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Abstract
The present paper concerns the invariants of generically nef vector bundles on ruled surfaces.
By Mehta–Ramanathan Restriction Theorem and by Miyaoka characterization of semistable
vector bundles on a curve, the generic nefness can be considered as a weak form of semista-
bility. We establish a Bogomolov-type inequality for generically nef vector bundles with nef
general fiber restriction on ruled surfaces with no negative section, see Theorem 3.1. This
gives an affirmative answer in this case to a problem posed by Peternell [17]. Concerning
ruled surfaces with a negative section, we prove a similar result for generically nef vector
bundles, with nef and balanced general fiber restriction and with a numerical condition on
first Chern class, which is satisfied, for instance, if in its class there is a reduced divisor, see
Theorem 3.5. Finally, we use such results to bound the invariants of curve fibrations, which
factor through finite covers of ruled surfaces.

Keywords Vector bundles · Chern classes · Fibrations · Finite covers

Mathematics Subject Classification 14J60 · 14D06

1 Introduction

The present paper concerns the invariants of generically nef vector bundles on ruled surfaces,
see Definition 2.1. By Mehta–Ramanathan Restriction Theorem 2.2 and by Miyaoka char-
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acterization of semistable vector bundles on a curve, Theorem 2.3, the generic nefness can
be considered as a weak form of semistability, see Corollary 2.4.

A question about a possible relation between generic nefness and Bogomolov-type
inequality has been posed by Th. Peternell in the paper [17, remarks after Theorem 3.8].
By considering the Harder–Narasimhan filtration of a vector bundle E on a projective sur-
face, Miyaoka proved the inequality c2(E) ≥ 0, provided that E is generically nef and c1(E)

is nef.
In the present paper, under the hypotheses of generic nefness and the nefness of the generic

fiber restriction, we give an affirmative answer to Peternell’s question for ruled surfaces with
invariant e = −C2

0 ≤ 0 (see Theorem 3.1):

Theorem 1.1 Let Y be a ruled surface on a smooth curve B with invariant e = −C2
0 ≤ 0.

Let E be a generically nef vector bundle of rank r on Y with nef generic fiber restriction.
Then

c2(E) ≥
∑r−1

i=1 ai
2a

c1(E)2,

where c1(E) ≡ aC0 + δL and (a1, . . . , ar ) is the generic splitting type of E .

In the e > 0 case, we prove a similar bound under two additional assumptions, namely
that the general fiber restriction is balanced, and c1(E) · C0 ≥ − e

2 , see Theorem 3.5. The
last condition is satisfied, for instance, if c1(E) is nef or if c1(E) is effective and C0 is not
contained in the base locus of |2 c1(E) − C0|; this assumption is typically satisfied by the
Tschirnhausen sheaf associated with a finite cover of smooth surfaces with reduced branch
divisor.

Our results allow us to obtain some bounds on the invariants of fibered surfaces factoring
through finite covers. In these specific cases, the bounds found are better than the recent
bounds found byLu andZuo [13].Moreover, in the case of primitive cyclic coversπ : S → Y ,
we obtain the same bound λg,0,n given in [9, Remark 4.4], see Theorem 5.7.

The techniques involved concern vector bundles and algebraic surfaces techniques. We
believe that our approach can be the starting point for further research in the theory of vector
bundles on fibered surfaces in general.

2 Notation and preliminaries

Let us introduce the definitions involved in the notion of generic nefness, see [17, Definition
3.1]).

Definition 2.1 A vector bundle E on a smooth curve is nef if the tautological divisor of P(E)

is nef.
A vector bundle E on a projective variety X of dimension n ≥ 2 is called generically

nef with respect to an ample divisor H if the restriction E|C is nef for a general curve
C = D1 ∩ · · · ∩ Dn−1, where Di ∈ |mi H | are general and mi >> 0; such a curve C is said
to beMR-general, which means general in the sense of Mehta–Ramanathan, with respect to
H (w.r.t. H ).

A vector bundle E is generically nef if for every ample divisor H on X , the restriction E|C
is nef for a MR-general curve w.r.t. H .
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We now recall Mehta–Ramanathan Restriction Theorem andMiyaoka characterization of
semistable vector bundles on a curve, which imply that the generic nefness can be considered
as a weak form of semistability.

Theorem 2.2 (Mehta–Ramanathan Restriction Theorem) A locally free sheaf E on a projec-
tive variety X is semistable w.r.t. an ample divisor H if and only E|C is semistable for C
MR-general w.r.t. H.

Theorem 2.3 (Miyaoka) Let C be a smooth curve and E a vector bundle on C. Then E is
semistable if and only if the Q-bundle E ⊗ det E∨

rk E is nef, where E∨ = Hom(E,OC ) is the
dual vector bundle.

Corollary 2.4 If E is semistable w.r.t. H and if c1(E) · H ≥ 0, then E is generically nef w.r.t.
H.

Finally, since we shall consider vector bundles on ruled surfaces, we can talk of the general
splitting type.

Definition 2.5 Let p : Y → B be a ruled surface over a smooth curve B, and let E be a rank
r vector bundle on Y . We say that (a1, . . . , ar ), with a1 ≤ · · · ≤ ar is the generic splitting
type of E if for a general fiber L of p we have

E ⊗ OL ∼=
r⊕

i=1

OP1(ai ).

We say that a fiber L is a jumping line if

E ⊗ OL �

r⊕

i=1

OP1(ai ).

Moreover, we say that E is uniform if it has no jumping lines.

Finally, let us recall that for a tensor product V ⊗ L, where V is a rank r vector bundle
and L is a line bundle on a smooth surface, we have:

c1(V⊗L) = c1(V)+r c1(L), c2(V⊗L) = c2(V)+(r−1)c1(V)·c1(L)+ r(r − 1)

2
c1(L)2.

(2.1)

3 Bogomolov-type inequalities

Theorem 3.1 Let Y be a ruled surface on a smooth curve B with invariant e = −C2
0 ≤ 0.

Let E be a generically nef vector bundle of rank r on Y with nef generic fiber restriction.
Then

c2(E) ≥
(∑r−1

i=1 ai
2a

)

c1(E)2,

where c1(E) ≡ aC0 + δL and (a1, . . . , ar ) is the generic splitting type of E .
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Proof We prove the statement by induction on r ≥ 2. If r = 2, the claimed inequality has
been proved in [5, Theorem 2.8], in the slightly different setting of blown up ruled surfaces,
and under the assumption on E to be weakly positive and with nef general fiber restriction.
We observe, however, that the weak positivity of a vector bundle implies its generic nefness.
Moreover, since the weak positivity is preserved for any quotient bundle, the same properties
hold for such quotients. Then it is simple to check that the proof of the statement in the rank
2 case can be done with some little adaptations.

So let us assume r ≥ 3 and suppose that the claim holds for any vector bundle of rank
q ≤ r − 1 satisfying the assumptions of the statement.

We can consider the push–pull map

p� p�E(−ar C0) → E(−ar C0);
such a map is generically injective; hence, it is an injective map of locally free sheaves.
Moreover, the quotient sheaf is locally free outside a subscheme Z of codimension 2.

It follows that we have a Brosius-type sequence (see [4]):

0 → p� p�E(−ar C0) → E(−ar C0) → G ⊗ IZ → 0. (3.1)

By setting A := p�(E(−ar C0)), A := c1(A) = and α := deg(A), and by tensoring by
OY (ar C0), we get:

0 → (p�A)(ar C0) → E → G(ar C0) ⊗ IZ → 0, (3.2)

where G is a vector bundle of rank q ≤ r − 1 andA is a vector bundle of rank r − q ≥ 1. We
observe that r −q is equal to the number of integers in the general splitting type (a1, . . . , ar ),
which are equal to ar , so that we have

a =
r∑

i=1

ai =
q∑

i=1

ai + (r − q)ar . (3.3)

The sequence (3.2) gives

c2(E) = c1(p
�A (ar C0)) · c1(G(ar C0)) + c2(p

�A (ar C0)) + c2(G(ar C0)) + Z . (3.4)

Let us compute each term appearing in (3.4). By the first relation in (2.1), we have
c1(p�A (ar C0)) ≡ p�A + (r − q)ar C0. Next, we set M := G(ar C0). From the sequence
(3.2), we get

c1(M) ≡ (c1(E) − p�A − (r − q)arC0) ≡ aM C0 + (δ − α)L (3.5)

where we have set

aM :=
q∑

i=1

ai ,

and

c1(p�A (ar C0)) · c1(M) = (p�A + (r − q)ar C0) · (aM C0 + (δ − α)L) =
= (r − q)ar aM C2

0 + (α aM + (r − q)ar (δ − α).
(3.6)

By taking into account the second relation (2.1), we get

c2(p�A (ar C0)) = (r − q − 1)p�A · (ar C0) + (r−q)(r−q−1)
2 a2r C2

0 =
= (r − q − 1)α ar + (r−q)(r−q−1)

2 a2r C2
0 .

(3.7)
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Moreover, since M is a quotient of E away from the zero-dimensional scheme Z , M is
a generically nef vector bundle of rank q < r . Now we analyze the general fiber restriction
of M. Since E has nef general fiber restriction, we have that the general splitting type
(a1, . . . , ar ) satisfies

0 ≤ a1 ≤ · · · ≤ ar . (3.8)

Moreover, by construction, the generic splitting type of M is

(a1, . . . , aq)

where the integers ai are the first q integers appearing in (3.8); hence, also M is nef on the
generic fiber restriction.

It follows thatM satisfies the assumptions of the theorem and we can apply the induction
hypothesis, which gives the inequality

c2(M) ≥
(∑q−1

i=1 ai
2 aM

)

c1(M)2. (3.9)

By (3.5), we get
c1(M)2 = a2M C2

0 + 2 aM(δ − α), (3.10)

and by observing that

q−1∑

i=1

ai = aM − aq ,

the inequality (3.9) becomes

c2(M) ≥
(
aM − aq

2

)
(
aM C2

0 + 2 (δ − α)
)
. (3.11)

By taking into account (3.6), (3.7), (3.11) and the fact that Z is effective, from (3.4), we get

c2(E) ≥ (r − q)ar aM C2
0 + αaM + (r − q)ar (δ − α)

+ (r − q − 1) ar α + (r−q)(r−q−1)
2 a2r C2

0 +
(

(aM−aq )

2

)
aM C2

0

+ (aM − aq)(δ − α).

(3.12)

We can rewrite the inequality above in the form

c2(E) ≥ dC2
0 + (aq − ar )α + cδ, (3.13)

where

d := (r − q)ar aM + 1

2
(r − q)(r − q − 1)a2r + 1

2
(aM − aq) aM,

c := (r − q)ar + aM − aq .

In particular, the coefficient of α in the expression (3.13) is

aq − ar < 0.

Nowwe shall bound the integerα. Recall that a generically nef vector bundle has a generically
nef first Chern class, since exterior products of nef vector bundles are nef (see, for instance,
[12, Theorem 6.2.12, (iv)]). Hence, c1(M) is generically nef. So for any nef divisor xC0+ yL
with x ≥ 1 and y ≥ − 1

2 x C2
0 , we have

c1(M) · (xC0 + yL) ≥ 0,
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that is

(aM C0 + (δ − α)L) · (xC0 + yL) = aM
(
xC2

0 + y
) + x(δ − α) ≥ 0,

which gives

α ≤ δ + aM
(
xC2

0 + y
)

x
,

and since this holds for any x ≥ 1 and any y ≥ − 1
2 x C2

0 , we get

α ≤ δ + 1

2
aM C2

0 .

By substituting the right hand expression in (3.13), we get

c2(E) ≥
(

d + 1

2
(aq − ar ) aM

)

C2
0 + (c + aq − ar ) δ. (3.14)

Next we shall suitably express the integer δ. As c1(E)2 = a2C2
0 + 2aδ, we can write

δ = −a

2
C2
0 + c1(E)2

2a
.

Then the inequality (3.14) becomes

c2(E) ≥ (d + 1

2
(aq − ar ) aM − a

2
(c + aq − ar ))C

2
0 + (c + aq − ar )

2a
c1(E)2. (3.15)

By computing the coefficients in (3.15), we get that the coefficient of C2
0 is zero and we get

c2(E) ≥
(
aM + (r − q − 1)ar

2a

)

c1(E)2 =
(
a − ar
2a

)

c1(E)2,

which is the bound in the statement. ��
As a particular case, we can consider generically nef vector bundles E with nef and

balanced general fiber restriction, that is the restriction of E to a general fiber of Y is a
balanced vector bundle with splitting type (m, . . . ,m,m + 1, . . . ,m + 1).

Corollary 3.2 Let Y be a ruled surface on a smooth curve B with invariant e = −C2
0 ≤ 0. Let

E be a generically nef vector bundle of rank r on Y , such that the restriction of E to a general
fiber of Y is a nef and balanced vector bundlewith splitting type (m, . . . ,m,m+1, . . . ,m+1),
and set c1(E) ≡ aC0 + δL, a = mr + k and 1 ≤ k ≤ r − 1.

Then

c2(E) ≥
(
a − (m + 1)

2a

)

c1(E)2 =
(
r − 1

2r
− r − k

2ar

)

c1(E)2.

Moreover, the equality holds if and only if E is uniform and E is an extension sitting in an
exact sequence of the type

0 → p�B ⊗ OY ((m + 1)C0) → E → p�V ⊗ OY (mC0) → 0,

where B is a rank k vector bundle on B satisfying deg c1(B) = δ, and V is a rank r − k
vector bundle on B satisfying c1(V) ≡ 0.
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Proof The bound is a direct consequence of the general bound. The characterization of the
vector bundles attaining the equality can be directly obtained by imposing the equalities in
all the bounds considered in the proof of Theorem 3.1. ��

We remark that vector bundles with balanced general fiber restriction are the natural
generalization of vector bundles with semistable general fiber restriction, in which case the
Bogomolov discriminant is nonnegative byMoriwaki’s Theorem [14, Theorem 2.2.1], which
we recall.

Theorem 3.3 Let ϕ : Z → C be a fibration from a smooth surface Z to a smooth curve C.
Let E be a torsion-free sheaf on Z such that the restriction of E to a general fiber F ⊂ Z is
a μ-semistable locally free sheaf. Then the Bogomolov discriminant �(E) satisfies

�(E) = c2(E) − rk(E) − 1

2 rk(E)
c1(E)2 ≥ 0.

Since in Moriwaki Theorem the only assumption is the semistability of the general fiber
restriction, one can wonder, if the generic balancedness condition could be sufficient in order
to have a Bogomolov-type inequality. A negative answer is given in the following example.

Example 3.4 On Y = P
1 × P

1, consider the rank two split vector bundle

E = OY (m, b1) ⊕ OY (m + 1, b2).

We have

c1(E)2 = 2(2m + 1)(b1 + b2), c2(E) = m(b1 + b2) + b1,

so we see that c2(E) can be arbitrarily lowered by adjusting b1, even with c1(E)2 fixed.

Let us conclude this section with a result in the e > 0 case. We will consider only
the balanced case, and we will need to assume c1(E) · C0 ≥ − e

2 , which is satisfied, for
instance, if c1(E) is nef, or if c1(E) is effective and C0 is not contained in the base locus of
|2 c1(E) −C0|. The last condition is typically satisfied by Tschirnhausen sheaves associated
with surface covers with reduced branch divisor.

Theorem 3.5 Let Y be a ruled surface on a smooth curve B with invariant e = −C2
0 > 0. Let

E be a generically nef vector bundle of rank r on Y , such that the restriction of E to a general
fiber of Y is a nef and balanced vector bundlewith splitting type (m, . . . ,m,m+1, . . . ,m+1),
c1(E) ≡ aC0 + δL, a = mr + k and 1 ≤ k ≤ r − 1.

Assume, moreover, that c1(E) · C0 ≥ − e
2 .

Then

c2(E) ≥
(
a − (m + 1)

2a
− a − k(m + 1)

2a(a − 1)

)

c1(E)2. (3.16)

Proof The proof is similar to that of Theorem 3.1. By assumption, the restriction of E to a
general fiber L of p : Y → P

1 is balanced. Since by hypothesis c1(E) · L = a = mr + k,
the general fiber restriction of E is of the type

E|L ∼=
k⊕

OP1(m + 1) ⊕
r−k⊕

OP1(m).

Then we have again a Brosius-type exact sequence:

0 → p� p�E(−(m + 1)C0) → E(−(m + 1)C0) → G ⊗ IZ → 0, (3.17)
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where p� p�E(−(m + 1)C0) has rank k and G has rank (r − k).
Set A := p�E(−(m + 1)C0), A := c1(A) =, α := deg(A) and M := G((m + 1)C0), so

that (3.17) becomes

0 → p�A((m + 1)C0) → E → M ⊗ IZ → 0, (3.18)

and

c1(M) = c1(E) − p�A − k(m + 1)C0 ≡ (r − k)m C0 + (δ − α)L.

The main difference in the present proof is the bound on c2(M). Since the restriction of the
Brosius exact sequence (3.17) to the general fiber L ∼= P

1 gives

0 →
k⊕

OP1 →
k⊕

OP1 ⊕
r−k⊕

OP1(−1) →
r−k⊕

OP1(−1) → 0,

the restriction of G to the general fiber of Y is μ-semistable. Since M is a twist of G, the
same holds for the general fiber of M. Hence, M is Bogomolov semistable by Moriwaki
Theorem 3.3, and we have

c2(M) ≥ (r − k − 1)

2(r − k)
c1(M)2 = (r − k)(r − k − 1)

2
m2 C2

0 + (r − k)m(δ − α).

By observing that with the notations of the proof of Theorem 3.1, we have

ar = m + 1, q = r − k, aM = (r − k)m,

the relation (3.12) becomes

c2(E) ≥ k(r − k)m(m + 1)C2
0 + (δ − α)k(m + 1) + α(r − k)m + (k − 1)(m + 1)α

+ k(k − 1)

2
(m + 1)2C2

0 + (r − k)(r − k − 1)

2
m2 C2

0 + (r − k)m(δ − α), (3.19)

which simplifies as

c2(E) ≥
(

k(r − k)m(m + 1) + k(k − 1)

2
(m + 1)2 + (r − k)(r − k − 1)

2
m2

)

C2
0

−α + (k + (r − 1)m)δ.

Next we use the generic nefness of c1(E) to bound α = deg(A). Let H be a very ample
divisor of Y which avoids the points of Z arising in the Brosius sequence (3.17). Since E
is generically nef, and since M ⊗ IZ is a quotient of E , G((m + 1)C0) ⊗ Om0H is nef for
m0 >> 0, hence c1(M) ⊗ Om0H ) ≥ 0.

An ample divisor on a ruled surface admitting a negative section C0 is of the type H ∈
|xC0 + yL|, with x > 0 and y > x e. The condition c1(M) · m0H ≥ 0 gives

α ≤ δ + m(r − k)
y − xe

x
; (3.20)

in particular α ≤ δ + m(r − k) 1x for any x > 0, so

α ≤ δ. (3.21)

Moreover, using again the trick

δ = −a

2
C2
0 + c1(E)2

2a
, (3.22)
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we get

c2(E) ≥
(

k(r − k)m(m + 1) + k(k − 1)

2
(m + 1)2 + (r − k)(r − k − 1)

2
m2

−a

2
(k + (r − 1)m − 1)

)
C2
0 + (k + (r − 1)m − 1)

2a
c1(E)2,

that is

c2(E) ≥ (r − k)m

2
C2
0 + a − (m + 1)

2a
c1(E)2. (3.23)

The last bound is not satisfactory, since C2
0 < 0, so we finally use the assumption that

c1(E) ·C0 ≥ C2
0
2 , which gives δ ≥ ( 12 − a) C2

0 . The expression (3.22) yields C
2
0 ≥ − c1(E)2

a(a−1) ,

and by (3.23), we get

c2(E) ≥
(
a − (m + 1)

2a
− a − k(m + 1)

2a(a − 1)

)

c1(E)2.

��

4 The normalized relative canonical divisor

In this section, we shall apply the Bogomolov-type inequalities to the Tschirnhausen sheaf of
a finite cover of a Hirzebruch surface. Indeed, by the ViehwegWeak Positivity Theorem [21],
the Tschirnhausen sheaf is weakly positive away from the branch locus, and hence nef on the
complement of the branch locus (see also [11]1), so it is in particular generically nef. This
will allow us to bound the relative Euler characteristic χ f of a fibration factoring through a
finite cover.

Moreover, we shall introduce the normalized relative canonical divisor of a finite mor-
phism π and we shall show that its self-intersection is related with the slope.

We first recall how to determine the invariants and the slope of a fibration factoring through
a finite cover.

Definition 4.1 Let π : S → Y be a finite cover of degree n between smooth surfaces. Then
the sheaf π�OS is locally free of rank n. Similarly to the argument given in [15], we can
consider the natural injective map OY → π�OS , which admits a splitting by 1/n times the
trace map. Let E1 be the cokernel of such a map; E1 is a locally free sheaf of rank n − 1 on
Y and we have

π�OS ∼= OY ⊕ E1.

Following [15], it is customary to call the dual sheaf E := E∨
1 the Tschirnhausen sheaf of the

finite morphism π .
Finally, if ωS/Y denotes the relative canonical sheaf, we have (π�ωS/Y )∨ ∼= π�OS by

relative duality, hence

π�ωS/Y ∼= OY ⊕ E .

1 Appendix to [18].
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Lemma 4.2 Let S, Y be smooth surfaces, and let π : S → Y be a finite cover of degree n
with relative canonical divisor KS/Y . Then in the rational Chow ring A(Y ) ⊗ Q, we have

(1) π�KS/Y ≡ 2c1(E),
(2) χ(OS) = nχ(OY ) + 1

2c1(E) · KY + 1
2c1(E)2 − c2(E);

Proof The first relation is well known in the case of flat finite morphisms. The result follows
from Grothendieck–Riemann–Roch Theorem applied to the morphism π : S → Y and the
sheaf ωS/Y .

The Grothendieck–Riemann–Roch Theorem asserts that for a proper morphism π of
smooth varieties we have

ch(π! ωS/Y ) · td TY = π�(ch ωS/Y · td TS).

As R1π�ωS/Y = 0 since π is finite, we have

π! ωS/Y = π�ωS/Y = E .

This yields

(n + c1(E) + 1

2

(
c21(E) − c2(E)

) ·
(

1 − 1

2
KY + χ(OY )

)

= π�

(

1 + KS/Y + 1

2
K 2

S/Y

)

·
(

1 − 1

2
KS + χ(OS)

)

.

The divisorial part satisfies

c1(E) − n

2
KY = π�

(

KS/Y − 1

2
KS

)

.

As KS ∼ π�KY + KS/Y , we have π�KS ≡ nKY + π�KS/Y and the first claim follows.
The equality between the codimension two cycles gives formula (2). ��

Definition 4.3 A fibration f : S → B is a flat surjective morphisms between a smooth
surface S and a smooth curve B with connected fibers, such that if x ∈ B is general then
Fx := f −1(x) is a smooth curve.

Following Xiao [20], we can associate with f : S → B a rational number s( f ), called the
slope of f , defined as:

s( f ) := K 2
f

χ f

where K f = KS − f �KB is the relative canonical divisor, χ f := deg f�ω f , and ω f :=
OS(K f ).

Remark 4.4 We recall the well-known relations:

K 2
f = K 2

S − 8(g − 1)(g(B) − 1), χ f = χ(OS) − (g − 1)(g(B) − 1). (4.1)

Corollary 4.5 Let f : S → B beafibration,which factorizes throughafinite coverπ : S → Y
of a ruled surface Y . Then

K 2
f = K 2

S/Y − 4

(g + n − 1)
c1(E)2, χ f = (g + n − 2)

2(g + n − 1)
c21(E) − c2(E). (4.2)

s( f ) = K 2
f

χ f
= K 2

S/Y − 4
(g+n−1)c1(E)2

(g+n−2)
2(g+n−1)c

2
1(E) − c2(E)

. (4.3)
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Proof We can write K 2
S = K 2

S/Y + 2KS/Y · π�KY + nK 2
Y , then by projection formula and

Lemma 4.2 K 2
S = K 2

S/Y + nc1(E) · KY + nK 2
Y . As K 2

f = K 2
S − 8(g − 1)(b − 1), where

b = g(B), we have

K 2
f = K 2

S/Y + nc1(E) · KY + nK 2
Y − 8(g − 1)(b − 1).

Finally, by choosing the generators of the Neron-Severi group of Y to be the classes [C0]
and [L] where L ∈ NS(Y ) is the class of a ruling and C0 ∈ NS(Y ) is the class of a section
of minimal self-intersection, we may write

c1(E) ≡ (g + n − 1)C0 +
(

c1(E)2

2(g + n − 1)
+ (g + n − 1) C2

0

)

L, (4.4)

and the first formula follows.
Taking into account that χ f = χ(OS) − (g − 1)(b− 1), the formula for χ f follows from

Lemma 4.2, (2). ��
Now we introduce the normalized relative canonical divisor of a finite cover, and we shall

see that it is closely related to the slope of the induced fibration. Such a connection is not
surprising, as a similar argument has already been used in such a context.

For instance, the Cornalba–Harris theory for bounding the slope of any fibration f relies
on the study of the normalized relative canonical divisor of a fibration f : S → B

K f := K f − 1

g
f �c1( f�ω f ), ω̃ f := OS(K f )

and on the normalized Hodge bundle

E f := f�ω̃ f .

Indeed, the pseudo-effectivity of f�(K2
f ), proved by Cornalba and Harris in [7, Theorem 1.1,

Proposition 2.9 and Section 4], under the assumption that the Hilbert points of the general
fiber are semistable, is a crucial step in their proof of the classical bound on the slope

s( f ) ≥ 4 − 4

g
.

A similar task has been used by Fedorchuk and Jensen [10], who obtained as a straight
consequence of the positivity of c1( f�ω̃

⊗2
f ) the result that if S → B is a flat family of

Gorenstein curves with the generic fiber a canonically embedded curve whose 2nd Hilbert
point is semistable (e.g., with the generic fiber a general trigonal curve), then the slope
satisfies the inequality s( f ) ≥ 5 − 6

g .

Also in the context of projective vector bundles π : P(G) → Y fibered in P
r−1 over a

variety Y a similar divisor is studied, namely the so-called normalized tautological divisor

TG := TP(G) − 1

r
π�c1(G) = −1

r
KP(G)/Y ,

and the nefness of such a divisor has been investigated by Nakayama [16]. More precisely,
Nakayama proved the following result:

Theorem 4.6 Let G be a rank r vector bundle on a smooth complex projective variety Y of
dimension d ≥ 2. Then the following conditions are equivalent:

• TG is nef;
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• G is μ-semistable and
(
c2(G) − (r−1)

2r c1(G)2
)

· Ad−2 = 0 for an ample divisor A.

It turns out that in our context, as we are dealing with a finite morphism and a rank (n−1)
torsion-free sheaf E with c1(E) = c1(π�ωS/Y ), it is natural to give the following definition:

Definition 4.7 Let π : S → Y be a finite morphism of degree n. The Q-divisor

�π := KS/Y − 1

(n − 1)
π�(c1(π�ωS/Y )).

is called the normalized relative canonical divisor of π .

To explain the reason which leads to the definition of �π , we need to recall the following
well-known result (see [6]).

Theorem 4.8 Let Y be an integral surface and let π : S → Y be aGorenstein cover of degree
n ≥ 3. There exists a unique P

n−2-bundle πY : P → Y and an embedding i : S → P such
that π = πY ◦ i . Moreover, P ∼= P(E) and the ramification divisor R satisfies:

OS(R) ∼= i�OP(E)(1).

Remark 4.9 Consider the embedding S ⊆ P(E). Since (TP(E))|S = KS/Y , we get that

�π = (TE )S .

The connection between the slope and �π is given by the following:

Proposition 4.10 Let f : S → B be a fibration, with general fiber F a smooth curve of genus
g.

Assume that f factorizes through a finite degree n cover π : S → Y , where Y is a ruled
surface, and assume that the general fiber restriction of the Tschirnhausen sheaf E is a twist
of the trivial sheaf.

By setting

χmax
0 := g

2(n − 1)(g + n − 1)
c1(E)2, (4.5)

we have

χmax
0 ≥ χ f

and the following equality holds:

K 2
f = F(n, g)χmax

0 + �2
π , (4.6)

where

F(n, g) = 6 − 2

n − 1
− 2n

g

is the conjectural bound of Stankova (see [19, Conjecture 13.3]).
In particular,

s( f ) ≥ F(n, g) + �2
π

χmax
0

. (4.7)

Proof By Theorem 3.3, we have c2(E) ≥ n−2
2(n−1)c1(E)2, and since by Corollary 4.5 it holds

χ f = (g+n−2)
2(g+n−1)c

2
1(E) − c2(E), it follows that χ f ≤ (g+n−2)

2(g+n−1)c
2
1(E) − n−2

2(n−1)c1(E)2 = χmax
0 .

With a direct computation, one can obtain the equality (4.6), and the inequality (4.7)
follows immediately. ��
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As a consequence, the problem of bounding the slope can be rephrased in a problem of
bounding �2

π .
The Bogomolov-type inequalities given in Corollary 3.2 and Theorem 3.5 allow us to

derive a similar result also in the non-divisible case (n − 1) � |g. Indeed, the Tschirnhausen
sheaf is nef outside the branch locus by the Weak Positivity Theorem of Viehweg [21, 3.4].
If we assume that the general fiber restriction of E is balanced, which can be rephrased
with the assumption that the general fiber of the fibration corresponds to a point outside the
Maroni locus of a suitable Hurwitz scheme or of the moduli space, and that the branch divisor
is reduced, which corresponds to impose the open condition that π has generically simple
ramifications, then Corollary 3.2 and Theorem 3.5 apply.

Therefore, recalling thatχ f = (g+n−2)
2(g+n−1)c

2
1(E)−c2(E) and setting g+n−1 = (n−1)m+k,

we have

χ f ≤
⎧
⎨

⎩

(
(g+n−2)
2(g+n−1) − (n−2)

2(n−1) + n−1−k
2(n−1)(g+n−1)

)
c1(E)2 if C2

0 ≥ 0
(

(g+n−2)
2(g+n−1) − (g+n−1)−(m+1)

2(g+n−1) + (g+n−1)−k(m+1)
2(g+n−1)(g+n−2)

)
c21(E) if C2

0 < 0.

that is

χ f ≤ χmax
k :=

{ m
2(g+n−1)c1(E)2 if C2

0 ≥ 0
(

m
2(g+n−1) + (n−1−k)m

2(g+n−1)(g+n−2)

)
c21(E) if C2

0 < 0.
(4.8)

Then we can write

K 2
f = K 2

S/Y − 4

g + n − 1
c1(E)2 = �2

π + F(n, g, k)χmax
k

where

F(n, g, k) :=
{

6g−2(n−1)
(g+n−1−k) − 2

n−1 − 2k
(n−1)(g+n−1−k) if C2

0 ≥ 0
(6g−2(n−1))(g+n−2)

(g+n−1−k)(g+2n−3−k) − 2(g+n−1)(g+n−2)
(n−1)(g+n−1−k)(g+2n−3−k) if C2

0 < 0.

This shows that the function F(n, g, k) can be used to replace the function F(n, g) in the
non-divisible case; more precisely, we have:

Proposition 4.11 Let f : S → B a semistable fibration over a rational curve B. Assume that
f factorizes through a finite cover of degree n of ruled surface and that the Tschirnhausen
sheaf is balanced on the general fiber. If the genus of the general fiber of f is g = (m −
1)(n − 1) + k, where 1 ≤ k ≤ n − 2, then

s( f ) ≥ F(n, g, k) + �2
π

χmax
k

. (4.9)

Remark 4.12 The bounds (4.7) and (4.9) given in Propositions 4.10 and 4.11 hold also for
fibrations f : S → B, which are the relatively minimal model of fibrations satisfying the
given hypotheses. Indeed, it is enough to observe that the self-intersection of the relative
canonical divisor of a relatively minimal model of a given fibration cannot decrease, and the
relative Euler characteristic is unchanged.

5 Positivity results on 3�

From the results of the previous section, it follows that a bound on �2
π gives a bound also on

the slope. Therefore, we are going to establish some conditions, under which the normalized
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relative canonical divisor has nonnegative self-intersection. Some very similar problems have
been studied in [2,3], but their results do not apply to our case.

We first analyze the restriction of the divisor �π to the general fiber.

Proposition 5.1 Let F be a general fiber of the fibration f : S → B. If g = (n − 1)(m − 1)
and F is not contained in the Maroni locus, the restriction of �π to F satisfies:

(1) (�π)|F ∼ KF − (m − 2)�F , where �F ∈ g1n is a gonal divisor;
(2) h0(OF (KF − (m − 2)�F )) = n − 1;
(3) the linear system |KF − (m − 1)�F | is base point free.
Proof We have

(�π)|F = (KS/Y − π�(mC0 + kL))|F = (KS − π�KY − π�(mC0 + kL))|F
∼ KF − (m − 2)�F ,

where �F ∈ g1n is a gonal divisor, which proves (1).
Let us compute h0(OF ((m − 2)�F )) using the Geometric Riemann Roch Theorem:

h0(OF ((m − 2)�F )) = (m − 2)n − dim〈(m − 2)�F 〉,
where 〈(m − 2)�F 〉 ⊂ P

g−1 is the linear span on the canonical model of the curve F . Now
recall that since F isMaroni general, the canonical model of F lies onW ∼= P(⊕n−1OP1(m−
2)) embedded in P

g−1 by the tautological linear system. It follows that

dim〈(m − 2)�F 〉 = (m − 2)(n − 2) + m − 3,

hence by the Geometric Riemann Roch Theorem we have

h0(OF ((m − 2)�F )) = (m − 2)n − (m − 2)(n − 2) − (m − 3) = m − 1,

hence by Riemann Roch

h0(OF (KF − (m − 2)�F )) = h0(OF ((m − 2)�F )) − ((deg(m − 2)�F ) − g + 1)

= m − 1 − (m − 2)n + g − 1 = n − 1,

which proves (2).
Finally, assume by contradiction that P is a base point of the linear system |KF − (m −

2)�F |. Then by the Geometric Riemann Roch Theorem, we would have

dim〈KF − (m − 2)�F 〉 = dim〈KF − (m − 2)�F − P〉 + 1,

and

dim〈(m − 2)�F 〉 = dim〈(m − 2)�F + P〉.
We claim that the last equality cannot be satisfied. Indeed, the subspace 〈(m − 2)�F 〉 cuts
on W exactly m − 2 fibers; indeed, since the minimum degree of a unisecant curve on W
is m − 2, the subspace 〈(m − 2)�F 〉 contains no horizontal component. It follows that the
divisor cut out by 〈(m − 2)�F 〉 on the canonical model of F is exactly (m − 2)�F . ��
Corollary 5.2 Let f : S → B be a fibration in irreducible curves, with general fiber F a
smooth curve of genus g. Assume that f factorizes through a finite degree n coverπ : S → Y ,
where Y is a ruled surface, with Tschirnhausen sheaf generically a twist of the trivial sheaf.

If the restriction map H0(OS(�π)) → H0(OF (�π)) is surjective, then �2
π ≥ 0.
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Proof We claim that the linear system |�π | has no horizontal base locus.
Assume by contradiction that �π has a horizontal component κ in its base locus. Then

κ|F is contained in the base locus of |(�π)|F |. But the latter linear system is base point free
by Proposition 5.1, (3). This proves that |�π | has no horizontal base locus.

Finally, since all the fibers of f are irreducible, �π has no vertical base locus.
Summing up, as�π is effective and |�π | has no positive dimensional base locus, we have

�2
π ≥ 0. ��

5.1 Rational fibrations with uniformTschirnhausen sheaf

In the followingproposition,we shall prove that in the divisible case, thefibrations over a ratio-
nal curve, with uniform and generically balanced Tschirnhausen sheaf and with semistable
unisecant restriction, satisfy the assumption of Proposition 5.1. We remark that by a recent
result given in [8], a sufficiently general curve in the Hurwitz scheme of degree n covers
of curves of given genus p ≥ 0 has a μ-semistable Tschirnhausen sheaf. Therefore, the
assumption of semistability on unisecant restrictions can be read as a generality assumption
concerning the family of pull-back curves of a family of general unisecant curves.

Proposition 5.3 Let f : S → P
1 be a fibration with irreducible fibers, with general fiber F a

smooth curve of genus g and gonality n, where n ≥ 5, such that (n−1)|g and with balanced
reduced gonal direct image sheaf. Assume that f factorizes through a finite morphism π :
S → Y , where p : Y → P

1 is a Hirzebruch surface.
If the restriction of E to some unisecant ample divisor is semistable and if E is uniform,

then the restriction map H0(OS(�π)) → H0(OF (�π)) is an isomorphism.
In particular, s( f ) ≥ F(n, g).

Proof We set c1(E) = (g+ n − 1)C0 + δL, where C0 is a section with C2
0 ≤ 0 and L a fiber

of ruling on Y = Fe.
Since E is uniform, the restriction to any fiber L of the ruling satisfies E|L ∼=

⊕n−1
i=1 OP1(m), where m = g

n−1 + 1. Then the injective map of sheaves p� p�E(−mC0) →
E(−mC0) is an isomorphism, so

E(−mC0) ∼=
n−1⊕

i=1

OY (p�Ai ).

By the assumption that E is semistable with respect to an ample divisor H ∼ C0 + (e+ a)L ,
we get degAi = k, for any i , and k = δ

(n−1) ≥ 0, so that

c1(E) ∼ (n − 1)(mC0 + kL). (5.1)

We finally get

h0(OS(�π)) = h0(π�OS(�π)) ∼= h0(OY (−(mC0 + kL)) ⊕ E(−(mC0 + kL)))

= h0(⊕n−1
i=1OY ) = n − 1.

On the other hand,

h0(OS(�π − F)) = h0(π�OS(�π − F)) ∼= h0(E(−(mC0 + (k + 1)L)))

= h0(⊕n−1
i=1OY (−L)) = 0.
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Hence the restriction exact sequence

0 → OS(�π − F) → OS(�π) → OF (�π) → 0

determines the isomorphism of the statement. ��
Remark 5.4 We observe that in the case when E is a uniform vector bundle, that is�(E) = 0,
and if E isμ-semistable with respect to some ample divisor, then the normalized tautological
divisor TP(E) − 1

(n−1) p
�c1(E) where p : P(E) → Y is nef by Nakayama’s Theorem 4.6. It

follows that
(
TP(E) − 1

(n−1) p
�c1(E)

)

S
= KS/Y − 1

(n−1)π
�c1(E) = �π is also nef. Since the

restriction map is surjective by Proposition 5.3, all this implies directly that in such a case
�2

π ≥ 0.

5.2 Upper bounds on32
� and primitive cyclic covers

We recall that for finite covers, we have the following upper bound on R2 in terms of c1(E)2,
which is a consequence of theHodge Index Theorem applied to theQ - divisor R−π� 2

n c1(E):

Lemma 5.5 Let π : S → Y be a Gorenstein cover degree n, and let E be the Tschirnhausen
sheaf. Then

K 2
S/Y ≤ 4

n
c1(E)2. (5.2)

Proof See [5, Lemma 3.12]. ��
Corollary 5.6 With the assumptions of Lemma 5.5, we have

�2
π ≤ (n − 2)2

n(n − 1)2
c1(E)2.

Proof Since �π = KS/Y − 1
n−1 π�c1(E), we have

�2
π = K 2

S/Y − 2KS/Y · 1

n − 1
π�c1(E) + 1

(n − 1)2
(π�c1(E))2,

and by projection formula and by Lemma 4.2, (1), it follows

�2
π = K 2

S/Y − 4

n − 1
c1(E)2 + n

(n − 1)2
c1(E)2 = K 2

S/Y − 3n − 4

(n − 1)2
c1(E)2

≤ (n − 2)2

n(n − 1)2
c1(E)2.

��
We remark that the Hodge Index Theorem also implies that the equality holds in (5.2) if and
only if

KS/Y ∼ 1

n
π�2c1E ≡ 1

n
π�Bπ .

Such a condition is satisfied, for instance, when all ramification points of π are total
ramification points, that is of maximal ramification index n.
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A typical context, when this happens, is the one of primitive cyclic covers π : S → Y ,
that is covers such that there exist an effective divisor A ⊂ Y and an effective divisor D ⊂ S
such that

S ∼= Spec ⊕n−1
i=0 OY (i A),

and such that π : S → Y does not factorize through two covers of smaller degree. In this
case, the following holds:

(1) Bπ ∼ nA and π�Bπ = nD;
(2) KS/Y ∼ (n − 1)D;
(3) π�OS(KS/Y ) ∼= ⊕n−1

i=0 OY (i A);
(4) c1(E) = n(n−1)

2 A, c2(E) = n(n−1)(n−2)(3n−1)
12 A2.

From this, we obtain that

KS/Y ∼ π� 2

n
c1(E), K 2

S/Y = 4

n
c1(E)2, �2

π = (n − 2)2

n(n − 1)2
c1(E)2.

Since c1(E) = n(n−1)
2 A, if A2 ≥ 0, we get �2

π ≥ 0. This gives a bound, which is exactly
the bound λg,0,n given in [9, Remark 4.4]:

Theorem 5.7 Let f : S → B be the relatively minimal model of a finite cyclic cover π :
S̃ → Y of a ruled surface Y .

Then

s( f ) ≥ 24(g − 1)(n − 1)

(n2 + 4ng − 3n + 2 − 2g)
= 6 − 6

2n − 1
− 12n(n2 − 1)

2g(2n − 1) + (n − 1)(n − 2)
.

Proof Recall that the self-intersection of the relative canonical divisor of a relatively minimal
model of a given fibration cannot decrease, and the relative Euler characteristic is unchanged.
Then we can apply formula (4.6). ��

Remark 5.8 We observe that for cyclic covers the Tschirnhausen sheaf is uniform.

5.3 A Beniamino Segre’s construction

Following closely [1, Chapter 21 Section 12], we shall show that for a general [C] ∈ M1
g,n ,

where M1
g,n is the closure of the n-gonal locus in the moduli space Mg of curves of genus

g, if p : C → P
1 is the gonal covering, then the corresponding Tschirnhausen sheaf EC is

balanced.

Theorem 5.9 Let g ≥ 3. For any integer n such that3 ≤ n ≤ g
2+1, there exists a smooth curve

C of genus g admitting a complete g1n without base points, and such that the corresponding
Tschirnhausen sheaf EC is balanced.

Proof Let Fe be a Hirzebruch surface with invariant e = −C2
0 ≥ 0. Consider the complete

linear system


n,h = |nC0 + hL|.
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Assume that h > ne
2 . Then 
n,h is very ample and the image of the morphism φ
n,h : Fe →

P
N associatedwith
n,h is a smooth surface; hence, byBertini’s theorem, the generalmember

of 
n,h is smooth. Then, by adjunction, the genus of the general element � ∈ 
n,h is

gn,h = (n − 1)(h − 1) − ne

2
(n − 1).

Moreover, by Riemann–Roch, we have

dim 
n,h = gn,h + 2n + 2h − 1 − ne.

Following [1, Theorem 12.16 see page 870], we immediately see that, given any fixed integer
n ≥ 3 and any fixed integer e ≥ 0, the intervals

In,h =
[
gn,h − n − h + 1 + ne

2
, gn,h

]

cover the half line [0,∞). Then there exist an integer δ and an integer h such that 0 ≤ δ ≤
h + n − 1 − ne

2 and
g = gn,h − δ. (5.3)

A simple computation shows that

δ ≤ gn,h ≤ dim
n,h − 2δ − 1.

By Castelnuovo’s theorem applied to 
n,h , see for instance [1, Theorem 12.6 page 865],
it follows that given δ general points a1, . . . , aδ ∈ Fe, there exists an irreducible curve
� ∈ 
n,h = |nC0+hl| having δ nodes at a1,…, aδ and no other singularities. Let ν : Z → Fe

be the blowup at a1,…, aδ and let Ei := ν−1(ai ), i = 1, . . . , δ. The normalization C of �

is contained in Z and ν|C : C → � is the normalization morphism. Let H0 := ν−1(C0) and
L̃ := π−1(L). The smooth curve C has a g1n induced by the ruling of Fe. Let us denote by
D a divisor of the g1n . Then

D ∼ L |C , C ∈ |nH0 + hL̃ −
δ∑

i=1

Ei |.

By standard surface theory, we get

KZ ∼ −2H0 − (2 + e)L +
δ∑

i=1

Ei .

Then (n − 2)H0 + (h − e − 2− v)L − ∑δ
i=1 Ei ∼ KZ +C − vL and by adjunction theory

on surfaces we have the following exact sequence

0 → OZ (KZ − vL) → OZ (KZ + C − vL) → ωC (−vD) → 0 (5.4)

Notice now that by projection formula and by Serre duality we have

h1(Z ,OZ (KZ − vL)) = h1(Z ,OZ (vL)) = h1(P1,OP1(vP))

= h0(P1,OP1((−2 − v)P)) = 0,

since v ≥ 0. As h0(Z ,OZ (KZ − vL)) = 0, by considering the long cohomology sequence
associated with the sequence 5.4, we obtain that the restriction morphism

H0(Z ,OZ (KZ + C − vL)) → H0(C, ωC (−vD))

is an isomorphism. In particular h0(C, ωC (−vD)) = h0(Z ,OZ (KZ + C − vL)).
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Since a1, . . . , aδ are general points, we have

max{−1, h0(Z ,OZ (KZ + C − vL)} = max{−1, dim 
n−2,h−(e+2+v) − δ}.
Hence ifwe assume that h−(e+2+v) ≥ (n−2)e

2 , then dim
n−2,h−(e+2+v)−δ = g−(n−1)v.

We have shown that if h − (e + 2 + v) ≥ (n−2)e
2 and if k is the unique integer such that

1 ≤ k ≤ n − 2 and g = m(n − 1) + k then

h0(C, ωC (−vD)) = (m − v)(n − 1) + k (5.5)

if m ≥ v.
Finally, let p : C → P

1 be the gonal morphism; then p�ωC = ωP1 ⊕ EC (−2), where

EC = OP1(m1) ⊕ OP1(m2) ⊕ · · · ⊕ OP1(mn−1),

with m1 ≤ m2 ≤ · · · ≤ mn−1. By projection formula and by Eq. 5.5, it follows that in fact
m1 = · · · = mn−1−k = m − 1 and mn−k = · · · = mn−1 = m, that is EC is balanced. ��

6 Sharpness results

In this section, we construct some examples that realize the bound on the slope given in
Proposition 5.3.

6.1 Existence of fibrations with the required properties: rational basis

Let Y = P
1 × P

1 and T = Y × P
1. Let πi : T → P

1 be the projection with respect to the
i-th factor and set Li := π�

i OP1(1) where i = 1, 2, 3. Let

S ∈ |nL1 + nL2 + nL3|
be a general element, where n ≥ 3. If 〈x0, x1〉 = H0(T ,L3), 〈y0, y1〉 = H0(T ,L2) and
〈z0, z1〉 = H0(T ,L1), then

S = V (F) where F =
n∑

i=0

ai ((y0 : y1), (z0 : z1))xn−i
0 xi1.

Thus if ai ((y0 : y1), (z0 : z1)) ∈ H0(Y ,OY (n, n)) for i = 0, . . . , n are general, the
morphism π : S → Y is finite of degree n. Consider now the composition f : S → P

1 of
the inclusion j : S ↪→ T with the natural morphism ρ : T → Y followed by the projection
on the first factor π ′

1 : Y → P
1. The fiber over z0 = a, z1 = b is the curve C[a:b] =

V (F[a:b]) where F[a:b] = ∑n
i=0 ai ((y0 : y1), (a : b))xn−i

0 xi1 inside P
1 × P

1. In particular,
f : S → P

1 is a fibration in curves of genus g = (n − 1)2 and gonality n such that

s( f ) = F(n, g).

Moreover �π is effective and it is induced on S by the linear system (0, 0, n − 2), hence
�2

π = 0. Finally by performing the push-forward of the standard exact sequence

0 → OT (KT |Y ) → OT (KT |Y + S) → ωS|Y → 0,

by projection formula and by relative duality it follows that the Tschirnhausen sheaf satisfies
E ∼= OY (n, n)⊕n−1, so it is a uniform and balanced vector bundle which is also semistable
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on the (0, 1)-sections of the projection π ′
1 : Y → P

1. This shows that the bound given
in Proposition 5.3 is sharp. Note that instead of S ∈ |nL1 + nL2 + nL3| we can take
S ∈ |n1L1 + n2L2 + n3L3| where ni ≥ 1 to obtain similar results.

6.2 Existence of fibrations with the required properties: other cases

Let T = C1 × P
1 × P

1, where C1 is a smooth curve of genus g1 > 0, and let L :=
π�OC1(L1) ⊗ π�

2OP1(n) ⊗ π�
3OP1(n). As above we obtain a semistable n-gonal fibration

over C1 of genus g = (n − 1)2 such that:

s( f ) = 6 − 6

(n − 1)2
= F(n, g) + 4

n − 2

(n − 1)2

Also in this case �2
π is zero and the Tschirnhausen sheaf is uniform and with balanced

fiber restriction.
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