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Abstract1

Cylindrical bending of multilayered plates with thin compliant interlayers is studied through a homogenized structural model.

The layers are homogeneous and orthotropic with principal material axes parallel and normal to the plane of bending and

the interlayers are represented as sliding interfaces controlled by interfacial tractions which depend linearly on the relative

displacements of the adjacent layers. The formulation is based on the zigzag theory formulated in Tessler et al. (J Compos

Mater 43:1051–1081, https://doi.org/10.1177/0021998308097730, 2009) for fully bonded beams and the multiscale strategy

in Massabò and Campi (Compos Struct 116:311–324, https://doi.org/10.1016/j.compstruct.2014.04.009, 2014), which is used

to include the imperfect interfaces in the homogenized description of the problem. The kinematic variables are independent of

the number of layers or imperfect interfaces and equal to four. The problem is solved in closed form on varying the interfacial

stiffness between zero and infinite, which are the limiting values used to describe unbonded layers (traction-free interfacial

sliding) and fully bonded layers (no sliding). The model accurately predicts global and local fields in highly anisotropic, simply

supported, thick plates; some limitations are observed and discussed in the presence of in-plane material discontinuities and

clamped supports. The model is applicable to study the elastic response of layered composites with adhesives interlayers or

composite assemblies fastened by uniformly distributed mechanical connectors.

2

3

4

5

6

7

8

9

10

11

12

13

14

Keywords Structural theory · Laminated plate · Homogenization · Interface mechanics · Interlayer15

1 Introduction16

Layered composite structures, such as laminated and sand-17

wich beams, plates, and shells, are largely used in aero-18

nautical, aerospace, marine, energy, automotive, and civil19

applications, mostly because they can be tailored, by proper20

selection of materials and stacking sequences, to achieve21

unique properties, e.g., high strength-to-weight ratios, energy22

absorption, fatigue life, and environmental resistance. Typi-23

cal composite laminates are made of fiber-reinforced polymer24

and ceramic or metallic layers; other examples of lay-25

ered systems are cross-laminated timber, steel–concrete, and26

fiber-reinforced plastic–concrete assemblies and laminated27

glass.28

B Roberta Massabò

roberta.massabo@unige.it

1 Department of Civil, Chemical and Environmental

Engineering, Polytechnic School, University of Genova, Via

Montallegro 1, 16145 Genoa, Italy

The bonding between the plies in a layered structure 29

may not always be strong enough to preserve the structural 30

integrity and prevent relative displacements of the adjacent 31

layers. This can be due to manufacturing defects, or to dam- 32

age caused by in-service loads and environmental effects; 33

or it can be a consequence of the presence of compliant 34

elastic or inelastic interlayers. In layered wood or steel–con- 35

crete structures with layers joined by mechanical fasteners, 36

such as nails, dowels, and screws, relative motion may occur 37

due to elastic and inelastic mechanisms occurring within 38

the connectors, the surrounding material, and their interface. 39

In marine applications, bonding of the layers may weaken 40

because of collisions with other marine vehicles or floating 41

debris or waves slamming against the hull, or due to mois- 42

ture ingress and sea-water effects (Penumadu 2018). The 43

effective properties, global mechanical response, and local 44

fields of layered structures are highly affected by the sta- 45

tus of the bonding between the constitutive layers, see, for 46

instance, (Goodman and Popov 1968; Vanderbilt et al. 1974; 47

Foschi 1985), for experiments on layered wood beams and 48

floors connected with mechanical fasteners, and (Jain and 49
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Mai 1994; Massabò et al. 1998; Cox 2005), for experiments50

and models on through-thickness reinforced laminates.51

In this paper, a homogenized structural model is formu-52

lated for the linear static analysis of layered beams and53

plates in cylindrical bending with thin compliant interlay-54

ers. The model introduces zero-thickness interfaces in the55

zigzag theory formulated in Tessler et al. (2009) using the56

homogenization strategy proposed in Massabò and Campi57

(2014). The problem is described by a fixed number of dis-58

placement variables, independent of the number of layers,59

with advantages, both computational and analytical, over the60

most common approaches based on a discrete description of61

the problem. In the remaining of the “Introduction”, different62

modeling approaches formulated to study layered structures63

with imperfect bonding will be discussed, with focus on the64

two models which will be used in this work, and the advan-65

tages and limitations of the model proposed here will be66

highlighted.67

Thin interlayers in a layered structure can be modeled68

as regular discrete layers by directly accounting for their69

geometry and material properties in the analysis. However,70

this increases the number of unknown variables in ana-71

lytical modeling and makes the solution computationally72

expensive for structures with many layers, also in the elastic73

regime. Moreover, the numerical description of thin interlay-74

ers is cumbersome and very fine discretizations are required.75

Similar difficulties are encountered when through-thickness76

connectors are represented explicitly in the numerical dis-77

cretization of the problem. Special finite elements, theoretical78

and numerical techniques, and interface models have been79

formulated to describe interlayers, the action of distributed80

connectors or damaged interphases and delaminations and81

incorporate their effect into the analysis (Newmark et al.82

1951; Adekola 1968; Goodman and Popov 1968; Murakami83

1984; Carpenter and Barsoum 1989; Edlund and Klarbring84

1990; Allix and Ladevèze 1992; Girhammar and Gopu 1993;85

Jain and Mai 1994; Bai and Sun 1995; Hansen and Spies86

1997; Massabò et al. 1998; Mi et al. 1998; Adam et al. 2000;87

Heuer and Adam 2000; Alfano and Crisfield 2001; Andruet88

et al. 2001; Girhammar and Pan 2007; Xu and Wu 2007;89

Campi and Monetto 2013; Lenci et al. 2015). For layered90

structures with one or two in-plane dimensions much larger91

than the thickness, models have been formulated based on a92

priori assumptions on the through-thickness variation of the93

primary variables, typically the generalized displacements,94

using axiomatic approaches, e.g., equivalent single layer, lay-95

erwise, and zigzag theories (Abrate and Di Sciuva 2018).96

Equivalent single-layer theories are computationally simple,97

but unable to reproduce the complex stress and displacement98

fields which occur in layered structures due to the inhomo-99

geneous material structure and the presence of compliant100

interlayers. Layerwise theories may accurately describe the101

mechanical response of highly anisotropic and relatively102

thick structures, also in the presence of thin interlayers or 103

delaminations (Reddy 1987; Lu and Liu 1992; Andrews et al. 104

2006), at the expense of a large number of unknowns. 105

The zigzag theories offer a good compromise between 1106

computational simplicity and accuracy thanks to a multi- 107

scale treatment of the problem (Di Sciuva 2015; Abrate 108

and Di Sciuva 2018). To describe structures with perfectly 109

bonded layers, the global displacement field of an equiva- 110

lent single-layer theory is enriched by through the thickness 111

zigzag functions to account for the effects of the local inho- 112

mogeneous material architecture (Di Sciuva 1986, 1987; 113

Murakami 1986; Cho and Parmerter 1993; Averill 1994; 114

Aitharaju 1999; Tessler et al. 2009). The zigzag functions are 115

then derived as functions of the global variables by imposing 116

continuity conditions at the layer interfaces and field equa- 117

tions are obtained and solved in terms of the global variables 118

only. The zigzag theory in Tessler et al. (2009) assumes 119

the kinematics of the Timoshenko beam theory, which is 120

enriched by an additional global variable and a piecewise lin- 121

ear zigzag function. The zigzag function is defined in terms 122

of the global variables through continuity conditions on the 123

shear tractions at the layer interfaces. The theory improves 124

the description of the shear strains of the original theory in 125

Di Sciuva (1986) leading to a better description of clamped 126

supports, and is well suited for finite-element formulation, 127

since it requires only C0-continuous shape functions. 128

Thin interlayers can be represented in the homogenized 129

approach of the zigzag theories as regular layers (Aver- 130

ill 1994) or zero-thickness interfaces. The latter approach, 131

which was introduced in a number of papers in the literature 132

in the 90s, was first solved in an energetically consistent way 133

in Massabò and Campi (2014), for beams and wide plates, 134

and in Massabò and Campi (2015), for general plates. The 135

mechanical response of the interfaces is described through 136

interfacial constitutive laws which relate the interfacial trac- 137

tions to the relative displacements of the adjacent layers and 138

may be used to approximate the response of thin interlayer. 139

The models have been formulated for generally nonlinear 140

interfacial traction laws, to describe mixed mode cohesive 141

interfaces and delaminations. They couple a global equiva- 142

lent single-layer theory and a local cohesive interface model 143

through the introduction of zigzag functions which are piece- 144

wise linear in the thickness with discontinuities at the layer 145

interfaces. The homogenization technique is similar to that 146

of the classical zigzag theories and uses the assumed interfa- 147

cial traction laws to equate the tractions at the layer surfaces 148

to the interfacial tractions and relate them to the relative 149

displacements of the layers. Models based on the homog- 150

enization strategy in Massabò and Campi (2014) have been 151

used to accurately predicts local and global fields generated 152

by thermo-mechanical loading in layered thick beams with 153

continuous linear-elastic interfaces (Pelassa and Massabò 154

2015), to obtain approximate closed-form solutions of wave 155
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propagation problems (Massabò 2017) and fracture mechan-156

ics solutions for beams with mode II dominant traction-free157

delaminations (Darban and Massabò 2017a). One limitation158

of this homogenized approach for plates with fully debonded159

interfaces is the inability to account for the contribution of160

the shear deformations to the global transverse compliance;161

this is a consequence of the assumed interfacial continuity162

which implies zero transverse shear strains in beams, where163

the interfacial tractions vanish (see discussion later in the164

paper); in addition, fictitious boundary layers occur, under165

certain conditions, at the boundaries or at the crack tip cross166

sections (Massabò 2014; Pelassa and Massabò 2015), which167

complicate the solution of the problem.168

In this paper, the zigzag theory in Tessler et al. (2009) is169

extended to account for the presence of zero-thickness linear-170

elastic interfaces following the approach in Massabò and171

Campi (2014). The model describes the linear-elastic regime172

of structures with thin compliant interlayers, e.g., adhe-173

sives, offering an efficient alternative to the zigzag models174

which treat the compliant interlayers as regular layers (Averill175

1994). More importantly, the model is applicable to lay-176

ered structures joined by uniformly distributed mechanical177

fasteners (nails, dowels, or screws), where the actual thick-178

ness of the interfaces is zero and classical zigzag approaches179

would not be applicable. The model maintains the advan-180

tages of the theory in Tessler et al. (2009) in the treatment181

of shear deformations thereby offering a solution to the lim-182

itations of the homogenized models which are based on the183

original zigzag functions, e.g., Di Sciuva’s zigzag function,184

see list in Massabò and Campi (2014). The model yields185

closed-form solutions, in terms of four global displacement186

variables, for the asymptotic limit of fully debonded layers,187

which describes very compliant or fully damaged interlay-188

ers or the absence of mechanical connectors. The interfacial189

mechanisms are described by a single parameter, namely,190

the stiffness of the interfacial traction law; this allows to eas-191

ily investigate and understand the effects of the status of the192

bonding on global and local fields and to define a global mea-193

sure of the action developed by the interlayers/connectors194

which can be obtained, for instance, from in situ global mea-195

surements through the solution of an inverse problem. Some196

limitations of the approach in treating clamped supports and197

in-plane material discontinuities will be discussed in depth198

in the paper.199

The formulation is limited to beams or plates in cylindrical200

bending and linear-elastic interfaces, which are assumed to be201

rigid against interfacial openings. It can be extended to model202

2D structures and generally nonlinear interfaces following203

the methodology in Massabò and Campi (2015).204

This paper is organized as follows. In Sect. 2, the prob-205

lem is defined and the model assumptions are presented.206

In Sect. 3, the homogenized structural model is formulated207

and equilibrium equations are derived using a variational208

technique. In Sect. 4, the model is applied to study sim- 209

ply supported and cantilevered plates with different layups 210

and interfacial conditions and its accuracy verified through 211

comparison with elasticity solutions and structural mechan- 212

ics discrete layer models; some limitations of the model in 213

describing plates with in-plane discontinuities, e.g., finite 214

length imperfect interfaces, and clamped supports are dis- 215

cussed. Conclusions are presented in Sect. 5. 216

2 Model assumptions 2217

A multilayered wide plate is illustrated in Fig. 1a, with 218

x1–x2–x3 a system of Cartesian coordinates. The reference 219

surface, S, is defined by the plane x3 � 0 and the dimensions 220

along x1, x2 and x3 are L1, L2 � L with L1 ≫ L2, and h. 221

The plate is subjected to static loads, which are independent 222

of x1 and act on the upper, S+, lower, S−, and lateral, B (with 223

normal parallel to x2) bounding surfaces. It is composed of 224

n linearly elastic, homogenous, and orthotropic layers with 225

principal material axes aligned along the coordinate axes. 226

The layer k, with k �1, …, n numbered from bottom to top, 227

has thickness (k)h and lower and upper surfaces, (k)S− and 228

(k)S+, at the coordinates x3 � xk−1
3 and x3 � xk

3 [the super- 229

scripts (k) on the left and k on the right of a quantity show 230

association with the layer k and with the interface between 231

layers k and k + 1, respectively]. The layers are joined by 232

n − 1 interfaces, which are zero-thickness mathematical sur- 233

faces, where the material properties and displacements may 234

be discontinuous. The interfaces approximate the behavior 235

of thin elastic interlayers or the elastic action of mechanical 236

fasteners used to join individual layers. The plate deforms in 237

cylindrical bending parallel to the plane x2–x3, Fig. 1b. 238

The layers are assumed to be incompressible in the thick- 239

ness direction and the transverse normal stresses, (k)σ33, 240

to be negligible compared to the other stress components. 241

These assumptions are acceptable if the response is studied 242

in regions far from boundaries, concentrated loads, or geo- 243

metric discontinuities. The constitutive equations of the layer 244

k are derived by particularizing the 3D constitutive equations 245

to plane strain and imposing (k)σ33 � 0. This yields, for k � 246

1, …, n: 247

(k)σ22 � (k)C̄22
(k)ε22,

(k)σ23 � (k)C442(k)ε23, (1)
248

249

with (k)σi j and (k)εi j , for i, j �2, 3, the stress and strain 250

components, and (k)C̄22 � (k)(C22 − C23C32/C33), where 251

(k)Ci j for i, j �2, 3, 4 are the coefficients of the stiffness 252

matrix. The model presented in this paper is applicable to 253

beams by replacing (k)C̄22 with the Young’s modulus in the 254

x2 direction and referring to the load acting per unit width. 255
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Fig. 1 a Multilayered wide plate

with continuous imperfect or

fully debonded interfaces. b

Cross section in the plane x2–x3

with applied loads. c Interfacial

tangential tractions σ̂ k
S acting on

the surfaces of layers k and k +

1. d Interfacial traction law

The mechanical behavior of the interface between the lay-256

ers k and k + 1 is described by a linear-elastic interfacial257

traction law, which relates the interfacial tangential tractions258

(Fig. 1c), σ̂ k
S (x2), to the interfacial sliding jump:259

v̂k
2(x2, x3 � xk

3 ) � (k+1)v2(x2, x3 � xk
3 ) − (k)v2(x2, x3 � xk

3 ),

(2)
260

261

through262

σ̂ k
S (x2) � K k

S v̂k
2(x2), (3)263

264

with K k
S the interfacial tangential stiffness, Fig. 1d, and265

(k)v2(x2, x3) the component of the displacement vector along266

the x2-axis. The law with K k
S � 0, which results in σ̂ k

S � 0,267

describes fully debonded layers, and with 1/K k
S � 0, which268

results in v̂k
2 � 0, represents fully bonded layers.269

The assumed traction law well describes the response to270

shear loading of thin elastic interlayers, such as adhesive lay-271

ers, in the absence of residual stresses. For a thin interlayer of272

thickness h̄ and shear rigidity, (k̄)C44, the interfacial stiffness273

is KS � (k̄)C44/h̄. If the traction law in Eq. (3) is used to274

describe the initial elastic response of uniformly distributed275

mechanical fasteners, the interface stiffness depends on the 276

geometrical and material properties of the connectors, the 277

surrounding material and their interface. It can be determined 278

experimentally, e.g., (Goodman and Popov 1968; Vander- 279

bilt et al. 1974; Oehlers and Coughlan 1986), or through 280

micromechanics modeling, as in Gelfi et al. (2002) for a stud 281

embedded in a concrete–wood beam or in Cox (2005) for a 282

through-thickness reinforcement embedded in a polymeric 283

laminate. The linear-elastic law in Eq. (3) does not describe 284

the nonlinear mechanisms related to damage and fracture 285

of the interlayers or the nonlinear behavior of the connec- 286

tors. To extend the model to describe nonlinear interfaces, 287

the methodology formulated in Massabò and Campi (2014), 288

which introduces piecewise linear cohesive traction laws, can 289

be applied. 290

The interfaces are assumed to be rigid against relative 291

opening displacements and the transverse displacements of 292

the adjacent layers coincide at the interface, (k)v3(xk
3 ) � 293

(k+1)v3(xk
3 ). This assumption has been previously used in 294

the literature, e.g., (Schmidt and Librescu 1996; Di Sci- 295

uva 1997; Di Sciuva et al. 2002), and is acceptable when 296

the relative opening displacements at the interface are zero, 297

due, for instance, to emisymmetric conditions, or negligible 298
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Fig. 2 Schematic description of the assumed displacement field in a three-layer laminate (a), global displacement (b), and local enrichment (c)

with respect to the sliding displacements due, for instance,299

to special loading/geometrical conditions. The assumption is300

acceptable when dealing with practical applications of lami-301

nated and composite plates, which often involve compressive302

transverse loads, for example, the hulls of marine vehicles.303

3 Model formulation304

3.1 Global and local variables and fields305

Following the zigzag theory formulated in Tessler et al.306

(2009) for fully bonded beams and applying the method-307

ology developed in Massabò and Campi (2014) to account308

for the presence of imperfect interfaces in a homogenized309

description of the problem, the longitudinal and transverse310

displacements in the layer k of the plate are assumed as311

(Fig. 2)312

(k)v2(x2, x3) � v02(x2) + x3ϕ2(x2) + θ2(x2)(k)φ(x3),

(k)v3(x2, x3) � w0(x2). (4)
313

314

The two-length scale field is controlled by four global315

variables, v02(x2), ϕ2(x2), w0(x2), and θ2(x2). The first three,316

v02(x2), ϕ2(x2), and w0(x2), correspond to a first-order shear317

deformation theory, Fig. 2b; if the reference surface coincides318

with the bottom or top surfaces of the plate, v02(x2) is the lon-319

gitudinal displacement of the reference surface, ϕ2(x2) is the320

rotation of the normal to the reference surface, and w0(x2)321

is the transverse displacement. The fourth global variable,322

θ2(x2), defines the variation along x2 of a local enrichment323

function, (k)φ(x3), which is introduced to account for the324

inhomogeneous material structure and the presence of imper-325

fect interfaces. The function (k)φ(x3) is independent of x2 and326

assumed to be linear in the thickness of the layer and zero at 327

the upper and lower surfaces of the plate (Fig. 2c): 328

(k)φ(x3) � (k)β(x3 − xk−1
3 ) + (k)φ(xk−1

3 )
1

2
,

(n)φ(xn
3 ) � (1)φ(x0

3 ) � 0, (5)

329

330

with (k)β � (k)φ(x3),3 the slope and (k)φ(xk−1
3 ) the value at 331

the lower surface of the layer. The enrichment functions in 332

the n layers of the plate define a local zigzag field which is 333

piecewise linear with discontinuities at the layer interfaces, 334

where in general, (k)φ(xk
3 ) �� (k+1)φ(xk

3 ), Fig. 2c. 335

The displacement field in Eq. (4) is defined by 2 × (n −1) 336

local unknowns, (k)β for k �1, …, n, and (k)φ(xk−1
3 ) for k �2, 337

…n − 1, since (1)φ(x0
3 ) � 0, (n)φ(xn

3 ) � 0 and (n)φ(xn−1
3 ) � 338

− (n)β(n)h after Eq. (5). The local unknowns will be defined 339

as functions of the global variables through the imposition 340

of continuity conditions at the layer interfaces in the next 341

section. 342

The displacement field in Eq. (4) is similar to those 343

assumed in the theories developed in Di Sciuva (1986, 344

1987) for fully bonded plates and in Massabò and Campi 345

(2014) for plates with imperfect interfaces, which would 346

be obtained by imposing the kinematic constraint θ2(x2) � 347

ϕ2(x2) + w0,2(x2). The additional variable, θ2(x2), is intro- 348

duced to better describe the transverse shear strains; this is 349

useful, as it will be shown later, in problems with imperfect 350

or fully debonded interfaces. 351

The strain and stress components in the layer k are derived 352

using the displacement field in Eq. (4), linear compatibility 353

and the constitutive Eq. (1): 354

(k)ε22(x2, x3) � (k)v2,2(x2, x3)

� v02,2(x2) + x3ϕ2,2(x2) + θ2,2(x2)(k)φ(x3),

2(k)ε23(x2, x3) � (k)v2,3(x2, x3) + (k)v3,2(x2, x3)

� ϕ2(x2) + w0,2(x2) + θ2(x2)(k)β. (6)

355
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(k)σ22(x2, x3) � (k)C̄22[v02,2(x2) + x3ϕ2,2(x2)

+ θ2,2(x2)(k)φ(x3)],

(k)σ23(x2, x3) � (k)C44[ϕ2(x2) + w0,2(x2) + θ2(x2)(k)β].

(7)

356

357

The bending strains and stresses are piecewise linear358

through the thickness and discontinuous at the interfaces.359

The transverse shear strains and stresses are piecewise con-360

stant; the strains depend on a global contribution, ϕ2 + w0,2,361

which is constant through the thickness and a local contribu-362

tion, θ2
(k)β, which may differ in each layer. The transverse363

shear stresses can be rewritten as364

(k)σ23 � (k)C44[(ϕ2 + w0,2)(1 + (k)β) + (k)β(θ2 − ϕ2 − w0,2)]

(8)
365

366

which will prove useful in the following derivation.367

The interfacial sliding jump at the interface k, v̂k
2(x2) in368

Eq. (2) is obtained from the displacement field in Eq. (4)369

as370

v̂k
2(x2, xk

3 ) � θ2(x2)[(k+1)φ(xk
3 ) − (k)φ(xk

3 )]. (9)371
372

Equation (9) shows that when the layers are perfectly373

bonded to each other and v̂k
2(x2) � 0, then (k+1)φ(xk

3 ) �374

(k)φ(xk
3 ) and the zigzag contribution is C0 continuous through375

the thickness. In this case, the displacement field is C0 con-376

tinuous, with discontinuous first derivatives and coincides377

with that of the original zigzag theory proposed in Tessler378

et al. (2009) for fully bonded beams. In the presence of379

imperfect interfaces, v̂k
2(x2) �� 0, (k+1)φ(xk

3 ) �� (k)φ(xk
3 ),380

and the displacement field is discontinuous at the inter-381

faces.382

Imposing the kinematic constraint θ2(x2) � ϕ2(x2) +383

w0,2 (x2), the transverse shear stresses and relative displace-384

ments in Eqs. (8) and (9) would modify as385

(k)σ23(x2, x3) � (k)C44(ϕ2 + w0,2)(1 + (k)β)

v̂k
2(x2) � (ϕ2 + w0,2)[(k+1)φ(xk

3 ) − (k)φ(xk
3 )]

for θ2 � ϕ2 + w0,2,

(10)

386

387

and coincide with the transverse shear stresses and relative388

displacements assumed in Massabò and Campi (2014).389

3.2 Derivation of the enrichment functions390

The local variables in Eqs. (4) and (5), (k)β for k �1, …n,391

and (k)φ(xk−1
3 ) for k �2, …n − 1, are defined in terms of392

the global variables following the procedure formulated in393

Tessler et al. (2009) for beams with fully bonded layers. The394

procedure is briefly recalled below and it will be extended395

later to plates with imperfect interfaces to describe layered396

structures with thin compliant interlayers.397

3.2.1 Fully bonded layers 398

A continuity condition is first applied on the shear traction 399

vectors acting at the upper and lower surfaces of the layer k 400

and k + 1 which are related to the shear stresses in Eq. (10). 401

This implies equating only the part of the traction vectors 402

which is related to the first term of the shear stresses in Eq. (8) 403

and yields 404

(k+1)C44(1 + (k+1)β) � (k)C44(1 + (k)β). (11) 405
406

Imposing the same condition at each interface shows that 407

(k)C44(1 + (k)β) � G, (12) 408
409

for k �1, …, n −1, with G a constant, which describes 410

the homogenized shear rigidity of the plate. The constant 411

G is derived by imposing a continuity condition on the 412

longitudinal displacement at the layer interfaces, namely, 413

(k+1)v2(xk
3 ) � (k)v2(xk

3 ) for k �1, …, n −1. This and Eq. (9) 414

yield (k+1)φ(xk
3 ) � (k)φ(xk

3 ). Since (k)β(k)h � (k)φ(xk
3 ) − 415

(k)φ(xk−1
3 ), from Eq. (5), integration on both sides over the 416

thickness yields
∑n

k�1
(k)β(k)h � (n)φ(xn

3 ) − (1)φ(x0
3 ) � 0 417

and, by substituting (k)β � G/(k)C44 − 1, after Eq. (12): 418

G �
h

∑n
i�1

(i)h
(i)C44

. (13)
419

420

The remaining local unknowns in the displacement field 421

of Eq. (4), (k)φ(xk−1
3 ) for k �2, …, n − 1, are obtained 422

using the relations (k)φ(xk
3 ) − (k)φ(xk−1

3 ) � (k)β(k)h and 423

(k+1)φ(xk
3 ) � (k)φ(xk

3 ). This yields the recursive formula, 424

(k+1)φ(xk
3 ) � (k)β(k)h + (k)φ(xk−1

3 ), which relates the value 425

of the zigzag function on the lower surface of the layer 426

k + 1 to that on the lower surface of the layer k. Using 427

the recursive formula to relate (k+1)φ(xk
3 ) to (1)φ

(

x0
3

)

� 0 428

yields 429

(k)φ(xk−1
3 ) �

k−1
∑

i�1

[(i)β(i)h], (14) 430

431

for k �2, …, n, and the enrichment function in a plate with 432

perfectly bonded layers is 433

(k)φ(x3) �

(

G

(k)C44
− 1

)

(x3 − xk−1
3 )

+

k−1
∑

i�1

[(

G

(i)C44
− 1

)

(i)h

]

. (15)

434

435

3.2.2 Layers with imperfect interfaces 436

To describe plates with imperfect interfaces, the method 437

described above is applied to a plate, where n − 1 thin elas- 438
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Multiscale and Multidisciplinary Modeling, Experiments and Design

Fig. 3 a Layers joined by

zero-thickness imperfect

interfaces. b Layers joined by

thin interlayers. c Zoom of the

interlayer k̄ with schematic of

the zigzag function

tic interlayers k̄ of thickness h̄ are introduced between the439

regular layers of the model, Fig. 3b; the thickness of the440

interlayers will then be made to vanish, h̄ → 0, to describe441

the plate with imperfect interfaces in Fig. 3a. The plate in442

Fig. 3b has 2n − 1 fully bonded layers, n regular layers and443

n − 1 thin interlayers, and thickness h + (n − 1)h̄. The lower444

and upper surfaces of the layer k for k �2, …n, are at the445

coordinates xk−1
3 + h̄ and xk

3 .446

The constant G in Eq. (13) modifies as447

Ḡ �
h + (n − 1)h̄

∑n
i�1

(i)h
(i)C44

+
∑n−1

ī�1

h̄
(ī)C44

, (16)
448

449

and the slopes of the enrichment functions in the layer and450

interlayer, k and k̄, are (Fig. 3c)451

(k)β �
Ḡ

(k)C44
− 1,

(k̄)β �
Ḡ

(k̄)C44

− 1, (17)

452

453

where the superscript (•̄) on a quantity is used to show454

association with the interlayer. The imposition of the con-455

tinuity condition on the longitudinal displacements at the456

interface between the regular layer k and the interlayer k̄ −1,457

(k)v2(xk−1
3 + h̄) � (k̄−1)v2(xk−1

3 + h̄), modifies the enrichment 458

function in Eq. (14) as 459

(k)φ(xk−1
3 + h̄) �

k−1
∑

i�1

(i)β(i)h +

k−1
∑

ī�1

(ī)βh̄. (18) 460

461

In the limit for h̄ → 0, the thin interlayer can be used to 462

describe the zero-thickness interface, Eq. (3), by imposing 463

that (k)v̂2 � (k̄)v2(xk
3 + h̄) − (k̄)v2(xk

3 ) and K k
S � (k̄)C44/h̄. 464

The constant Ḡ in Eq. (16), then modifies in 465

G � limh̄→0 Ḡ �
h

∑n
i�1

(i)h
(i)C44

+
n−1
∑

i�1

1

K i
S

. (19)
466

467

If the interfaces are very stiff and 1/K i
S � 0, Eq. (19) 468

describes a plate with fully bonded layers and coincides with 469

Eq. (13). In plates with m �1, …, n −1 debonded interfaces, 470

K i
S � KS → 0, G → 0, and G/KS → h/m. 471

The slope of the enrichment function in the layer k, (k)β, 472

is obtained by substituting G, Eq. (19), into Eq. (17): 473

(k)β �
h

(k)C44

(

∑n
i�1

(i)h
(i)C44

+
∑n−1

i�1
1

K i
S

) − 1, (20)
474

475

which coincides with Eq. (12) when 1/K i
S � 0. In plates, 476

where at least one of the interfaces is fully debonded and 477

K i
S → 0, (k)β � − 1. In plates made of layers having the 478
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Multiscale and Multidisciplinary Modeling, Experiments and Design

same elastic constants, (k)β � h/

(

h + (k)C44

∑n−1
i�1 1/K i

S

)

−479

1, which yields (k)β � 0 if the layers are fully bonded.480

The remaining local unknowns are derived by substituting481

(k̄)β from Eq. (17) into Eq. (18) and taking the limit as h̄ → 0.482

This yields483

(k)φ(xk−1
3 ) �

k−1
∑

i�1

[

(

G

(i)C44
− 1

)

(i)h +
G

K i
S

]

. (21)484

485

Using Eqs. (17) and (21), the enrichment function, Eq. (5),486

becomes487

(k)φ(x3) �

(

G

(k)C44
− 1

)

(x3 − xk−1
3 )

+

k−1
∑

i�1

[

(

G

(i)C44
− 1

)

(i)h +
G

K i
S

]

, (22)

488

489

which coincide with Eq. (15) in a fully bonded plate when490

1/K i
S � 0 (Tessler et al. 2009). The particularization of the491

function for a plate with fully debonded layers is given in the492

Appendix A, where all equations related to this important493

special limit are presented. The procedure presented above494

can be used to describe plates with uniformly distributed495

mechanical fasteners provided K i
S in Eqs. (19)–(22) is a mea-496

sure of the elastic shear stiffness provided by the connectors.497

3.3 Displacement, strain, and stress components498

Once the local function in the generic layer k has been499

derived, Eq. (22), the displacement field, Eq. (4), is defined in500

terms of the four global kinematic variables, v02(x2), ϕ2(x2),501

w0(x2), and θ2(x2) by502

(k)v2(x2, x3) � v02(x2) +

[

ϕ2(x2) + θ2(x2)

(

G

(k)C44
− 1

)]

x3

+ θ2(x2)

(

k−1
∑

i�1

[

(

G

(i)C44
− 1

)

(i)h +
G

K i
S

]

−

(

G

(k)C44
− 1

)

xk−1
3

)

(k)v3(x2) � w0(x2). (23)

503

504

The strain and stress components in the layer k are derived 505

from Eqs. (6) to (7): 506

(k)ε22(x2, x3) � v02,2(x2)

+

[

ϕ2,2(x2) + θ2,2(x2)

(

G

(k)C44
− 1

)]

x3

+ θ2,2(x2)

(

k−1
∑

i�1

[

(

G

(i)C44
− 1

)

(i)h +
G

K i
S

]

−

(

G

(k)C44
− 1

)

xk−1
3

)

2(k)ε23(x2, x3) � ϕ2(x2) + w0,2 (x2) + θ2(x2)

(

G

(k)C44
− 1

)

, (24)

507

(k)σ22(x2, x3) � (k)C̄22

{

v02,2(x2) +
[

ϕ2,2(x2) + θ2,2(x2)
(

G

(k)C44
− 1

)]

x3

+ θ2,2(x2)

(

k−1
∑

i�1

[

(

G

(i)C44
− 1

)

(i)h +
G

K i
S

]

−

(

G

(k)C44
− 1

)

xk−1
3

)}

(k)σ23(x2, x3)

� (k)C44

[

ϕ2(x2) + w0,2(x2) + θ2(x2)

(

G

(k)C44
− 1

)]

.

(25)

508

509

The through the thickness piecewise constant transverse 510

shear stresses in Eq. (25) are an approximation of the actual 511

field as a consequence of the first-order theory used to 512

describe the global displacement field. Accurate predictions 513

of the transverse shear stresses can be made a posteriori from 514

the bending stresses in Eq. (25) by imposing local equilib- 515

rium (k)σ22,2+(k)σ
post
23,3 � 0. The interfacial jump and tractions 516

at the interface k, Eqs. (3) and (9), become 517

v̂k
2 �

G

K k
S

θ2(x2), (26) 518

σ̂ k
S � Gθ2(x2), (27) 519

520

which show that, as for the shear stresses, the interfacial trac- 521

tions derived through compatibility are the same for each 522

interface of the system at a fixed coordinate x2. Correct pre- 523

diction of the interfacial tractions can be made a posteriori 524

by imposing local equilibrium. 525

Displacement, strain, and stress fields in a plate with fully 526

debonded layers are given in the Appendix A, Eqs. (45) and 527

(46). 528
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Multiscale and Multidisciplinary Modeling, Experiments and Design

3.4 Equilibrium equations and boundary conditions529

The homogenized equilibrium equations and boundary con-530

ditions are derived using the principle of virtual works and531

following the methodology in Massabò and Campi (2014)532

to account for the energy contribution of the imperfect inter-533

faces:534

n
∑

k�1

∫

S

∫ xk
3

xk−1
3

((k)σ22δ
(k)ε22 + 2(k)σ23δ

(k)ε23)dx3dS

+

n−1
∑

k�1

∫

(k) S+
σ̂ k

S δv̂k
2dS

−

∫

S+

F S+

i δ(n)vi dS −

∫

S−
F S−

i δ(1)vi dS −

∫

B

F B
i δvi dB � 0,

(28)

535

536

with i �2, 3 and F S+

i , F S−

i and F B
i the components of the537

external forces acting along the boundary surfaces of the538

plate, S+, S−, and B. The symbol δ is the variational operator539

and the virtual displacements satisfy compatibility conditions540

and are independent and arbitrary. The equilibrium equa-541

tions and boundary conditions are derived by substituting542

displacement and strain components and interfacial displace-543

ment jumps from Eqs. (23), (24), and (26) into Eq. (28) and544

using Green’s theorem whenever necessary. The resulting545

equilibrium equations are:546

δv02 : N22,2 + f2 � 0

δϕ2 : M22,2 − Q2 + f2m � 0

δw0 : Q2,2 + f3 � 0

δθ2 : M zS
22,2 − Qz

2 − σ̂2 � 0, (29)

547

548

where the force and moment resultants and loading terms are549

• normal force, bending moment, and shear force:550

(N22, M22) �

n
∑

k�1

∫ xk
3

xk−1
3

(k)σ22(1, x3)dx3, (30)551

Q2 �

n
∑

k�1

∫ xk
3

xk−1
3

(k)σ23dx3, (31)552

553

554 • moment resultant and shear force associated to the enrich-555

ment field:556

M zS
22 �

n
∑

k�1

∫ xk
3

xk−1
3

(k)σ22

{(

G

(k)C44
− 1

)

(x3 − xk−1
3 )

+

k−1
∑

i�1

[

(

G

(i)C44
− 1

)

(i)h +
G

K i
S

]}

dx3,

Qz
2 �

n
∑

k�1

∫ xk
3

xk−1
3

(k)σ23

(

G

(k)C44
− 1

)

dx3,

σ̂2 � G

n−1
∑

k�1

σ̂ k
S

K k
S

or σ̂2 � ÂS
44θ2(x2), (32)

557

558

559

with ÂS
44 � G2

n−1
∑

k�1

1

K k
S

. 560

• distributed tangential and transverse forces and couples: 561

f2 � F S+
2 + F S−

2 ,

f2m � F S+
2 xn

3 + F S−
2 x0

3 ,

f3 � F S+
3 + F S−

3 . (33)

562

563

The form of the first three equilibrium equations in 564

Eq. (29) is analogous to that of the first-order shear defor- 565

mation theory, but the force and moment resultants differ, 566

since they account for the effects of the local enrichment 567

through the stresses, Eq. (25). The fourth equilibrium equa- 568

tion is needed to define the additional global variable. 569

The boundary conditions at the plate edges, x2 � 0, L , 570

with n � {0,±1, 0}T the outward normal, are 571

δv02 : N22n2 � Ñ2 or v02 � ṽ02

δϕ2 : M22n2 � M̃2 or ϕ2 � ϕ̃2

δw0 : Q2n2 � Q̃2 or w0 � w̃0

δθ2 : M zS
22 n2 � M̃ zS

2 or θ2 � θ̃2, (34)

572

573

where the terms with the tilde define prescribed values of 574

displacements, forces and couples: 575

(Ñ2, Q̃2) �

n
∑

k�1

∫ xk
3

xk−1
3

((k) F B
2 , (k) F B

3 )dx3,

M̃2 �

n
∑

k�1

∫ xk
3

xk−1
3

(k) F B
2 x3dx3,

M̃ zS
2 �

n
∑

k�1

∫ xk
3

xk−1
3

(k) F B
2

{(

G

(k)C44
− 1

)

(x3 − xk−1
3 )

+

k−1
∑

i�1

[

(

G

(i)C44
− 1

)

(i)h +
G

K i
S

]}

dx3. (35)

576

577
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The homogenized constitutive equations of the plate are578

derived by substituting the stress components from Eq. (25)579

into the stress resultants defined in Eqs. (30)–(32):580

⎧

⎨

⎩

N22

M22

M zS
22

⎫

⎬

⎭

�

⎡

⎣

A22 B22 BS
22

B22 D22 DS
22

BS
22 DS

22 DSS
22

⎤

⎦

⎧

⎨

⎩

v02,2

ϕ2,2

θ2,2

⎫

⎬

⎭

{

Q2

Qz
2

}

� k44

[

A44 AS
44

AS
44 ASS

44

]{

ϕ2 + w0,2

θ2

}

, (36)

581

582

where the homogenized (effective) elastic stiffnesses of the583

plate are584

[A22, B22, D22] �

n
∑

k�1

(k)C̄22

∫ xk
3

xk−1
3

[1, x3, (x3)2]dx3

BS
22 �

n
∑

k�1

(k)C̄22

∫ xk
3

xk−1
3

{(

G

(k)C44
− 1

)

(x3 − xk−1
3 )

+

k−1
∑

i�1

[

(

G

(i)C44
− 1

)

(i)h +
G

K i
S

]}

dx3

DS
22 �

n
∑

k�1

(k)C̄22

∫ xk
3

xk−1
3

x3

{(

G

(k)C44
− 1

)

(x3 − xk−1
3 )

+

k−1
∑

i�1

[

(

G

(i)C44
− 1

)

(i)h +
G

K i
S

]}

dx3

DSS
22 �

n
∑

k�1

(k)C̄22

∫ xk
3

xk−1
3

{(

G

(k)C44
− 1

)

(x3 − xk−1
3 )

+

k−1
∑

i�1

[

(

G

(i)C44
− 1

)

(i)h +
G

K i
S

]}2

dx3

[A44, AS
44, ASS

44 ] �

n
∑

k�1

(k)C44
(k)h

×

[

1,
G

(k)C44
− 1,

(

G

(k)C44
− 1

)2
]

ÂS
44 � G2

n−1
∑

k�1

1

K k
S

. (37)

585

586

A shear correction factor, k44, has been introduced in587

Eq. (36) to improve the approximate description of the shear588

strains of the model. In the limiting case of a fully bonded589

and homogeneous plate, the zigzag enrichment is zero and the590

model proposed here coincides with first-order shear defor-591

mation theory, for which a shear correction factor is required592

to match elasticity solutions. As demonstrated in Massabò593

(2017), for the dynamic correction factor of the homogenized594

structural model in Massabò and Campi (2014), the results595

in Sect. 4 will show that the correction factor obtained for a596

fully bonded homogeneous material can be applied also to 597

layered materials and in the presence of imperfect interfaces. 598

Substitution of the force and moment resultants from 599

Eq. (36) into Eqs. (29) and (34) yields the equilibrium equa- 600

tions in terms of global displacements: 601

δv02 : A22v02,22 + B22ϕ2,22 + BS
22θ2,22 + f2 � 0

δϕ2 : B22v02,22 + D22ϕ2,22 + DS
22θ2,22

− k44 A44(ϕ2 + w0,2 ) − k44 AS
44θ2 + f2m � 0

δw0 : k44 A44(ϕ2,2 + w02,22) + k44 AS
44θ2,2 + f3 � 0

δθ2 : BS
22v02,22 + DS

22ϕ2,22 + DSS
22 θ2,22

− k44 AS
44(ϕ2 + w0,2) − (k44 ASS

44 + ÂS
44)θ2 � 0, (38)

602

603

and the boundary conditions: 604

δv02 : (A22v02,2 +B22ϕ2,2 +BS
22θ2,2 )n2 � Ñ2 or v02 � ṽ02

δϕ2 : (B22v02,2 +D22ϕ2,2 +DS
22θ2,2 )n2 � M̃2 or ϕ2 � ϕ̃2

δw0 : k44(A44(ϕ2 + w0,2 ) + AS
44θ2)n2 � Q̃3 or w0 � w̃0

δθ2 : (BS
22v02,2 +DS

22ϕ2,2 +DSS
22 θ2,2 )n2 � M̃ zS

2 or θ2 � θ̃2.

(39)

605

606

The governing field equations (38) and (39) have order 607

VIII. They are decoupled for efficient closed-form solution 608

in Appendix B. 609

In a plate, where the interfaces are fully bonded, the equi- 610

librium equations are obtained by setting 1/K i
S � 0 in the 611

coefficients in Eq. (37); this yields ÂS
44 � 0. If in addition 612

the plate is composed of layers having the same material 613

properties, e.g., a unidirectionally reinforced laminate, the 614

coefficients with superscript S, namely, BS
22, DS

22, DSS
22 , AS

44, 615

and ASS
44 , become zero, since G � C44. The terms of the 616

equations multiplying θ2 vanish and the order of the equations 617

reduce to VI; the fourth equilibrium equation and boundary 618

condition become identities and the model coincides with the 619

first-order shear deformation theory: 620

C̄22hv02,22 � 0

w0,2222 +
1

k44C44h
f3,22 −

1
1

12
C̄22h3

f3 � 0

ϕ2,2 � −w0,22 −
1

k44C44h
f3, (40)

621

622

where the classical shear correction factor is required. 623

In a plate made of layers having the same thickness, 624

h/n, and elastic constants and where the interfaces are fully 625
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Multiscale and Multidisciplinary Modeling, Experiments and Design

Fig. 4 Three-layer wide plate

with linear-elastic interfaces

subjected to sinusoidal

transverse loading

debonded, Eq. (38) along with Eq. (48) in Appendix A for a626

coordinate system placed at the mid-thickness, yields627

C̄22
h

n
v02,22 � 0

w0,2222 +
1

k44C44
h
n

(

f3

n

)

,22

−
1

1
12

C̄22

(

h
n

)3

(

f3

n

)

� 0

(ϕ2 − θ2),2 � −w0,22 −
1

k44C44

(

h
n

)

(

f3

n

)

θ2,22 � −
n − 1

n
(ϕ2 − θ2),22. (41)

628

629

Comparing the first three equations in Eqs. (40) and (41)630

shows that the plate with fully debonded layers behaves like631

a stack of layers of thickness, h/n, free to slide along each632

other and whose behavior is described by the first-order shear633

deformation theory and require the use of the classical shear634

correction factor. The fourth equation in (41) is used to define635

the variable θ2 which provides the effects of the local field,636

including the jump at the interfaces, v̂i
2 � hθ2/(n − 1) for i637

�1, …, n −1, Eq. (26).638

4 Applications639

In this section, some applications are presented to verify the640

accuracy of the model, through comparison with 2D elas-641

ticity solutions, and highlight improvements/limitations with642

respect to other structural models based on a similar homoge-643

nized approach. In all applications, the shear correction factor644

has been assumed as k44 � 5/6, which is the value obtained645

by matching the shear elastic energy of a fully bonded homo-646

geneous plate under constant transverse shear to that of 2D647

elasticity (Jourawsky approximation).648

4.1 Simply supported plate649

The simply supported wide plate with imperfect inter-650

faces subjected to sinusoidal transverse loading, f3 �651

f0 sin(πx2/L), acting on the upper surface of the plate is652

considered first, Fig. 4. The plate has length-to-thickness 653

ratio L/h � 4 and is made by three orthotropic layers 654

with elastic constants ET /EL � 1/25, GLT /EL � 1/50, 655

GT T /EL � 1/125, and νLT � νT T � 0.25, and principal 656

material directions along the coordinate axes; the assumed 657

ratios could represent a graphite–epoxy composite (L and 658

T indicate directions parallel and transverse to the fibers). 659

The layers are connected by linear-elastic interfaces with the 660

same interfacial stiffness, KS . 661

The problem is solved using the decoupled equations (40), 662

(41), and (49) and imposing the boundary conditions (34), 663

which particularize to 664

x2 � 0 : w̃0 � ṽ02 � M̃2 � M̃ zS
2 � 0

x2 � L : w̃0 � Ñ2 � M̃2 � M̃ zS
2 � 0. (42)

665

666

The variable θ2 is set to zero at the mid-span for the sym- 667

metry of the problem. Once the global variables v02(x2), 668

ϕ2(x2),w0(x2), and θ2(x2) are obtained, local displacements, 669

bending stresses, interfacial tractions, and jumps are defined 670

through Eqs. (23) and (25)–(27). The transverse shear 671

stresses are derived from the bending stresses imposing local 672

equilibrium. The results will be compared with the explicit 673

2D elasticity solutions in Darban and Massabò (2017b). 674

4.1.1 Unidirectionally reinforced plate with imperfect 675

interfaces 676

In this application, the layers are assumed to have stacking 677

sequence (0, 0, 0). This example allows to focus on the effects 678

of the presence of imperfect interfaces on the local and global 679

responses of the plate. The through-thickness variation of the 680

longitudinal displacements at x2 � 0 and the transverse dis- 681

placements at x2 � L/2 are shown in Fig. 5. Results for the 682

bending stresses at x2 � L/2 and transverse shear stresses at 683

x2 � 0 are shown through the thickness in Fig. 6. Three cases 684

are analyzed: perfectly bonded interfaces, with 1/KS � 0, 685

interfaces with intermediate stiffness, with KSh/ĒL � 0.01, 686

and fully debonded interfaces, with KS � 0. 687
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Multiscale and Multidisciplinary Modeling, Experiments and Design

Fig. 5 Longitudinal, at x2 � 0,

and transverse, at x2 � L/2,

displacements shown through

the thickness in a simply

supported wide plate with

L/h � 4, stacking sequence

(0, 0, 0), transverse loading

f3 � f0 sin(πx2/L). Elastic

constants: ET /EL � 1/25,

GLT /EL � 1/50,

GT T /EL � 1/125 and

νLT � νT T � 0.25, and

ĒL � C̄22 � EL/(1 − νLT νT L )

The structural theory accurately captures the interfacial688

displacement jumps due to the presence of the imperfect689

interfaces; longitudinal displacements, bending, and trans-690

verse shear stresses are accurate for all cases examined. The691

transverse displacement of the fully bonded case slightly692

overestimates the average transverse displacement of the 2D693

elasticity solution due to the use of a shear correction fac-694

tor which has been derived for constant transverse shear,695

k44 � 5/6 � 0.833. If the shear elastic energy was matched696

to the 2D elasticity solution (Darban and Massabò 2017b)697

for the loading conditions assumed in this problem, a correc-698

tion factor equal to 0.936 would be obtained, which would699

improve predictions. The accuracy in the prediction of the 700

transverse displacements improves on decreasing the inter- 701

facial stiffness, since the three layers progressively behave 702

as individual thinner plates. For plates with higher length- 703

to-thickness ratios, e.g., L/h ≥ 10, the difference between 704

the predictions of the model and exact solution significantly 705

reduces for all interfacial stiffness values (not shown). 706

The results obtained using the homogenized model in 707

Massabò and Campi (2014) are also shown in Figs. 5 and 708

6. The solutions of the two structural models virtually coin- 709

cide but for the mid-span deflection when the interfaces are 710

imperfect or fully debonded; for these cases, the model for- 711
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Multiscale and Multidisciplinary Modeling, Experiments and Design

Fig. 6 Bending at x2 � L/2 and

transverse shear at x2 � 0

stresses through the thickness in

a simply supported three-layer,

unidirectionally reinforced wide

plate (0, 0, 0), L/h � 4,

transverse loading

f3 � f0 sin(πx2/L). Elastic

constants: ET /EL � 1/25,

GLT /EL � 1/50,

GT T /EL � 1/125 and

νLT � νT T � 0.25, and

ĒL � C̄22 � EL/(1 − νLT νT L ).

Transverse shear stresses are

calculated a posteriori from

bending stresses

mulated here performs better due to a better description of the712

shear deformations. The highest improvement in the solution713

is for the case of fully debonded layers for which the model in714

Massabò and Campi (2014) fully neglects the contribution of715

the shear deformations to the transverse compliance as a con-716

sequence of the continuity imposed between the transverse717

tractions at the layer surfaces and the interfacial tractions.718

Solutions obtained by other models using a similar zigzag719

homogenization are not shown, because they are affected by720

energy inconsistencies which yield important inaccuracies721

[see discussion in Massabò and Campi (2015)].722

4.1.2 Multilayered plate with imperfect interfaces 723

In this section, the plate in Fig. 4 is studied assuming a 724

stacking sequence of (0, 90, 0). This problem provides a 725

challenging case to assess the predictive capabilities of the 726

approximate model due to the highly anisotropic layup of the 727

thick plate. The through-thickness variation of the longitudi- 728

nal and transverse displacements, and bending and transverse 729

shear stresses at different cross sections of the plate are shown 730

in Figs. 7 and 8. Results are presented on varying the inter- 731

facial stiffness. 732
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Multiscale and Multidisciplinary Modeling, Experiments and Design

Fig. 7 Longitudinal at x2 � 0

and transverse at x2 � L/2

displacements through the

thickness in a simply supported

three-layer wide plate (0, 90, 0),

L/h � 4, transverse loading

f3 � f0 sin(πx2/L). Elastic

constants: ET /EL � 1/25,

GLT /EL � 1/50,

GT T /EL � 1/125 and

νLT � νT T � 0.25, and

ĒL � C̄22 � EL/(1 − νLT νT L )

The structural model well captures the zigzag patterns in733

the longitudinal displacements of the layers and the interfa-734

cial displacement jumps. The bending and transverse shear735

stresses are also in good agreement with the exact 2D elastic-736

ity solutions. The transverse displacement of the fully bonded737

case overestimates the average transverse displacement of738

the 2D elasticity solution and the relative error is around739

11%. The predictions improve on reducing the interfacial740

stiffness up to the fully debonded case, since the behavior741

is then controlled by the response of three separate thinner742

layers, and the relative error reduces to 3%. Using the cor-743

rection factor derived by matching the 2D elasticity shear744

strain energy for this loading case in a homogeneous mate- 745

rial, k44 � 0.936, instead of the value 5/6 obtained assuming 746

constant shear would improve the solutions in all cases and 747

reduce the error. These results confirm what already found for 748

the dynamic correction factor in Massabò (2017): no changes 749

in the correction factor are needed in the homogenized struc- 750

tural model to account for the multilayered structure, which 751

is already described through the multiscale treatment and the 752

zigzag enrichment. 753

As already noted for the previous example, the present 754

model predicts the transverse displacements more accurately 755

than the model in Massabò and Campi (2014). For plates 756
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Multiscale and Multidisciplinary Modeling, Experiments and Design

Fig. 8 Bending at x2 � L/2 and

transverse shear at x2 � 0

stresses through the thickness in

a simply supported three-layer

wide plate (0, 90, 0), L/h � 4,

transverse loading

f3 � f0 sin(πx2/L). Elastic

constants: ET /EL � 1/25,

GLT /EL � 1/50,

GT T /EL � 1/125 and

νLT � νT T � 0.25, and

ĒL � C̄22 � EL/(1 − νLT νT L ).

Transverse shear stresses are

calculated a posteriori from

bending stresses

with higher length-to-thickness ratios, e.g., L/h ≥ 10, the757

solution significantly improves and the difference between758

the predictions of the models and the exact solutions signifi-759

cantly reduces for all interfacial stiffness values (not shown).760

To further illustrate the capability of the homogenized761

model to predict the transverse displacements also in plates762

with imperfect interfaces, the mid-span displacement is763

shown on varying the interfacial stiffness (decreasing inter-764

facial stiffness from left to right) in Fig. 9. The displacement765

is normalized to the thickness average 2D elasticity solution766

of a fully debonded plate, (v3)2D,lim.767

Predictions using the homogenized model in Massabò and 768

Campi (2014) are also shown in Fig. 9 [solutions based on 769

other homogenized approaches are not presented because of 770

the energy inconsistencies discussed in Massabò and Campi 771

(2015)]. As already explained in Massabò and Campi (2014) 772

for a homogeneous material, this result is a consequence 773

of the imposition of continuity conditions on the transverse 774

shear tractions and the interfacial tractions. In thick plates 775

with imperfect or fully debonded interfaces, this leads to an 776

important underestimation of the shear contribution to the 777

transverse compliance. 778
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Multiscale and Multidisciplinary Modeling, Experiments and Design

Fig. 9 Mid-thickness transverse displacements at x2 � L/2 of a simply

supported three-layer, unidirectionally reinforced wide plate (0, 90, 0),

L/h � 4, transverse loading f3 � f0 sin(πx2/L); (v3)2D,lim is the

thickness average 2D elasticity solution of a fully debonded plate. Elas-

tic constants: ET /EL � 1/25, GLT /EL � 1/50, GT T /EL � 1/125

and νLT � νT T � 0.25, and ĒL � C̄22 � EL/(1 − νLT νT L )

4.2 Cantilevered wide plate779

To verify the predictive capabilities of the model in prob-780

lems with clamped edges, the cantilevered wide plate with781

L/h � 10 and two equal thickness layers connected by a782

linear-elastic interface is examined. The plate is subjected to783

a concentrated transverse force at the free end, Fig. 10. The784

elastic constants are ET /EL � 1/25, GLT /EL � 1/50,785

GT T /EL � 1/125 and νLT � νT T � 0.25. Two stacking786

sequences are examined: (0, 0) and (90, 0) with the 0° layer787

being the upper one. The boundary conditions are788

x2 � 0 : w̃0 � ṽ02 � ϕ̃2 � θ̃2 � 0

x2 � L :

{

Ñ2 � M̃2 � M̃ zS
2 � 0

Q̃2 � − F
. (43)

789

790

Figure 11a depicts the interfacial shear tractions, σ̂S ,791

Eq. (27), along the plate length for four values of the interfa-792

cial stiffness in the plate with the (0, 0) stacking sequence; the793

interfacial tractions coincide with those calculated a posteri-794

ori from local equilibrium. The results are compared with795

those of a discrete layer interface model (Andrews et al.796

2009) which represents the two layers as individual plates797

connected by interfacial normal and tangential tractions. The798

interfacial shear tractions predicted by the model proposed799

here coincide with those obtained by the discrete layer model800

for any values of the interfacial stiffness. Results obtained801

using the model in Massabò and Campi (2014) are also shown802

in Fig. 11a and highlight some inaccuracies for the interme-803

diate values of interfacial stiffness.804

Figure 11b depicts interfacial tractions calculated a pos-805

teriori from local equilibrium in the plate with (90, 0) layup.806

As for the previous case, the interfacial tractions are in agree- 807

ment with those of the discrete layer model for very large and 808

very small values of the interfacial stiffness over the entire 809

length of the plate except at the clamped boundary, where 810

the tractions predicted by the present model do not vanish 811

at the support. Some differences are observed for interme- 812

diate values of the interfacial stiffnesses which are due to 813

the assumption of neglecting the interfacial normal tractions 814

in the solution of the problem. A similar discrepancy would 815

be observed in all problems, where the interfacial normal 816

tractions are nonzero due to the lack of symmetry, e.g., in 817

a specimen with (0, 0) layup and unequal thickness layers. 818

The results would improve by accounting for the interfacial 819

normal tractions following, for instance, the methodology in 820

Massabò and Campi (2014). The results have not been com- 821

pared with 2D solutions and inaccuracies in the predictions, 822

similar to those observed in Groh and Tessler (2017) for fully 823

bonded plates, are expected at the clamped edge due to the 824

limitations of the structural theory. 825

4.3 Plate with in-planematerial discontinuity 826

The proposed model shows some limitations when applied 827

to study plates with in-plane discontinuities, due to changes 828

in the material properties of the layers or to the presence 829

of regions, where the status of the interfaces changes. This 830

behavior is controlled by the parameter G, which defines the 831

homogenized shear rigidity of the different domains of the 832

plate, Eq. (19). When the difference in G between two con- 833

tinuous domains is small the results are quite accurate, while 834

for large differences, important inaccuracies are observed. 835

To illustrate this behavior the End Notched Flexural spec- 836

imen in Fig. 12a, with normalized length 2L/h � 100 and 837

crack length a/h � 30 has been analyzed. The material is 838

homogeneous and the elastic constants are ET /EL � 1/25, 839

GLT /EL � 1/50, GT T /EL � 1/125, and νLT � νT T � 840

0.25. The crack is described by introducing at mid-thickness 841

and for 0 ≤ x2 ≤ a an imperfect interface with a very 842

small interfacial stiffness, KSh/ĒL � 10−4, with ĒL � 843

C̄22 � EL/(1 − νLT νT L ); this implies that the normalized 844

value of the homogenized shear rigidity in the delaminated 845

region is G/GLT � 0.01. The fully bonded region, for 846

a ≤ x2 ≤ 2L , is described by inserting a mid-thickness 847

interface with interfacial stiffness KSh/ĒL � 104, which 848

implies a homogenized shear rigidity G/GLT � 0.99. The 849

boundary conditions at x2 � 0 and x2 � 2L are those given 850

in Eq. (42), and the continuity conditions at x2 � a and 851

x2 � L are imposed on the global variables and force and 852

moment resultants. 853

The deformed shape of the specimen is shown in Fig. 12b. 854

The results are compared with those predicted by a discrete 855

layer interface model and show an unrealistic discontinuity 856

in the slope of the curve at the crack tip cross section. For 857
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Multiscale and Multidisciplinary Modeling, Experiments and Design

Fig. 10 Cantilevered plate

composed of two equal

thickness layers joined by a

linear-elastic interface and

subjected to a transverse load F

at the free end

Fig. 11 Interfacial tractions

along the length of a cantilever

plate with L/h � 10, two equal

thickness layers connected by a

linear-elastic interface and

subjected to a concentrated

transverse force F at the free

end (Fig. 10). The layer elastic

constants: ET /EL � 1/25,

GLT /EL � 1/50,

GT T /EL � 1/125 and

νLT � νT T � 0.25, and

ĒL � C̄22 � EL/(1 − νLT νT L ).

a Stacking sequence (0, 0); solid

lines: discrete layer and present

models, dashed–dotted lines:

model in Massabò (2014). b

Stacking sequence (90, 0); solid

lines: discrete layer model,

dashed lines: present model

a larger mismatch of the interfacial stiffnesses, namely, for858

KS � 0 and G/GLT � 0, along the crack, and 1/KS � 0859

and G/GLT � 1, in the intact domain, the inaccuracy would860

substantially increase and the model predict an unrealistic861

linear deflection in the cracked and intact regions of the862

specimen (not shown). The results obtained with the homog-863

enized structural model in Massabò and Campi (2014) are864

also shown in the figure and well reproduce the results of the 865

discrete layer model. 866

The continuity condition imposed on the transverse shear 867

forces at the crack tip cross sections and Eqs. (36) and 868

(37) explain that the difference between the gradients of 869

the transverse displacements in the two regions at x2 � a, 870

w0,2(a+)− w0,2(a−), is controlled by the difference between 871
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Multiscale and Multidisciplinary Modeling, Experiments and Design

Fig. 12 a End Notched Flexural

specimen with two equal

thickness layers bonded by a

linear-elastic interface with

interfacial stiffnesses

KSh/ĒL � 10−4 for

0 ≤ x2 ≤ a and KSh/ĒL � 104

for a ≤ x2 ≤ 2L . b Deformed

shape (shear correction factor

k44 � 5/6)

the constants AS
44 of the two domains, which is given in872

Eq. (37) and depends on the difference between the homog-873

enized shear rigidities. The kinematic continuity conditions,874

Eq. (34), do not enforce the gradients of the transverse dis-875

placements to coincide at continuity cross sections between876

different domains, as in classical structural theories, and877

impose instead a condition on the additional variable θ2. The878

problem is not present in the homogenized model in Massabò879

and Campi (2014), where continuity conditions are applied880

also on the gradient of the transverse displacement, and this881

explains why results in Fig. 12b are accurate.882

5 Conclusions883

A homogenized structural model has been formulated for lin-884

ear static analysis of multilayered beams and wide plates with885

layers joined by thin compliant interlayers, e.g., adhesive886

layers, or uniformly distributed mechanical connectors, e.g.,887

nails, dowels, screws, pins, or stitches. The thin interlayers888

and the action of the connectors are described by intro-889

ducing zero-thickness sliding interfaces, whose mechanical890

response is controlled by linear-elastic constitutive laws. The891

model extends the zigzag theory formulated in Tessler et al.892

(2009) for fully bonded beams to account for the presence of893

imperfect interfaces using the multiscale strategy proposed894

in Massabò and Campi (2014). The global displacement field895

of first-order shear deformation theory is enriched by a local896

field which describes the inhomogeneous material structure897

and the jumps at the imperfect interfaces. A homogenization898

technique based on the imposition of continuity conditions 899

on the tractions at the layer interfaces is used to define the 900

local variables in terms of the global variables. Homogenized 901

equilibrium equations are then derived using a variational 902

technique; they depend on four global variables, indepen- 903

dently of the number of layers or imperfect interfaces in the 904

system. The problem is solved in closed form, also in the 905

limit of fully debonded layers; this allows to easily investi- 906

gate and understand the effects of the status of the bonding 907

on global and local fields. 908

The model formulated in this paper overcomes the lim- 909

itations of models based on a discrete layer discretization 910

of the problem, where the number of displacement variables 911

depends on the number of layers and imperfect interfaces. 912

It also has advantages over models which are based on a 913

homogenized zigzag approach and describe the thin interlay- 914

ers as regular layers, since the solution is more efficient and 915

the model can treat systems made of individual layers joined 916

by mechanical fasteners, where the actual thickness of the 917

interfaces is zero. The model maintains the advantages of the 918

original zigzag theory in Tessler et al. (2009) in the treatment 919

of the shear deformations and is able to accurately predicts 920

global and local fields in simply supported highly anisotropic 921

thick plates, also in the presence of imperfect or fully 922

debonded interfaces. It improves solutions obtained with 923

homogenized structural models based on classical zigzag the- 924

ories (Massabò and Campi 2014). Improvements with respect 925

to similar homogenized approaches are also observed in the 926

treatment of clamped supports, where the fictitious boundary 927

layers observed in the previous works are reduced in size or 928
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not present. Important limitations are instead observed in the929

capability of the model to treat plates with in-plane disconti-930

nuities, such as finite length delaminations, for which other931

homogenized approaches prove to be more accurate.932

The formulation is limited to beams or plates in cylin-933

drical bending with layers aligned along the bending axes934

and linear elastic, sliding only, interfaces. The formulation935

can be extended to model 2D structures and interfaces with936

generally nonlinear traction laws, which are necessary to937

describe interfacial damage, delaminations, and problems,938

where the interfacial normal tractions are important, follow-939

ing the methodology in Massabò and Campi (2015).940
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AppendixA: Solutions for fullydebonded lay-949

ers950

In a plate with fully debonded layers (very compliant inter-951

layers or absence of mechanical connectors) with K i
S → 0952

for i �1, …, n − 1, G → 0 and G/K i
S → h/(n − 1) from953

Eq. (19), the enrichment function, Eq. (22), becomes954

(k)φ(x3) � − (x3 − xk−1
3 ) +

h

n − 1
(k − 1) −

k−1
∑

i�1

(i)h, (44)955

956

and the displacement field in terms of the global variables,957

Eq. (23), modifies as958

(k)v2(x2, x3) � v02(x2) + [ϕ2(x2) − θ2(x2)]x3 + θ2(x2)
(

xk−1
3 +

h(k − 1)

n − 1
−

k−1
∑

i�1

(i)h

)

(k)v3(x2) � w0(x2). (45)

959

960

The strain and stress fields are obtained from Eqs. (24) 961

and (25) setting G → 0: 962

(k)ε22(x2) � v02,2(x2) +
[

ϕ2,2(x2) − θ2,2(x2)
]

x3 + θ2,2(x2)
(

xk−1
3 +

h(k − 1)

n − 1
−

k−1
∑

i�1

(i)h

)

2(k)ε23(x2) � ϕ2(x2) + w0,2(x2) − θ2(x2)

(k)σ22(x2, x3) � (k)C̄22

{

v02,2(x2) + [ϕ2,2(x2) − θ2,2(x2)]x3

+θ2,2(x2)

(

xk−1
3 +

h(k − 1)

n − 1
−

k−1
∑

i�1

(i)h

)}

(k)σ23(x2, x3) � (k)C44[ϕ2(x2) + w0,2(x2) − θ2(x2)]. (46)

963

964

The equilibrium equation (38) and boundary conditions 965

(39) are obtained by taking the limit of the coefficients in 966

Eq. (37) as the interfacial stiffness goes to zero. For this limit, 967

the constants A22, B22, and D22, which are independent of 968

the interfacial stiffness, do not change, while the remaining 969

constants take the following forms: 970

BS
22 � − B22 +

n
∑

k�1

(k)C̄22
(k)h

{

xk−1
3 + h

k − 1

n − 1
−

k−1
∑

i�1

(i)h

}

DS
22 � − D22 +

n
∑

k�1

(k)C̄22

{

xk−1
3 + h

k − 1

n − 1
−

k−1
∑

i�1

(i)h

}

∫ xk
3

xk−1
3

x3dx3

DSS
22 � − 2DS

22 − D22

+

n
∑

k�1

(k)C̄22
(k)h

{

xk−1
3 + h

k − 1

n − 1
−

k−1
∑

i�1

(i)h

}2

A44 �

n
∑

k�1

(k)C44
(k)h; ASS

44 � −AS
44 � A44; ÂS

44 � 0. (47)

971

972

In a plate made of layers having the same thickness, h/n, 973

and elastic constants, the coefficients in Eq. (47) simplify. 974

When the origin of the coordinate system is placed at the 975

plate mid-thickness, they become 976

A22 � C̄22h; B22 � 0; D22 �
C̄22h3

12
;

A44 � −AS
44 � ASS

44 � C44h; ÂS
44 � 0

BS
22 � 0; DS

22 �
C̄22h3

12n
; DSS

22 �
C̄22h3

6n(n − 1)
. (48)

977

978

Appendix B: decoupled equilibrium equa- 979

tions 980

The equilibrium equation (38) is decoupled by subsequent 981

derivations/substitutions and eliminating w0,2 through the 982

introduction of a variable γ given by γ � ϕ2 + w0,2. The 983
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system of decoupled equations, which has the same order of984

the original system, is985

θ2,222 +
A44a2 + AS

44

A44a1
θ2,2 +

f3 + k44 A44a3,2(x2)

k44 A44a1
� 0

γ � a1θ2,22 + a2θ2 + a3(x2)

v02,22 �
B22 DSS

22 − DS
22 BS

22

A22 DS
22 − B22 BS

22

θ2,22 −
B22(k44 ASS

44 + ÂS
44)

A22 DS
22 − B22 BS

22

θ2

−
k44 AS

44 B22

A22 DS
22 − B22 BS

22

γ −
DS

22

A22 DS
22 − B22 BS

22

f2

ϕ2,22 �
(BS

22)2 − A22 DSS
22

A22 DS
22 − B22 BS

22

θ2,22 +
A22(k44 ASS

44 + ÂS
44)

A22 DS
22 − B22 BS

22

θ2

+
k44 AS

44 A22

A22 DS
22 − B22 BS

22

γ +
BS

22

A22 DS
22 − B22 BS

22

f2

w0,2 � γ − ϕ2, (49)

986

987

where988

a1 �
B22[B22 DSS

22 − DS
22 BS

22] + D22[(BS
22)2 − A22 DSS

22 ] + DS
22[A22 DS

22 − B22 BS
22]

k44 A44(A22 DS
22 − B22 BS

22) + k44 AS
44[(B22)2 − A22 D22]

a2 �
[D22 A22 − (B22)2][k44 ASS

44 + ÂS
44] − k44 AS

44[A22 DS
22 − B22 BS

22]

k44 A44(A22 DS
22 − B22 BS

22) + k44 AS
44[(B22)2 − A22 D22]

a3(x2) �
f2m[A22 DS

22 − B22 BS
22] + f2[D22 BS

22 − B22 DS
22]

k44 A44(A22 DS
22 − B22 BS

22) + k44 AS
44[(B22)2 − A22 D22]

. (50)

989

The first equation (49) is a third-order differential equa-990

tion in θ2, whose solution allows cascading solutions for γ ,991

through an algebraic equation, and for v02 and ϕ2, through992

solutions of two second-order differential equations. The last993

equation (49), which is a first-order differential equation,994

defines w0.995
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