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Abstract: Design of mechatronic systems involves the use
of multiple disciplines, frommechanics to electronics and
computer science. Different granularities of hybrid co-
simulations with increasing details can be used during
the design process. However, there is the need of model-
ing tools for effectively managing the necessary abstrac-
tion layers. This work proposes a combination of Aspect-
Oriented and Object-Oriented modeling for reaching the
goal. Moreover, it shows how the utilization of these tools
can facilitate design-space exploration, segregation of do-
mains of expertise and enhances co-design.

Keywords: Mechatronic systems, design life-cycle, hy-
brid co-simulation, aspect-orientated modeling, object-
orientated modeling.

Zusammenfassung: Der Entwurf mechatronischer Sys-
teme involviert mehrere Disziplinen, von der Mechanik
über die Elektronik bis zur Informatik. Während des Ent-
wurfsprozesses können verschiedene Granularitätsebe-
nen hybrider Co-Simulationsmodelle mit zunehmendem
Detailierungsgrad genutzt werden. In jedem Fall werden
Werkzeuge benötigt, welche die verschiedenen Abstrak-
tionsebenen effizient managen. Der vorliegende Beitrag
schlägt die Kombination von Aspekt- und Objektorientier-
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ter Modellierung vor, um dieses Ziel zu erreichen. Der Bei-
trag zeigt auf, wie die Nutzung dieser Werkzeuge die Un-
tersuchung möglicher Designvarianten, die Trennung der
Expertendomänen und damit ein verbessertes Design er-
möglichen.

Schlüsselwörter:Mechatronisches System, Entwicklungs-
lebenszyklus, hybride Co-Simulation, Aspekt-orientierte
Modellierung, Objekt-Orientierte Modellierung.

1 Introduction
Mechatronic systems (MTSs) are physical applications
controlled through software-based (e. g. microcontrollers
etc.) and/or digital logic controllers (e. g. FPGA etc.) [11].
The design of MTSs can be considered as the integration
of the following domain specific designs [3]:
1. mechanical: design of the physical application;
2. control: design of the control system and selection of

controllers in which control system will be deployed;
3. interfaces: design of the interface between physical

application and controllers. The interface consists of
sensors, actuators, communication means and proto-
cols, converters etc.

In current practice, mechanical designs, control designs
and their interfaces are rarely simulated together. Instead,
physical prototypes are preferred. A significant reason for
that is the complexity of modeling software deployments.
In fact, control system is usually deployed in software-
based controllers; these controllers can be seen as a hi-
erarchy of physical and logical layers. In general, they
consist of hardware architecture, Real-TimeOperating Sys-
tem and application environment. Each logical layer has
a scheduling strategy for computing processes and amem-
orymanagement policy.Moreover, hardware architectures
use computationmeans (e. g. pipelines etc.) andmemories
(e. g. cache, registers etc.) designed to optimize average-
case rather than worst-case performance [9]. This makes
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controllers highly not deterministic and difficult to simu-
late.

While it may be possible to implement a system that
satisfies the requirements just relying on physical proto-
types, there is no guarantee that the system is optimalwith
respect to performance, since interactions among disci-
plines are not considered. Therefore, our proposal is to use
simulation for deriving necessary performances of non de-
terministic elements (i. e. controllers and communication
networks) which assure an “optimal” solution, and then
verify their fulfillment through measurements on proto-
types [21]. Modeling tools and methodologies are neces-
sary for reaching this task. This paper identifies modeling
tools, while the definition of methodologies will be matter
of future work.

Inter-disciplinary influences and overall system be-
havior can be modeled through co-simulation [5]. Here,
Domain Specific Models of each disciplines are merged
and integrated. In particular, design of MTSs requires hy-
brid co-simulation: continuous dynamics combined with
discrete mode changes and discrete events [15]. Then,
functional behaviors can be implemented in this platform
and integrated with their non-functional behaviors. It is
common to use the term functional behavior for a model
that describes the core intended behavior of a system. For
example, a functional model of a DC motor may describe
the feedback control law and the physical dynamics of the
motor. So called non-functional behaviors might include
properties of an implementation such as control law de-
ployment in a software-based controller.

Different abstractions of hybrid co-simulations can be
performed during the design of MTSs for modeling non-
functional behaviors and ideally deriving specifications
of the elements necessary for deploying system function-
alities. When non-functional behaviors are implemented,
models grow in two directions:
– Vertical: mathematical models refine including more

details. For example, an incremental encoder can
be modeled as a velocity integrator in a functional
model, while as two square wave generators in a non-
functional model.

– Horizontal: orthogonal information must be anno-
tated to actors for modeling non-functional behav-
iors and for describing alternatives during design-
space explorations. For example, an actor which
implements a process may be characterized with its
execution time (non-functional behavior). Two hard-
ware architecturesmay be evaluated for deploying the
process. Each alternative will result in a certain execu-
tion time for the process on the basis of the hardware
performances, scheduling strategy and CPU load.

Therefore, models which implement non-functional be-
haviors can become awkward increasing time necessary
for the modeling activity; as shown in [2]. Modeling tools
are necessary for keeping models simple also when non-
functional behaviors are implemented. This work pro-
poses a method based on Aspect-Orientated (AO) and
Object-Orientated (OO) modeling.

The paper is organized as follows: related works are
described in Section 2. Section 3 illustrates AO and OO
modeling, while Section 4 models typical elements of
MTSs through the defined tools. Section 5 applies the ap-
proach to a case study. Conclusion and futurework are dis-
cussed in Section 6.

2 Related work
In order to integrate the disciplines involved in the design
of MTSs, hybrid co-simulationsmust be performed. Differ-
ent simulation environments can be used for hybrid co-
simulation.

In the Functional Mock-up Interface (FMI) stan-
dard [17], amodel is exported as a FunctionalMock-upUnit
(FMU) and instantiated in a host simulation environment.
FMI provides two mechanisms for interaction of FMUs:
– Model exchange: every FMU contains the mathemati-

cal model of the referenced model, while host simu-
lator is responsible for computation and communica-
tion of FMUs.

– Co-simulation: FMUs independently compute their
mathematical model. Host simulator implements co-
ordinator algorithms (master algorithms) for manag-
ing communication among FMUs.

Currently, both approaches have limitations. In model ex-
change, FMUs and host simulator authors have to agree
on the semantics. Such an agreement has been shown
to rarely exist, for example, due to failure of the Hybrid
Systems Interchange Format [18]. Since an FMU for co-
simulation includes its own simulation engine, there is no
requirement for matching semantics of the host simula-
tor. However, host simulator master algorithms are even
today based on constant communication step size strongly
restricting the efficiency of FMU solvers. Various research
is dedicated to findingmaster algorithms for deterministic
and efficient hybrid FMI co-simulations [4, 20].

Moreover, in the actual form of the standard, it is im-
possible to model cross-cutting concerns. In fact, every
FMU is an “atomic” element accessible through methods
defined from the standard. Cross-cutting concerns would
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Figure 1: Communication aspect for modeling latency
due to serial communication.

require additional methods for constraining the FMU exe-
cution (as shown in Section 3).

In order to avoid issues related to interpretation se-
mantics, the solutionmaybe to use simulation tools which
natively support hybrid co-simulation. MATLAB, Labview,
Modelica and other tools which constitute the “de-facto”
standard for MTSsmay be used. Moreover, frameworks for
modeling in Simulink the effects of software deployment
as schedulers, processes, and communication means and
protocols are proposed in [7] and [12]. However, in their
current version, these tools do not allow AOmodeling and
just Modelica supports OO modeling. We consider AO and
OO fundamental tools for the design of MTSs as will be il-
lustrated in next sections. Therefore, Ptolemy II [19] is uti-
lized in this paper which allows hybrid co-simulation, and
both AO and OO modeling.

3 AO and OOmodeling in Ptolemy II
Ptolemy II modeling approach is based on actors: con-
current components that communicate by exchanging
messages. An actor has a set of input ports, output
ports and state. In contrast with other actor-oriented ap-
proaches [1, 13], a director/Model of Computation (MoC),
rather than the individual actors themselves, defines de-
tails of scheduling and communication. This is possible
because every actor implements a standard executable in-
terface: an interface constituted of methods which are in-
voked by the director. The computation of an actor is per-
formed through the calling of its fire method. Typically
this method involves reading inputs, processing data and
producing outputs.

Amodel canbeannotatedwithadditional information
that is orthogonal to the model. An example would be the

evaluation of the cost for implementing a certain system.
By annotating each model element with a price, the cost
of the entire system canbe statically computed. AOmodel-
ing enables the annotation of actors with information that
is evaluated dynamically. Ptolemy II provides two types of
aspects [2]:
– Communication aspect: wrap the communication be-

tween actors by intercepting token transmission. The
communication aspect operates on the token from the
sending actor (e. g. delays, modifies, drops the token)
before the receiving actor gets the token.

– Execution aspect: wrap the execution of an actor;
i. e. the aspect behavior is executed before the fire
method is called.

An example of a communication aspect is shown in Fig-
ure 1. This aspectmodels the latency introduced by a serial
communication. The communicationbetween ActorAand
ActorB is annotated with the aspect and configured with
parameters describing the latency on that connection. The
link will be annotated with a textual parameter that binds
the communication link to the SerialCommunication
aspect.

This aspect may also be associated to other connec-
tions in the model. It assumes that a physical wire is uti-
lized for each connection. If networks must be modeled,
composite aspects which implement arbitrary models of
protocols and network elements should be utilized.

OO implementation in Ptolemy II is described in [14].
An example is shown in Figure 2. The class definition icon
is outlined in light blue to distinguish it visually from
an instance. ClassCounter adds CounterParam value to
a Count variable every time a trigger signal is received.
Then, a subclass is derived from ClassCounter. The sub-
class inherits actors, ports, and parameters from the base
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Figure 2: OO modeling in Ptolemy II.

class. The inherited components are outlined with a pink
line, indicating visually that they are inherited compo-
nents. The subclass extends the base class by adding some
additional actors, connections, and ports. These additions
do not have the pink outline.

Classes and subclasses in Ptolemy II are purely syn-
tactic objects and play no role in the execution of a model:
they arenot visible to thedirector and their ports cannot be
connected to other ports. Therefore, instancesmust be cre-
ated. Instances inherit actors, ports, and parameters from
the base class and are visible to the director.

4 Modeling of MTSs through AO
and OO

This section illustrates how horizontal and vertical refine-
ments can be implemented through AO and OOmodeling.
In particular, we propose to use AO modeling for cross-
cutting concerns.Wedefineas cross-cutting concernsnon-
functional behaviors which do not modify the mathemat-
ical model of an actor. Whereas, different phases of the
design process requires differentmathematical models for
the same actor and different configuration parameters for
design-space exploration. We propose OO modeling for

them. Next, we illustrate these concepts by applying them
to typical elements of MTSs.

4.1 Software-based controllers

A software-based controller is a device for computing pro-
cesses. In many real-time systems today, processes are ex-
ecuted periodically. A controller consists of a hardware
architecture (e. g. multicore computers etc.) which imple-
ments algorithms for scheduling processes (e. g. EDF etc.)
and strategies for computing single processes. Two com-
putation strategies can be adopted depending on the in-
stant in which outputs are written:
– Read-compute-write (RCW): every time a process is be

computed, inputs are read, then control logic is exe-
cuted and after that, outputs are written. The time the
outputs are written depends on the execution time of
the process.

– Write-read-compute (WRC): outputs computed during
the previous cycle are written, inputs are read and
then, computation is performed. The time in which
outputs are written is independent from the execution
time. Thus, IO operations are deterministic, given that
the execution time is less than the period.
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Figure 3:Model of a process computed with the WRC
strategy.

Figure 4: Example of an RCW
software-based controller.

Control logic is written in processes which are computed
by hardware on the basis of the selected scheduling al-
gorithm and computing strategy. For example, a dual
core controller may have static assignment of processes to
CPUs. Every CPU schedules processes with an EDF algo-
rithm and processes are computed with the WRC strategy.
Next, we show how a generic real-time controller can be
modeled.
– Process: a composite actor is created for every process.

This actor contains the implemented control logic. It
is computed with the Synchronous Reactive (SR) di-
rector [8] (i. e. zero execution time) and is triggered
by a discrete clock. Figure 3 illustrates the implemen-
tation of a process which sums two inputs every “X”
seconds. BusAssemblerand BusDisassembleractors
are used for grouping process I/Os. The left hand side
MostRecent actor is necessary for making process be
computed at the ticks of the discrete clock. If port a

and b had been directly connected to process input
ports, a computation would be performed every time
a token was received from either port a or b.

– Computation strategy: the right hand side MostRecent
actor of Figure 3 is used for implementing an WRC
strategy. In fact, if the process has a non zero exe-
cution time, this actor is triggered before the compu-
tation has been performed. The removal of the actor
would result in an RCW strategy.

– Hardware architecture and scheduling algorithm:
execution aspects are created on the basis of the
chosen configuration. Figure 4 illustrates a two
processors controller in which processes are stati-
cally assigned to CPUs. ProcessA and ProcessB are
assigned to CPU1, while ProcessC and ProcessD
to CPU2. Every CPU implements a fixed priority
scheduling algorithm with preemption. Priority and
execution time are set as parameters of the association
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of aspect with actors. The utilization of a scheduler
with/without preemption is configured as parameter
of the FixedPriorityScheduler¹.

The defined aspectsmodel software deployment in a clean
way without increasing model complexity. Aspects are
reusable and canbe employed in differentmodels. Remov-
ing aspects from models is done by simply deleting the
aspect; no other changes to the model are required. The
utilization of aspects for modeling software-based con-
trollers facilitates design-space exploration. In fact, differ-
ent deployment configurations such as hardware compo-
nents and scheduling strategies can be quickly modeled
and simulated.

4.2 Physical elements

During a design process, physical plant, sensors and actu-
ators may have different mathematical models for model-
ing different abstractions of the system and different con-
figuration parameters for design-space exploration. OO is
used for tracing the different abstraction models and eas-
ily modeling alternatives of physical means.

For example, we can consider a rotational incremen-
tal encoder. Two classes can be created for modeling two
layers of abstractions: ideal and quadrature encoder. Both
classes have angular velocity as input, but the ideal en-
coder outputs motor position, while the quadrature en-
coder outputs two quadrature waves. The two classes can
be saved in a user library. Then, a class canbe dragged and
dropped into a model and instances can be created. Con-
figuration parameters of instances can override the ones of
the base class.When an instance overrides one parameter,
the constraint for that parameter to have the same value of
the class one is broken. Whereas, if configuration param-
eters of instances do not override the ones provided in the
class, changes in the class configuration parameters will
automatically propagate to all instances. Again, this fea-
ture facilitatesmodeling during design-space exploration.

4.3 Communication buses and networks

Many MTSs include multiple computing platforms, which
communicate via networks to control plants with large

1 FixedPriorityScheduler: the aspect implements java con-
trol logic which can be found at: https://chess.eecs.berkeley.
edu/ptexternal/src/ptII/doc/codeDoc/ptolemy/actor/lib/aspect/
FixedPriorityScheduler.html

physical extent. Even when the plant is not physically dis-
tributed, networked solutions may be used to distribute
computational load, provide physical partitioning of the
application, enable more timely local control, or to pro-
vide redundancy. The inclusion of networks into MTSs re-
quires temporal characteristics of networks to be included
in the MTS model, since network latency will negatively
affect the timing of communication between platforms [6].

Communication aspects are proposed for modeling
network effects as shown in Figure 1. These aspects may
implement communication protocols and compute the la-
tency of messages by including congestion effects.

5 Case study
In this section we show how aspects and objects can be
used during a design process for simulating all domains of
MTSs through different abstraction layers via simulations.

We consider a load thatmust performa periodic trajec-
tory with a certain tracking error. A DCmotor is selected as
actuator. A cascade control of position, velocity and cur-
rent is implemented. Position is sensed through a rota-
tional encoder, and current through a current transducer.
Velocity is obtained numerically from position.

The first abstraction layer that can be performed is
functional simulation. Here, a model implements the dy-
namic equations of motor and load, and control law is
computed with a continuous controller: SR director which
interacts every time step of the solver with the physical
model. A cascade control of position, velocity and current
is implemented from the continuous controller. An ideal
encoder is used for sensing position, while velocity is di-
rectly obtained from themotor equations. Target trajectory
is computed through a state machine which is reset when
the final position has been reached.

Then, software in the loop (SIL) simulation can be per-
formed [10]. Control law implemented in the continuous
controller is discretized and necessary sample rates are
identified. After that, deployment strategy is selected: con-
trol law is written in processes computed with the iden-
tified sample rates, processes are assigned to CPUs, and
a scheduling strategy is defined for single CPUs. Deploy-
ment strategy includes also communication means and
protocols. We think this layer should be utilized for esti-
mating acceptable values for deployment means (e. g. tol-
erated worst case execution time, WCET, maximum com-
munication latency etc.). The definition of methodologies
for this layer will be matter of future investigations.

In the case study, SIL is implemented starting from the
functional model through these steps:
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Figure 5: Software in the loop model.

Figure 6: Hardware in the loop model.

– ideal encoder is replaced with a two quadraturewaves
encoder;

– encoder and current are sensed through acquisition
devices with certain sample rates;

– DC motor is commanded through PWM;
– a digital logic controller is used for computing veloc-

ity and position from the encoder output signals and
for regulating the PWM duty cycle. Digital logic con-
trollers implement control logic directly through hard-
ware digital gates. Therefore, their execution time can
be neglected in comparison with software-based con-
trollers. Their logic is computed through SR directors
in the simulationmodel. For the reason that a PWMac-
tor is defined in Ptolemy II within the continuous do-
main, we can abstract the functionality and consider
target duty cycle directly realized from that actor.

– Target trajectory, and position, velocity and current
control laws are computed in processes running in
a software-based controller. Processes are assigned to
one CPU which utilizes a fixed priority scheduling; as
the controller in which code will be deployed. Execu-
tion time of processes is arbitrary assigned in order to
identify acceptable solutions.

– AnHMI is implemented for communicatingwith oper-
ators;

– digital and analog I/Os are used for all the connec-
tions (i. e. negligible latency). The only exception is
the communication with the HMI which is performed
serially.

SIL simulation model is represented in Figure 5. Aspects
and objects are created from domain-specific engineers
and then assembled generating a complete model of the
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MTS. Interoperation semantics is granted from the utiliza-
tion of Ptolemy II simulation software.

Eventually, a hardware in the loop (HIL) simulation
is implemented [16]. Target controllers are selected, code
is generated and controllers run with a real time model
of the application. It is verified that controllers fulfill
the specifications identified in the SIL phase (e. g. WCET
etc.). HIL simulation model is shown in Figure 6. The
NI-CompactRIO actor implements an interfacewhich com-
municates with the real controller. Generally, ethernet
communication is usedwhich allows communication time
not lower than few milliseconds. Digital logic controllers
can be executed at much faster rates. For this reason, we
decided to leave this object “virtual” because the commu-
nication with physical world would have corrupted the re-
sults. Moreover, digital logic controllers are deterministic
and there is no need to simulate them through HIL.

6 Conclusion and future work
This paper has shown how AO and OO can support de-
signers for modeling non-functional behaviors of MTSs
without excessively increasing the complexity of func-
tional models. These tools allow segregating domains of
expertise because aspects and objects canbe implemented
by domain-specific expert and then easily integrated in
a uniquemodel of the solution.Moreover, design-space ex-
ploration is faster due to the modularity and interchange-
ability of aspects and objects. Next, we discuss potential
future work.

SIL is the most critical phase of the design process.
Many degrees of freedom (DoFs) must be selected as toler-
ated WCET of controllers, control law types (e. g. lead/led,
PI, PID etc.) and parameters (e. g. gains, sample rate etc.),
communicationmeans and protocols etc. Generally, phys-
ical prototypes are built and “try-and-error” iterations are
performed until working solutions are met. There is the
need of optimization-based methodologies for identifying
optimal combination of the DoFs before selecting physical
components and building prototypes.
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