .

For each j, let ωj and Lj be a modulus of continuity of g0 and a Lipschitz constant
(in (x, u)) of the vector fields gi, i = 0, . . . ,m for |x| ≤ max{R,Rj}, respectively.
Gronwall’s Lemma yields, for every k,

supt∈[0,τ j
k]
|x̂k(t)− xk(t)| = sup[0,s̃j ] |ξ̂k(s)− ξk(s)| ≤

∫ s̃j
0 ωj(|(vk − v) ◦ ϕ0k(r)|)ϕ′

0k (r) dr ·

e(m+1)Lj
∫ s̃j
0 (ϕ′

0k
(r)+|ϕ′

k(r)|) dr ≤

∫ T

0 ωj(|vk(t)− v(t)|) dt e(m+1)Lj s̃j =: ε2j(k)

(16)

with ε2j(k) ≤ ε2j+1(k). Passing to a suitable subsequence of (vk), still denoted by
(vk), as in (15) we have that, for every fixed j, limk ε2j(k) = 0. Now we can construct
a sequence (k1j ), with k1j ≥ kj , such that

ε2j(k) ≤ 1/j for all k ≥ k1j . (17)

In particular, this implies that, for some R̂ > 0,

sup
[0,τ j

k]

|x̂k| ≤ R̂ ∀k ≥ k1j .
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Since limk Vk = +∞, we need to modify the sequence (x̂k, ûk) using the Whitney
property. Precisely, we set τ j := τ j

k1
j
and

ǔj := ûk1
j
(t)χ[0,τ j [(t) + ũj

(

t−τ j

T−τ j

)

χ]τ j,T ],

x̌j := x[x̄0, ū0, ǔj , v],

(18)

where ũj ∈ AC(1) joins ûk1
j
(τ j) = ϕj(sj) to u(T ) and V ar[0,1]ũj ≤ C|ϕ(sj) −

u(T )|. We have x̌j(τ j) = x̂k1
j
(τ j), and by standard estimates it follows that

supt∈[0,T ] |x̌j(t)| ≤ Ř for some Ř > 0, and

|x̌j(T )− x̌j(τ
j)| → 0 as j → +∞. (19)

Hence by (17) and (8) we get

|x̌j(T )− x(T )| ≤ |x̌j(T )− x̌j(τ j)|+ |x̂k1
j
(τ j)− xk1

j
(τ j)|+

|xk1
j
(τ j)− xk1

j
(T )|+ |xk1

j
(T )− x(T )| ≤

|x̌j(T )− x̌j(τ j)|+ 1
j + ε̃(j) + |xk1

j
(T )− x(T )|.

(20)

The r.h.s. of (20) approaches 0 since by (19) its first term goes to 0 and, being x an
E-BVlocS limit solution, the last term approaches 0 too. Therefore, renaming the
index j in the sequence (x̌j , ǔj) by k, it is not difficult to prove that the sequence
(x̌k, ǔk) verifies statements (i) and (ii) and, by (20), also (ii) of Definition 4.1.

5. A further extension. For u with bounded variation, the graph completion
technique has been extended since the 90s to control systems of the form

ẋ(t) = g0(x(t), u(t), v(t)) +
m
∑

i=1

gi(x(t), u(t), v(t)) u̇i(t) a.e. t ∈ [0, T ], (21)

x(0) = x̄0, u(0) = ū0, (22)

where the dependence on the ordinary control v appears also in the coefficients
g1, . . . , gm of the control derivatives u̇i. This notion has been applied to several
problems (see [20], [19], [16] and the references therein). As mentioned in [1], this
kind of equation is relevant in mechanical applications, for instance, when u is a
shape parameter and v is a control representing an external force or torque and in
min-max control problems where the adjoint equations may contain a v-dependent
term multiplied by an unbounded control, like in (21) (see e.g. [5]). In this section
we adapt the notion of extended BVS limit solution introduced in Definition 4.1
to (21)-(22) and in Theorem 5.2 below we prove the one-to-one correspondence
between such limit solutions and graph completion solutions to (21)- (22). In this
way we extend the result of [1, Thm. 4.2], where the same assertion is proved for
g1, . . . , gm independent of v.

Throughout this section we assume that for every i = 0, . . . ,m, the control vector
field gi : Rn ×U × V → Rn is continuous, (x, u) ,→ gi(x, u, v) is locally Lipschitz on
Rn × U uniformly in v ∈ V and there exists M > 0 such that

|gi(x, u, v)| ≤ M(1 + |(x, u)|) ∀(x, u, v) ∈ R
n × U × V.

The notion of extended BVS limit solution to (21)-(22) that we are going to intro-
duce coincides with the Definition 4.1, for g1, . . . , gm not depending on v, but the
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presence of the ordinary control in gi for i = 1, . . . ,m requires to take into account
the interplay between u and v. We distinguish the two situations (v just in the drift
or v ‘everywhere’) by considering the more general control system

ẋ(t) = g0(x(t), u(t), v1(t)) +
m
∑

i=1

gi(x(t), u(t), v2(t)) u̇i(t) a.e. t ∈ [0, T ], (23)

with v := (v1, v2) taking values in V × V . For simplicity, we use the same notation
of Definition 4.1 and still denote by x[x̄0, ū0, u, v] a regular solution to (23)-(22)
associated to (u, v) = (u, v1, v2) ∈ AC(T )× L1(T )× L1(T ).

Definition 5.1 (Extended BVS limit solution). Let (x̄0, ū0) ∈ Rn × U and
let (u, v) = (u, v1, v2) ∈ L1(T )× L1(T )× L1(T ) with u(0) = ū0.

A map x ∈ L1([0, T ],Rn) is called an extended BVS limit solution, shortly E-BVS
limit solution, of the Cauchy problem (23)-(22) corresponding to (u, v) if there is a
sequence of controls (uk, vk) = (uk, v1k , v2k) ⊂ AC(T )× L1(T )× L1(T ) such that
uk(0) = ū0, the approximating inputs uk have equibounded variation on [0, T ] and
(i) the sequence (xk) of the Carathéodory solutions xk := x[x̄0, ū0, uk, vk] to (23)-

(22) verifies for every τ ∈ [0, T ],

|(xk, uk)(τ) − (x, u)(τ)| + ∥(xk, uk, vk)− (x, u, v)∥
L1(T )

→ 0 as k → +∞;

(ii) there is some ψ2 ∈ L1(R+, V ) such that, setting σk(t) := t + V ar[0,t](uk),
Vk :=Var[0,T ](uk), one has ∥(v2k◦(σk)−1−ψ2)χ[0,T+Vk ]

∥
L1(R+)

→ 0 as k → +∞.

Theorem 5.2. A map x : [0, T ] → Rn is a E-BVS-limit solution to (23)-(22)
associated to (u, v) ∈ BV (T )× L1(T )× L1(T ) with u(0) = ū0 if and only if it is a
graph completion solution to (23)-(22) associated to the same control.

Before proving the theorem, let us briefly describe the graph completion approach
and give the precise definition of graph completion solution to (23)-(22). For more
details we refer the interested reader to [20] and the references therein.

For L > 0 and S > 0, let UL(S) denote the subset of L-Lipschitz maps

(ϕ0,ϕ) : [0, S] → R+ × U,

such that ϕ0(0) = 0, and ϕ′
0(s) ≥ 0, ϕ′

0(s) + |ϕ′(s)| ≤ L for almost every s ∈ [0, S].
We set L1(S) := L1([0, S], V ).

We call space-time controls the elements (ϕ0,ϕ,ψ, S) = (ϕ0,ϕ,ψ1,ψ2, S) with
S > 0 and (ϕ0,ϕ,ψ1,ψ2) ∈

⋃

L>0 UL(S) × L1(S) × L1(S). Let (x̄0, ū0) ∈ Rn × U .
We denote by Γ(ū0) the subset of space-time controls verifying (ϕ0,ϕ)(0) = (0, ū0)
and ϕ0(S) = T . The space-time control system is defined by
{

ξ′(s) = g0(ξ,ϕ,ψ1)ϕ′
0(s) +

∑m
i=1 gi(ξ,ϕ,ψ2)ϕ′

i(s) for a.e. s ∈ [0, S],

ξ(0) = x̄0

(24)

and we use ξ[x̄0, ū0,ϕ0,ϕ,ψ] to denote its solution. Notice that by just identify-
ing regular controls u and trajectories x with their graphs and considering a time
parametrization t = ϕ0(s), (21) can be embedded in the space-time system (24).
However, when a space-time control has t = ϕ0(s) = const for s ∈ I := [s1, s2],
the pair (ξ,ϕ) describes on I the ‘instantaneous evolution’ at time t of the system;
this is a way to define generalized controls and trajectories for the original control
system in the extended, space-time setting. Now any space-time trajectory-control
pair gives rise to a set-valued notion of generalized solution x(t) := ξ ◦ ϕ−1

0 (t) to
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(21), associated to a control (u, v) with (u, v)(t) ∈ (ϕ,ψ) ◦ ϕ−1
0 (t); following [1], a

(univalued) concept of graph completion solution is then obtained by the choice of
a suitable selection.

Since the space-time control system (24) is rate-independent, without loss of
generality we consider just controls verifying

ϕ′
0(s) + |ϕ′(s)| = 1 for a.e. s ∈ [0, S].

Γf (ū0) will denote the subset of such controls, to which we will refer to as feasible
space-time controls.

Definition 5.3. Let (u, v) = (u, v1, v2) ∈ BV (T )×L1(T )×L1(T ) and u(0) = ū0 ∈
U . We say that a space-time control (ϕ0,ϕ,ψ, S) ∈ Γf (ū0) is a graph completion of
(u, v) if

∀t ∈ [0, T ], ∃s ∈ [0, S] such that (ϕ0,ϕ,ψ)(s) = (t, u(t), v(t)).

Following a similar definition given in [1], we call a clock any strictly increasing,
surjective function σ : [0, T ] → [0, S] such that

(ϕ0,ϕ)(σ(t)) = (t, u(t)) for every t ∈ [0, T ].

Definition 5.4. Given a control (u, v) ∈ BV (T )× L1(T )× L1(T ) with u(0) = ū0,
let (ϕ0,ϕ,ψ, S) be a graph- completion of (u, v) and let σ be a clock. Set ξ :=
ξ[x̄0, ū0,ϕ0,ϕ,ψ]. A map

x : [0, T ] → R
n, x(t):=ξ ◦ σ(t) ∀t ∈ [0, T ],

is called a graph completion solution to (23)-(22).

Proof of Theorem 5.2. Let (u, v) ∈ BV (T ) × L1(T ) × L1(T ) and u(0) = ū0 ∈ U .
We begin by showing that a graph completion solution x to (23)-(22) associated to
(u, v) is a E-BVS limit solution. By Definitions 5.3 and 5.4, there exist a feasible
space-time control (ϕ0,ϕ,ψ, S) ∈ Γ(ū0) and a surjective, strictly increasing function
σ : [0, T ] → [0, S] such that, setting ξ := ξ[x̄0, ū0,ϕ0,ϕ,ψ], one has

(ξ,ϕ0,ϕ,ψ) ◦ σ(t) = (x(t), t, u(t), v(t)) ∀t ∈ [0, T ]. (25)

By [1, Thm. 5.1] as revisited in [24, Thm. 4.2], there exists a sequence (σk) of
absolutely continuous, strictly increasing maps σk : [0, T ] → [0, S], such that

(i) σk(0) = 0, σk(T ) = S, and

σ̇k(t) ≥ 1 for a.e. t ∈ [0, T ], lim
k→+∞

σk(t) = σ(t) ∀t ∈ [0, T ]; (26)

(ii) the maps ϕ0k := σ−1
k : [0, S] → [0, T ] are strictly increasing, 1-Lipschitz

continuous, surjective and converge uniformly to ϕ0 in [0, S].

We are going to show that the sequences (uk, vk) and (xk) defined by

uk := ϕ ◦ σk, vk := ψ ◦ σk, xk := x[x̄0, ū0, uk, vk],

verify all the requirements of Definition 5.1, so proving that x is a E-BVS limit
solution of (21)-(22) associated to (u, v).

In view of definition (25), the pointwise convergence of uk to u follows from
the continuity of ϕ. Moreover, the sequence (uk) has equibounded variation, since
Var[0,T ](uk) =Var[0,S](ϕ) for every k. In order to show that lim

k→+∞
∥vk−v∥

L1(T )
= 0,
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take an arbitrary ε > 0 and consider a bounded, continuous map ψ̃ : [0, S] → R2l

such that
∫ S

0
|ψ̃(s)− ψ(s)| ds < ε, (27)

(such ψ̃ exists by well known density results). Hence
∫ T

0 |vk(t)− v(t)| dt =
∫ T

0 |ψ(σk(t))− ψ(σ(t))| dt ≤
∫ T

0 |ψ(σk(t))− ψ̃(σk(t))| dt+
∫ T

0 |ψ̃(σk(t))− ψ̃(σ(t))| dt +
∫ T

0 |ψ̃(σ(t)) − ψ(σ(t))| dt ≤
∫ T

0 |ψ(σk(t))− ψ̃(σk(t))|σ̇k(t) dt+
∫ T

0 |ψ̃(σk(t)) − ψ̃(σ(t))| dt+
∫ T

0 |ψ̃(σ(t))− ψ(σ(t))| dσ(t),

where the last inequality follows from the properties of σ and σk. Now, performing
the continuous change of variable s = σk(t), the first integral in the r.h.s. coincides

with
∫ S

0 |ψ̃(s) − ψ(s)| ds and is less than ε by (27). The second integral in the

r.h.s. tends to 0 by the Dominated Convergence Theorem, since ψ̃ is bounded and
continuous. Using the discontinuous change of variable s = σ(t) (see e.g. [11]), the

third integral in the r.h.s. is also equal to
∫ S

0 |ψ̃(s)− ψ(s)| ds, thus smaller than ε.
By the arbitrariness of ε > 0, this concludes the proof that lim

k→+∞
∥vk−v∥

L1(T )
= 0.

Since
v2k ◦ σ−1

k = ψ2 ◦ σk ◦ σ−1
k ≡ ψ2,

the condition ∥(v2k ◦ σ
−1
k −ψ2)χ[0,T+V ]

∥
L1(R+)

→ 0 as k → +∞ is trivially satisfied.

It remains to show that x is the pointwise limit of (xk). To this aim, let us set
ξk := ξ[x̄0, ū0,ϕ0k ,ϕ,ψ]. By the continuity of the input-output map associated to
the control system (21) (see [20, Thm. 4.1]) we derive that (ξk) converges uniformly
to ξ on [0, S]. Since xk = ξk ◦σk on [0, T ], we finally obtain that, for every t ∈ [0, T ],
one has

lim
k→+∞

|xk(t)− x(t)| = lim
k→+∞

|ξk(σk(s))− ξ(σ(t))| = 0.

Hence x is a E-BVS limit solution.
Let us now show that an E-BVS limit solution x to (23)-(22) associated to (u, v)

is a graph completion solution. By Definition 5.1, there exist ψ2 ∈ L1(T ) and a
sequence (uk, vk) ⊂ AC(T )×L1(T )×L1(T ) with uk(0) = ū0 and Vk :=Var(uk) ≤ K
for some K > 0 such that, setting

σk(t) := t+ V ar[0,t](uk) (≤ S := T +K) (28)

and xk := x[x̄0, ū0, uk, vk], one has

lim
k→+∞

(xk(t), uk(t)) = (x(t), u(t)) for any t ∈ [0, T ],

lim
k→+∞

∫ T

0
|vk(t)− v(t)| dt = 0,

lim
k→+∞

∫

R+

|v2k ◦ σ−1
k (s)− ψ2(s)|χ[0,T+Vk]

ds = 0

(29)

Arguing as in the proof of Theorem 4.3, Case 1, one can prove that it is possible to
assume, without loss of generality, that v1k = v1 for every k. Let ϕ0k : [0, S] → [0, T ]
be the 1-Lipschitz continuous, increasing function such that

ϕ0k := σ−1
k on [0, T + Vk], and ϕ0k(s) = T for all s ∈]T + Vk, S].
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Set ϕk := uk ◦ϕ0k . Then the sequence of space-time controls (ϕ0k ,ϕk) is 1-Lipschitz
continuous on [0, S] and satisfies ϕ′

0k(s) + |ϕ′
k(s)| = 1 for a.e. s ∈ [0, T + Vk] (and

ϕ′
0k(s)+ |ϕ′

k(s)| = 0 for s > T +Vk). Therefore by Ascoli-Arzelà’s Theorem, taking
if necessary a subsequence, still denoted by (ϕ0k ,ϕk), it converges uniformly to a
Lipschitz continuous function (ϕ0,ϕ) such that ϕ′

0(s)+ |ϕ′(s)| ≤ 1 for s ∈ [0, S]. Let
us observe that (ϕ0,ϕ) is a graph completion of u, possibly not feasible (namely, not
verifying the equality ϕ′

0(s)+|ϕ′(s)| = 1 a.e.). Indeed, for every t ∈ [0, T ], there exist
a subsequence (σk′ (t)), labeled by k′, and σ(t) ∈ [0, S] such that limk′ σk′(t) = σ(t).
Therefore, by the uniform convergence of (ϕ0k ,ϕk) it follows that

(ϕ0,ϕ) ◦ σ(t) = lim
k′→+∞

(ϕ0k′ ,ϕk′) ◦ σk′ (t) = (t, u(t)).

Set

ψ1 := v ◦ ϕ0, ψ := (ψ1,ψ2),

where ψ2 is the same as in (29) and define the solution ξ := ξ[x̄0, ū0,ϕ0,ϕ,ψ]
associated to the space-time control (ϕ0,ϕ,ψ, S). Moreover, let ψk := (v1◦ϕ0k , v2k ◦
ϕ0k) and ξk := ξ[x̄0, ū0,ϕ0k ,ϕk,ψk]. Clearly, xk = ξk◦σk. In order to prove that x is
a graph completion solution, let us first verify that x = ξ◦σ. To this aim, we observe
that this is true as soon as there exists a subsequence of (ξk) uniformly converging
in [0, S] to ξ. In this case indeed, we can assume without loss of generality that, for
every t ∈ [0, T ], the subsequence k′ defined above is a further subsequence of this
subsequence, so that the pointwise convergence of σk′ (t) to σ(t) implies that

x(t) = lim
k′

xk′(t) = lim
k′
ξk′ ◦ σk′ (t) = ξ ◦ σ(t).

At this point, if we introduce the change of variable

η(s) :=

∫ s

0
[ϕ′

0(r) + |ϕ′(r)|] dr ∀s ∈ [0, S], Ṽ := η(S)− T,

denote by s(·) : [0, T + Ṽ ] → [0, S] its strictly increasing right-inverse, define the
feasible space-time control

(ϕ̃0, ϕ̃, ψ̃, S̃) := (ϕ0 ◦ s,ϕ ◦ s,ψ ◦ s, T + Ṽ ),

and the clock σ̃ := η ◦σ, we can easily obtain that x is a graph completion solution,
since

x = ξ ◦ σ = ξ̃ ◦ σ̃ (ξ̃ := ξ[x̄0, ū0, ϕ̃0, ϕ̃, ψ̃]).

To conclude the proof it remains to show that, eventually for a subsequence, one
has

lim
k→+∞

sup
s∈[0,S]

|ξk(s)− ξ(s)| = 0. (30)

Since both the derivatives (ϕ′
0k ,ϕ

′), (ϕ′
0,ϕ

′) are bounded, by standard estimates it
follows that

sup
s∈[0,S]

|ξ(s)|, sup
s∈[0,S]

|ξk(s)| ≤ M̄ := (|x̄0|+ (m+ 1)MS)e(m+1)MS .

Let us denote by ωg0 a modulus of continuity of g0(x, u, ·), . . . , gm(x, u, ·), by L̃ a
Lipschitz constant of g0, . . . , gm in (x, u) uniformly w.r.t. v, and by M̃ an upper



1216 MONICA MOTTA AND CATERINA SARTORI

bund for all the vector fields gi, i = 0, . . .m, in the compact set Bn(0, M̄)×U × V .
After some calculations, setting

fk(s) :=

∣

∣

∣

∣

∫ s

0

[

g0(ξ(r),ϕ(r), v1 ◦ ϕ0(r))[ϕ
′
0k (r)− ϕ′

0(r)]+

∑m
i=1 gi(ξ(r),ϕ(r),ψ2(r))[ϕ′

ik
(r) − ϕ′

i(r)]
]

dr

∣

∣

∣

∣

,

and
ρ1k :=

∫ S

0 ωg0(|v1 ◦ ϕ0k(r) − v1 ◦ ϕ0(r)|)ϕ′
0k (r) dr,

ρ2k :=
∑m

i=1

∫ S

0 ωg0(|v2k ◦ ϕ0k(r)− ψ2(r)|) |ϕ′
ik
(r)| dr,

by Gronwall’s Lemma we get to

|ξk(s)− ξ(s)| ≤ e(m+1)L̃S

(

sup
s∈[0,S]

fk(s) + ρ1k + ρ2k

)

. (31)

The uniform convergence of (ϕ0k ,ϕk) to (ϕ0,ϕ) on [0, S] implies that the maps
(ϕ′

0k ,ϕ
′
k) tend to (ϕ′

0,ϕ
′) in the weak∗ topology of L∞([0, S],R1+m), so that fk(s)

tends to 0 as k → +∞ for every s ∈ [0, S]. The uniform convergence to 0 of
the fk’s now follows from Ascoli-Arzelá Theorem, for the fk’s are equibounded
and equi-Lipschitzean. By (29) and the inequality |ϕ′

ik
| ≤ 1 a.e., we derive that

lim
k→+∞

ρ2k = 0. By a time-change, we get

∫ S

0
|v1 ◦ ϕ0k(r) − v1 ◦ ϕ0(r)|ϕ′

0k (r) ds =

∫ T

0
|v1(t)− v1 ◦ ϕ0 ◦ σk(t)| dt.

Hence, if we show that

lim
k→+∞

∫ S

0
|v1 ◦ ϕ0k(r) − v1 ◦ ϕ0(r)|ϕ′

0k (r) ds = 0, (32)

then there exists a subsequence of (v1 − v1 ◦ ϕ0 ◦ σk) converging to 0 a.e. on [0, T ],
and by the Dominated Convergence Theorem we obtain that, for such subsequence,

ρ1k =

∫ T

0
ωg0(|v(t)− v ◦ ϕ0 ◦ σh(t)|) dt → 0 as k → +∞, (33)

so concluding the proof of (30).
Since |ϕ′

0k | ≤ 1, when v1 is a continuous function (32) holds true owing to the
uniform continuity of v1 and to the uniform convergence of ϕ0k to ϕ0 on [0, S].
For v1 ∈ L1(T ), ∀ε > 0 there exists, by density, ṽ1 ∈ Cc([0, T ],Rl) such that
∫ T

0 |ṽ1(t)− v1(t)| dt ≤ ε. Hence we get
∫ S

0 |v1 ◦ ϕ0k(s)− v1 ◦ ϕ0(s)|ϕ′
0k(s)ds ≤

∫ S

0 |v1 ◦ ϕ0k(s)− ṽ1 ◦ ϕ0k(s)|ϕ′
0k (s) ds+

∫ S

0 |ṽ1 ◦ ϕ0k(s)− ṽ1 ◦ ϕ0(s)|ϕ′
0k(s) ds+

∫ S

0 |ṽ1 ◦ ϕ0(s)− v1 ◦ ϕ0(s)|ϕ′
0k (s) ds.

Performing the change of variable t = ϕ0k(s), the first integral on the r.h.s. is
smaller than ε, while the second one converges to 0 because ṽ1 is continuous. For
the third integral on the r.h.s., taking into account that v1 and ṽ1 are bounded
maps, by the weak∗ convergence of ϕ′

0k to ϕ′
0 we derive that

∫ S

0
|ṽ1 ◦ ϕ0(s)− v1 ◦ ϕ0(s)|ϕ′

0k (s) ds →
∫ S

0
|ṽ1 ◦ ϕ0(s)− v1 ◦ ϕ0(s)|ϕ′

0(s) ds
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as k → +∞, and the last term is smaller than ε by the change of variable t = ϕ0(s).
By the arbitrariness of ε > 0 this concludes the proof of (32).

6. Conclusion. In 2014, Aronna and Rampazzo [1] proposed a notion of general-
ized solution x, called limit solution, for an impulsive control system

ẋ(t) = g0(x(t), u(t), v(t)) +
m
∑

i=1

gi(x(t), u(t))u̇i(t) a.e. t ∈ [0, T ], (34)

associated to measurable u and v, with u of possibly unbounded variation in [0, T ].
In particular, they proved that when u and x have bounded variation, such a solution
(called in this case BV simple limit solution) coincides with the most used graph
completion solution. Recently, in [24] we extended this correspondence to inputs
u and trajectories with bounded variation on any [0, t] with t < T , but possibly
unbounded on [0, T ]. We called such solutions BVloc simple limit solutions.

Motivated by an example of optimal control where the minimum does not exist
in the class of limit solutions, we propose a notion of extended limit solution x to
(34), for which such a minimum exists. As a first result, we prove the consistency
of such notion with the previous ones by showing that extended BV (respectively,
BVloc) simple limit solutions and BV (respectively, BVloc) simple limit solutions
coincide.

The second major result of the paper is concerned with an extension of the notion
of BV simple limit solution to the case in which the ordinary control v also appears
in the non-drift terms, that was left as an open problem in [1]. For the associated
system we prove that extended BV limit solutions coincide with graph completion
solutions. We consider the most investigated case where inputs and solutions have
bounded variation: how to define a limit solution in the general situation (in such
a way to have some closure of the set of trajectories) is still an open problem.
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