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We analyze the theoretical derivation of the beyond-mean-field equation of state for
a two-dimensional gas of dilute, ultracold alkali-metal atoms in the Bardeen-Cooper-
Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover. We show that at zero
temperature our theory – considering Gaussian fluctuations on top of the mean-field
equation of state – is in very good agreement with experimental data. Subsequently, we
investigate the superfluid density at finite temperature and its renormalization due to
the proliferation of vortex-antivortex pairs. By doing so, we determine the Berezinskii-
Kosterlitz-Thouless (BKT) critical temperature – at which the renormalized superfluid
density jumps to zero – as a function of the inter-atomic potential strength. We find
that the Nelson-Kosterlitz criterion overestimates the BKT temperature with respect
to the renormalization group equations, this effect being particularly relevant in the
intermediate regime of the crossover.

1. Introduction

In 2004 the three-dimensional crossover between the Bardeen-Cooper-Schrieffer

(BCS) regime of weakly attractive fermions to the Bose-Einstein condensate (BEC)

regime of strongly-bound bosonic molecules has been realised using ultracold, two-

component fermionic 40K or 6Li atoms1,2,3. The crossover is obtained using a Fano-

Feshbach resonance to tune the s-wave scattering length aF of the inter-atomic

potential. Recently, the two-dimensional BEC-BEC crossover has been achieved

experimentally4,5,6,7 using a two-component fermionic 6Li atoms confined in a

(quasi-) two-dimensional geometry. The properties of two-dimensional fermions are

quite different with respect to their three-dimensional counterpart, in particular,

in two dimensions, attractive fermions always form a bound-state with energy

ǫB ≃ ~
2/(ma2F ), where aF is the two-dimensional s-wave scattering length. The
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fermionic single-particle spectrum is given by

Esp(k) =

√

(

~2k2

2m
− µ

)2

+∆2
0 , (1)

where ∆0 is the energy gap and µ is the chemical potential: µ > 0 corresponds to

the BCS regime while µ < 0 corresponds to the BEC regime. Moreover, in the deep

BEC regime µ→ −ǫB/2.

2. Two-dimensional equation of state

To study the two-dimensional BCS-BEC crossover we adopt the formalism of func-

tional integration8. The partition function Z of a uniform system of ultracold, di-

lute, interacting spin 1/2 fermions at temperature T , in a two-dimensional volume

L2, with chemical potential µ reads

Z =

∫

D[ψs, ψ̄s] exp

{

−
S

~

}

, (2)

where the complex Grassmann field ψs(r, τ), ψ̄s(r, τ) describes the fermions, β ≡

1/(kBT ) with kB Boltzmann’s constant and

S =

∫

~β

0

dτ

∫

L2

d2r L (3)

is the Euclidean action functional with Lagrangian density

L = ψ̄s

[

~∂τ −
~
2

2m
∇2 − µ

]

ψs + g ψ̄↑ ψ̄↓ ψ↓ ψ↑ (4)

g being the attractive strength (g < 0) of the s-wave coupling.

Through the usual Hubbard-Stratonovich transformation the Lagrangian den-

sity L – quartic in the fermionic fields – can be rewritten as a quadratic form by

introducing the auxiliary complex scalar field ∆(r, τ). After doing so, the effective

Euclidean Lagrangian density reads

Le = ψ̄s

[

~∂τ −
~
2

2m
∇2 − µ

]

ψs + ∆̄ψ↓ ψ↑ +∆ψ̄↑ ψ̄↓ −
|∆|2

g
. (5)

We investigate the effect of fluctuations of the pairing field ∆(r, t) around its

mean-field value ∆0 which may be taken to be real. For this reason we set

∆(r, τ) = ∆0 + η(r, τ) , (6)

where η(r, τ) is the complex field describing pairing fluctuations. In particular, we

are interested in the grand potential Ω, given by

Ω = −
1

β
ln (Z) ≃ −

1

β
ln (ZmfZg) = Ωmf +Ωg , (7)

where

Zmf =

∫

D[ψs, ψ̄s] exp

{

−
Se(ψs, ψ̄s,∆0)

~

}

(8)
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is the mean-field partition function and

Zg =

∫

D[ψs, ψ̄s]D[η, η̄] exp

{

−
Sg(ψs, ψ̄s, η, η̄,∆0)

~

}

(9)

is the partition function of Gaussian pairing fluctuations. After functional integra-

tion over quadratic fields, one finds that the mean-field grand potential reads9

Ωmf = −
∆2

0

g
L2 +

∑

k

(

~
2k2

2m
− µ− Esp(k)−

2

β
ln (1 + e−β Esp(k))

)

, (10)

where Esp(k) is the spectrum of fermionic single-particle excitations, as defined in

Eq. (1). On the other hand, the Gaussian-level grand potential is given by

Ωg =
1

2β

∑

Q

ln det(M(Q)) , (11)

where M(Q) is the inverse propagator of Gaussian fluctuations of pairs and Q =

(q, iΩm) is the (2 + 1)-dimensional wavevector with Ωm = 2πm/β the Matsubara

frequencies and q the two-dimensional wavevector10.

The sum over Matsubara frequencies is quite complicated and it does not give

a simple expression. An approximate formula11 is

Ωg ≃
1

2

∑

q

Ecol(q) +
1

β

∑

q

ln (1 − e−β Ecol(q)) , (12)

where

Ecol(q) = ~ ω(q) (13)

is the spectrum of bosonic collective excitations with ω(q) derived from

det(M(q, ω)) = 0 . (14)

Notice that very recently a comprehensive experimental study of fermionic and

bosonic elementary excitations in a homogeneous 3D strongly interacting Fermi

gas through the BCS-BEC crossover has been performed using two-photon Bragg

spectroscopy.12

In our approach (Gaussian pair fluctuation theory13), the grand potential is

given by

Ω(µ, L2, T,∆0) = Ωmf (µ, L
2, T,∆0) + Ωg(µ, L

2, T,∆0) , (15)

and the energy gap ∆0 is obtained from the (mean-field) gap equation

∂Ωmf (µ, L
2, T,∆0)

∂∆0
= 0 . (16)

The number density n is instead obtained from the number equation

n = −
1

L2

∂Ω(µ, L2, T,∆0(µ, T ))

∂µ
(17)

taking into account the gap equation, i.e. that ∆0 is a function ∆0(µ, T ) of µ and

T . Notice that the Nozières-Schmitt-Rink approach14 is quite similar but neglects,

in the number equation, that ∆0 depends on µ .
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3. Zero-temperature results

In the analysis of the two-dimensional attractive Fermi gas one must remember

that, as opposed to the three-dimensional case, two-dimensional realistic interatomic

attractive potentials always have a bound state. In particular15, the binding energy

ǫB > 0 of two fermions can be written in terms of the positive two-dimensional

fermionic scattering length aF as

ǫB =
4

e2γ
~
2

maF 2
, (18)

where γ = 0.577... is the Euler-Mascheroni constant. Moreover, the attractive s-

wave interaction strength g appearing in Eq. (4) is related to the binding energy

ǫB > 0 of a fermion pair in vacuum by the expression16,17

−
1

g
=

1

2L2

∑

k

1
~2k2

2m + 1
2ǫB

. (19)

GPF EOS

Bosonic limit
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0.0

0.2

0.4

0.6

0.8

1.0

Log( B/ F)

P
/P
id

Fig. 1. Scaled pressure P/Pid vs scaled binding energy ǫB/ǫF . Notice that P =

−Ω/L2 and Pid is the pressure of the ideal two-dimensional Fermi gas. Filled squares

with error bars: experimental data of Makhalov et al.
4. Solid black line: the regu-

larized Gaussian pair (GP) theory18. Dashed green line: Popov equation of state,

Eq. (23), of bosons with mass mB = 2m.

At zero temperature, including Gaussian fluctuations, the pressure is

P = −
Ω

L2
=
mL2

2π~2
(µ+

1

2
ǫB)

2 + Pg(µ, L
2, T = 0) , (20)

with

Pg(µ, L
2, T = 0) = −

1

2

∑

q

Ecol(q) . (21)
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In the full two-dimensional BCS-BEC crossover, from the regularized version of

Eq. (11), we obtain numerically the zero-temperature pressure18 (see also Ref. 19).

The results are shown in Fig. 1, where the agreement with the experimental data4

is very satisfying.

In the deep-BEC regime the chemical potential µ is negative and large in mod-

ulus. The energy of bosonic collective excitations becomes

Ecol(q) =

√

~2q2

2m

(

λ
~2q2

2m
+ 2mc2s

)

(22)

with λ = 1/4 andmc2s = µ+ǫB/2. Moreover, the corresponding regularized pressure

– which can be obtained by means of dimensional regularization20,21 – reads

P =
m

64π~2
(µ+

1

2
ǫB)

2 ln

(

ǫB

2(µ+ 1
2ǫB)

)

. (23)

This is exactly the Popov equation of state of two-dimensional Bose gas with chem-

ical potential µB = 2(µ + ǫB/2) and boson mass mB = 2m. In this way we have

identified the two-dimensional scattering length aB of composite bosons as

aB =
1

21/2e1/4
aF . (24)

The value aB/aF = 1/(21/2e1/4) ≃ 0.551 is in full agreement with the value

aB/aF = 0.55(4) obtained by Monte Carlo calculations22.

4. Quantized vortices and superfluid density

In Section II we have written the pairing field through Eq. (6). A different

parametrisation23 is provided by

∆(r, τ) = (∆0 + σ(r, τ)) eiθ(r,τ) , (25)

where σ(r, τ) is the real field of amplitude fluctuations and θ(r, τ) is the angular

field of phase fluctuations. However, Taylor-expanding the exponential of the phase,

one has

(∆0 + σ(r, τ)) eiθ(r,τ) = ∆0 + σ(r, τ) + i ∆0 θ(r, τ) + ... . (26)

Thus, at the Gaussian level, we can write

η(r, τ) = σ(r, τ) + i ∆0 θ(r, τ) . (27)

After functional integration over σ(r, τ), the Gaussian action becomes

Sg =

∫ ~β

0

dτ

∫

L2

d2r

{

J

2
(∇θ)

2
+
χ

2

(

∂θ

∂τ

)2
}

(28)

where J is the phase stiffness and χ is the compressibility. This is the quantum

action of the 2D continuous XY model.9 The superfluid density is related to the

phase stiffness J by the simple formula

ns =
4m

~2
J . (29)
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At the Gaussian level J depends only on fermionic single-particle excitations

Esp(k).
24 However, beyond the Gaussian level also bosonic collective excitations

Ecol(q) contribute
25. Thus, we assume the following Landau-type formula

ns(T ) = n− β

∫

d2k

(2π)2
k2

eβEsp(k)

(eβEsp(k) + 1)2
−
β

2

∫

d2q

(2π)2
q2

eβEcol(q)

(eβEcol(q) − 1)2
(30)

where both fermionic and bosonic elementary excitations are included.
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Fig. 2. Superfluid fraction ns/n vs scaled temperature T/TF in the two-dimensional

BEC-BEC crossover.26 Solid lines: renormalized superfluid density. Dashed lines:

bare superfluid density. TF = ǫF/kB is the Fermi temperature. Gray dotted line:

Nelson-Kosterlitz condition kBT = (π/2)J(T ) = (~2π/(8m))ns(T ).

It is important to stress that the compactness of the phase angle θ(r, t) implies

that
∮

C

∇θ(r, t) · dr = 2π
∑

i

qi , (31)

where qi is the integer number associated to quantized vortices (qi > 0) and an-

tivortices (qi < 0) encircled by C. One can write9

∇θ(r, t) = ∇θ0(r, t) −∇ ∧ (uz θv(r)) , (32)

where ∇θ0(r, t) has zero circulation (no vortices) while θv(r) encodes the contribu-

tion of quantized vortices and anti-vortices, namely

θv(r) =
∑

i

qi ln

(

|r− ri|

ξ

)

, (33)

where ri is the position of the i-th vortex and ξ is the cutoff length defining the

vortex core size, with µv its energy. From Eqs. (28) and (33) one finds that the

attractive intraction potential of a vortex-antivortex pair (with qi = 1 and qj = −1)

is proportional to the phase stiffiness J and is given by9

Vv(ri, rj) = −2π J ln

(

|ri − rj |

ξ

)

. (34)
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The analysis of Kosterlitz and Thouless27 of the two-dimensional XY model

shows that:

• As the temperature T increases vortices start to appear in vortex-antivortex

pairs (mainly with q = ±1).

• The pairs are bound at low temperature until, at the critical temperature

TBKT of Berezinskii-Kosterlitz-Thouless,8,9 an unbinding transition occurs

above which a proliferation of free vortices and antivortices is predicted.

• The phase stiffness J and the vortex energy µv are renormalized due the

screening of other vortex-antivortex pairs on the interaction potential (34).

• The renormalized superfluid density ns,R = JR(4m/~
2) decreases by in-

creasing the temperature T and jumps to zero at TBKT .

• The renormalized vortex energy µv,R, that is the energy cost to produce a

unbound vortex, is infinity for T ≤ TBKT .

The renormalized phase stiffness JR is obtained from the bare one J by solving

the renormalization group (RG) equations28

d

dℓ
K(ℓ) = −4π3K(ℓ)2y(ℓ)2 (35)

d

dℓ
y(ℓ) = (2− πK(ℓ)) y(ℓ) (36)

for the running variables K(ℓ) and y(ℓ), as a function of the adimensional scale ℓ

subjected to the initial conditions K(ℓ = 0) = J/β and y(ℓ = 0) = exp(−βµv), with

µv = π2J/4 the vortex energy29. The renormalized phase stiffness is then

JR = β K(ℓ = +∞) , (37)

and the corresponding renormalized superfluid density reads

ns,R =
4m

~2
JR . (38)

In Fig. 2 we plot the superfluid fraction ns/n as a function of the temperature T for

three strengths of the BEC-BEC crossover. In the figure we report both the bare

superfluid density (dashed lines) and the renormalized one (solid lines). Notice that

the renormalized superfluid density satisfies the Nelson-Kosterlitz condition28

kBTBKT =
π

2
JR(T

−
BKT ) =

~
2π

8m
ns,R(T

−
BKT ) . (39)

In Fig. 3 we report our theoretical predictions for the critical temperature TBKT .

Dot-dashed and dotted lines are obtained by using18 the Nelson-Kosterlitz condi-

tion with the bare superfluid density. This approach is called Nelson-Kosterlitz cri-

terion. Solid and dashed lines are instead obtained by using26 the Nelson-Kosterlitz

condition on the renormalized superfluid density. The figure cleary shows that the

inclusion of bosonic elementary excitations is crucial to get a reduction of TBKT
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Fig. 3. Theoretical predictions for the Berezinskii-Kosterlitz-Thouless (BTK) crit-

ical temperature TBKT . Red dot-dahsed and dashed lines obtained by using18

the Nelson-Kosterlitz (NK) condition on the bare superfluid density (NK crite-

rion): kBTBKT = (~2π/(8m))ns(TBKT ). Blue sodlid and dashed lines obtained by

solving26 the renormalization group (RG) equations.

the BEC regime. Moreover, the Nelson-Kosterlitz criterion, based on the Nelson-

Kosterlitz condition with the bare superfluid density instead of the renormalized

one, is not accurate in the middle of the crossover.

5. Conclusions

We have shown that, after regularization of Gaussian fluctuations (for a recent com-

prehensive review see Ref. 30), the beyond-mean-field theory of the two-dimensional

BCS-BEC crossover is in very good agreement with (quasi) zero-temperature exper-

imental data4. Moreover, in the BEC regime of the crossover the equation of state

gives the correct logarithmic behavior characteristic of weakly-interacting repul-

sive bosons20. At finite temperature we have found that beyond-mean-field effects,

as well the contribution from quantized vortices and antivortices, determine the

properties of the two-dimensional BCS-BEC crossover. In particular, the inclusion

of collective bosonic excitations is essential to get a reliable determination of the

superfluid density and of Berezinskii-Kosterlitz-Thouless (BKT) critical tempera-

ture, across the whole crossover. Moreover, we have shown that, in the intermediate

regime of the BCS-BEC crossover, the Nelson-Kosterlitz criterion strongly overes-

timate the critical temperature with respect to the results obtained through the

renormalization group equations.
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