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ARTICLE INFO ABSTRACT

Keywords: Among specific applications of species distribution models (SDMs), the use of SDMs probabilistic maps for guid-
Ground validation ing field surveys is increasingly applied. This approach is particularly used for poorly known and/or cryptic
MaxEnt

species in order to better assess their distribution. One of the most interesting aspects of these applications is that
predictions could be clearly validated by real data, subsequently obtained in the field. Despite this important
difference from other applications, to our knowledge, the efficiency of different algorithms, metrics for model
evaluation and algorithm-specific settings have not yet been sufficiently investigated.

This research performs a literature survey to investigate which species, study area characteristics, variables,
techniques and settings were used or suggested by previous authors. We then applied the most common ap-
proaches to guide field surveys for a set of 70 vascular plants in an endemic-rich area of Sardinia (Italy) of ap-
prox. 9000 ha, the flora of which was deeply investigated during the last two years. Our main aims were: (1)
to use pre-model records for predicting the potential occurrence of plant species with different sample size, de-
tectability and habitat preference, (2) to apply results for guiding searches for new populations of poorly known
species, (3) to calculate the model performance according to independent real presence/absence data (testAUC)
and (4) to compare different modelling data input and settings on the testAUC basis.

By emphasizing the importance of field verification, both the review and the worked example supported the
reliability of SDMs for a wide range of species to understand where species could potentially be present and
therefore to optimise resources for the search of new species localities. This study may help understand and sum-
marise the most applied methodological approaches and to highlight future directions for this practical applica-
tion. Without underrating the importance of most common recommendations, practitioners are encouraged to
test the ability of this SDMs’ application with their own data. Indeed, large gaps in species’ types (e.g. insects)
and in regions covered by these kind of studies (e.g. many African and Asian territories) were found. Further-
more, eventual biases due to lack of data, experience or staff, have in this experimental case less irreparable con-
sequences than others, such as conservation assessments based on future projections, which cannot be otherwise
adjusted by explicit data from ground validation.

Mediterranean flora

Independent presence-absence data
Plant distribution patterns
Regularization multiplier

study of niche evolution (e.g. Warren et al., 2008; Montemayor et al.,

1. Introduction

Species distribution models (SDMs) have become in recent years one
of the most widely used tools in ecology (e.g. Guisan and Zimmermann,
2000; Guisan and Thuiller, 2005). The principle of SDMs is to re-
late species occurrences to environmental data in order to find eco-
logical and evolutionary insights (Elith and Leathwick, 2009). This
family of methods has a broad range of applications, including the
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2017), the prediction of climate change impacts (e.g. Fois et al., 2016;
Vessella et al., 2017), and the identification of areas for conservation
(e.g. Kaky and Gilbert, 2016; Bosso et al., 2018). Another relevant ap-
plication is the use of SDMs to guide efforts to locate new populations
of poorly known species of conservation concern. Such model-based
sampling of endangered and rare species, involving reiterative alterna-
tion of modelling and field sampling, is recognized by conservation bi-
ologists as very promising and cost-efficient (e.g. Le Lay et al., 2010;
Volis, 2016). Indeed, information on the geographic distribution of en-
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dangered and rare species is usually scarce (Pulliam and Babbitt, 1997),
and getting precise distribution maps for such species is difficult and of-
ten requires intensive surveys (Edwards et al., 2005; Guisan et al., 2006;
Williams et al., 2009). Nonetheless, although poorly known species are
increasingly in need of predictive distribution modelling, for both mon-
itoring and conservation management purposes, they are at the same
time difficult to model due to their limited number of available occur-
rences (Lomba et al., 2010; Bosso et al., 2016; Chen et al., 2017).

Especially in the last decade, there has been an increasing literature
on methodological questions addressed in the enhancement of SDM ap-
plications. Examples are the relative performance of modelling meth-
ods (e.g. Aratijo and New, 2006; Elith and Graham, 2009), the model
performance evaluations (e.g. Lobo et al., 2008; Warren and Seifert,
2011), the application of different environmental predictors and resolu-
tions (e.g. Peterson and Nakazawa, 2008; Bucklin et al., 2015), and dif-
ferences among sample sizes (e.g. Hernandez et al., 2006; Proosdij et al.,
2016), quality of the species occurrence data (e.g. Varela et al., 2014;
Bloom et al., 2018), or species characteristics (e.g. McPherson and Jetz,
2007; Guillera-Arroita, 2017).

In case of poorly known species, the amount and quality of avail-
able occurrence data is implicitly low, and dealing with such limita-
tions is more relevant than in other SDM applications. Maximum En-
tropy — MaxEnt (Phillips et al., 2006) is widely recognized as the most
used technique, especially for small sample sizes and poorly known
species distributions (Elith et al., 2006), since it only requires the in-
formation about presences, instead of both presences and absences and
because, especially in the case of rare and elusive species, opportunis-
tic data, a common example of presence-only data, often represent the
largest set of available data (Virgili et al., 2017). Nonetheless, many
other algorithms, such as - genetic algorithm for rule set production
— GARP (Stockwell, 1999) and environmental niche factor analysis —
ENFA (Hirzel et al., 2002), have been successfully used for modelling
small sample sizes (e.g. Jiménez-Valverde et al., 2008a; Le Lay et al.,
2010; Ortega-Huerta and Vega-Rivera, 2017). Alternatively, in the ‘con-
sensus approach’ (Aratijo and New, 2007) outputs of multiple algo-
rithms are combined in order to reduce uncertainties in various model
predictions. Differences among different settings within the same mod-
elling technique have been also found to be relevant (e.g. Anderson and
Gonzalez, 2011; Radosavljevic and Anderson, 2014; Halvorsen et al.,
2016). Even if the omission of the entire regularization process has been
advocated by Halvorsen (2013) and Halvorsen et al. (2015), regulariza-
tion multiplier is a user-specified coefficient that is generally applied
to set the degree of generality in the resulting MaxEnt models (Phillips
et al., 2006, 2017); this parameter should be set in order to achieve a
trade-off between possible overfitting (in case of low regularization mul-
tiplier values) and generalization (in case of high values) (Radosavljevic
and Anderson, 2014; Moreno-Amat et al., 2015). The regularization
multiplier selection is suggested to be based on an accurate analysis of
each species-specific case (Anderson and Gonzalez, 2011) or adapted ac-
cording to the specific purpose of the study (Moreno-Amat et al., 2015),
and is often based on the Akaike information criterion (AIC), or on the
Bayesian Information Criterion (BIC) (e.g. Warren and Seifert, 2011;
Fourcade et al., 2018).

Another important aspect is how to measure the model performance.
Generally, the initial sample is partitioned into test and training sets
for model evaluation or, even in the case of the ‘jackknife’ approach
suggested by Pearson et al. (2007) for small sample sizes, localities
will still be spatially correlated, because the same surveyor(s) collected
both data sets, and thus both sets of localities are constrained to come
from the general areas the surveyor(s) visited (Veloz, 2009). The al-
ternative is to train the model(s) with known locality data and test
them with new, independent field surveys (Halvorsen, 2012; Searcy
and Shaffer, 2014). Following this last suggestion, testing an SDM pre-
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diction is theoretically comparatively easy; one only has to visit a set of
previously unsampled localities and determine whether or not the target
species is present. By repeating this procedure across multiple localities,
one can make a statistical statement about the fit of a model to the true
species distribution and compare alternative models. Nonetheless, al-
though this kind of model validation sounds relatively straightforward,
there are few published examples of ground truthing SDMs (Halvorsen,
2012; Searcy and Shaffer, 2014).

In this paper we first reviewed and analyzed the available literature
about the use of SDMs to guide the search for unknown populations of
poorly known and/or endangered species. Specifically, we focused on
the following aspects: (1) where studies were focused and which was
the study area extent, (2) what kind and how many variables were used,
(3) which type of organisms and how many points were modelled, (4)
which modelling techniques were used.

Therefore, we furtherly investigated this SDMs application through
the case study of the Regional Park of Montarbu, an endemic-rich and
environmentally diverse area in CE Sardinia (Italy) of about 9000 ha of
extension. Specifically, an initial incomplete set of 346 presence records
of 70 vascular plant species was used for modelling the potential distrib-
ution and for guiding field surveys. After two intensive field campaigns,
several new localities were georeferenced and the independent dataset
was used to measure model performances.

2. Literature review

2.1. The use of species distribution models (SDMs) to speed up the field
search of new species localities

We conducted a literature review of modelling papers published
from 2000 to December 2017. A research of the peer-reviewed arti-
cles was carried out in separate Google Scholar searches with the terms
‘species distribution model’ or ‘environmental niche model’ or ‘habi-
tat suitability model’ combined with ‘ground validation’ or ‘field vali-
dation’ or ‘field search’ or ‘ground search’ or ‘population discover’ or
‘guiding field surveys’. A number of 4386 papers were firstly screened
by the title. The remaining 347 papers were reduced up to 89 after a
further abstract revision. These last were fully revised and only 28 stud-
ies (Table 1) were retained because they were matching all the three
following elements: (i) they were local experimental modelling studies,
(ii) they were applying models to species of conservation concern, and
(iii) they used models to guide searches for new populations.

2.2. Review'’s findings and discussion

Our literature search and selection procedure uncovered a diverse
set of approaches in terms of number of occurrences used for model-
ling (from one to 1033) and extent of the study area (from 470 km?
to 3 x 10°km?; Table 1). Most of studies were carried out in Europe
and America (Fig. 1a); this highlights the unbalanced efforts in this
sense, which may increase especially in highly biodiverse areas, such
as many African and Asian territories. In 16 papers, only one species
was analyzed, confirming the specificity of such researches, which of-
ten require deep field efforts and knowledges that may not be afford-
able for many species at the same time. The most studied organisms
were plants (13 studies), followed by birds (five studies), but SDMs
were also used to search new population localities of most of the or-
ganism types, including butterflies, mammals, reptiles, amphibians and
crustaceans (Table 1). Implicitly, this kind of applications is generally
useful for cryptic species but, except for butterflies, other insects were
only once considered (Rinnhofer et al., 2012). Among modelling tech-
niques, the presence-only or presence-background methods were the
most frequently applied with MaxEnt (15 studies) and GARP (six stud-
ies), while, among presence-absence methods, ENFA was the most fre-
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Table 1
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Summary, in chronological order, of the 28 studies applying species distribution models (SDM) to guide searches for new populations. In some cases all information was not available
(NA). See the respective reference for each modelling technique description.

N
(min- Surface Modelling
Organism(s) max) (km?) technique(s) Reference
1 Repitles (9 spp.), Mammals (5), Birds (64), Plants 9-NA NA GAM Pearce et al. (2001)
(75)
2 Birds (89 spp.) NA 112,000 GARP Feria and Townsend Peterson
(2002)
3 Plant (1 sp.) 187 1,215 Mahalanobis distance Boetsch et al. (2003)
4 Reptiles (11 spp.) 4-108 587,041 GARP Raxworthy et al. (2003)
5 Plant (1 sp.) 77 41,293 GLM-ENFA Engler et al. (2004)
6 Plant (1 sp.) 132 2,272 CART Bourg et al. (2005)
7 Lichens (5 spp.) NA 3,000,000 BRT Edwards et al. (2005)
8 Plant (1 sp.) 19 6,460 FloraMap Jarvis et al. (2005)
9 Bat (1 sp.) 1033 19,000 GLM Greaves et al. (2006)
10 Plant (1 sp.) 30 41,293 GAM Guisan et al. (2006)
11 Butterfly (1 sp.) 17 NA ENFA Jiménez-Valverde et al. (2008b)
12 Plant (1 sp.) 1 19,622 Environmental distance de Siqueira et al. (2009)
analysis
13 Plants (6 spp.) 9-129 1200 MaxEnt, GLM, ANN, RF, ME Williams et al. (2009)
14 Plants (3 spp.) 14-31 2,054 GAM, ENFA, ensemble Le Lay et al. (2010)
15 Reptiles (49 spp.) 3-256 1,600 MaxEnt, Garp Costa et al. (2010)
16 Bat (1 sp.) 17 90,100 ENFA, MaxEnt Rebelo and Jones (2010)
17 Plant (1 sp.) 237 2,305 Maxent Edvardsen et al. (2011)
18 Bird (1 sp.) 15 NA MaxEnt Botero-Delgadillo et al. (2012)
19 Insect (1 sp.) 7-21 470 MaxEnt Rinnhofer et al. (2012)
20 Amphibian (1 sp.) 17 NA MaxEnt Groff et al. (2014)
21 Amphibian (1 sp.) 33 7123 MaxEnt Peterman et al. (2013)
22 Plant (1 sp.) 4 NA ENFA, MaxEnt Sarkinen et al. (2013)
23 Butterfly (1 sp.) 10 NA MaxEnt Verovnik et al. (2014)
24 Bird (1 sp.) 737 2,586 MaxEnt Aizpurua et al. (2015)
25 Plant (1 sp.) 8 721 MaxEnt Fois et al. (2015)
26 Plants (8 spp.) 5-295 110,000 MaxEnt McCune (2016)
27 Birds (12 spp.) 26-151 NA ENFA, GARP, MaxEnt Ortega-Huerta and Vega-Rivera
(2017)
28 Freshwater crustacean (1 sp.) 53-54 15,000 MaxEnt Rhoden et al. (2017)
17
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Fig. 1. Illustrative summary of (A) the distribution map of each one of the analysed study, (B) types of variables used illustrated by a Venn diagram and (C) number of variables used.
Numbers in the map and all data are from the 28 articles cited in Table 1.

quently applied (five studies). In five cases, different model techniques
were compared, while in only two cases model outputs were combined
according to the ensemble approach (Table 1). In summary, main ef-
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forts were generally destined for searching the species in field rather
than for improving model complexity and, possibly, performances.

Mainly due to its clear influence on the distribution pattern of many
species, bioclimatic variables were the most used (Fig. 1b). The distrib-
ution of the number of variables among each study case was bimodal,
with a peak of four variables used and another one around 13 vari-
ables (Fig. 1c). Such results could be explained by the common use of
combining different variable categories. In most of cases, bioclimatic
variables were related to topographic variables but other combinations
of two (mostly) or three variable categories were also applied (Fig.
1b). The same pattern was observed in other reviews (e.g. Bradie and
Leung, 2017; Fourcade et al., 2018) that identified bioclimatic variables
and elevation as the most commonly employed predictors in SDM stud-
ies. Otherwise, the combination of different type of variables could in-
crease the ability of describing the complexity of the processes that limit
species’ ranges (Pearson and Dawson, 2003). The other peak around
the usage of four variables is mainly the result of efforts for pre-se-
lection of variables to avoid strongly correlated variables entering the
models. With this common practice to limit the potential for overfitting,
candidate covariates are reduced in number based on their degree of
collinearity, usually assessed by variance inflation factors (VIFs) or Pear-
son correlation test (Dormann et al., 2013).

3. The use of SDMs to guide the search of poorly known species:
the example of the Regional Park of Montarbu

3.1. Study area and target species
The Regional Park of Montarbu (Fig. 2) is located in the central-east-

ern part of Sardinia, mainly within the territories of Seui municipality
and part of the Gairo, Seulo and Ussassai municipalities. Its geo-

Montarbu di Seui
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graphical coordinates are 9°23' 03"E and 39° 53’ 37”N. The study area
has a surface of about 9000 ha and consists of a group of isolated lime-
stone mountains which are commonly called "Tonneri" or "Tacchi" (Loi
and Lai, 2001). It includes mountainous peaks extending above 1200 m,
such as Margiani Pubusa (1324 m asl) and Perda 'e Liana (1293 m asl),
but also other different environments, such as steep cliffs and gorges of
more than 100 m, small wetlands and vast scrublands and woodlands.
Also, there are restricted vegetation assemblages of biogeographic and
conservation interests, such as the relict formations of some temperate
trees like Taxus baccata, Ilex aquifolium, Acer monspessulanum and Os-
trya carpinifolia. It has been recently recognized as a "micro-hotspot" of
biodiversity, due to its exceptional richness in endemic vascular plants
(Fois et al., 2018). Even if several researchers have studied this area in
the past (e.g. Arrigoni, 1965; Loi and Lai, 2001; Loi et al., 2004), further
endemic plant species were recently described or found, such as Pinguic-
ula sehuensis and Senecio morisii (Bacchetta et al., 2014; Calvo and Aedo,
2015), until totalizing 99 endemic vascular plant species.

For this study, we selected 70 vascular plant species of conservation
concern, of which we were able to collect a minimum of three point
occurrences (see Appendix A). Geo-referenced occurrences were taken
from available literature and from specimens stored in the herbaria of
Cagliari (CA), Sassari (SS and SASSA), Florence (FI), Catania (CAT) and
Turin (TO). Taxonomical treatments were checked in order to mainly
exclude synonymies; furthermore, both records accompanied by a tex-
tual description of the locality or by coordinates, were expert-based re-
vised according to the species ecology and distribution knowledge. Fi-
nally, within each cell in the grid of 250 x 250 m — which had a width
double to the grain of the environmental rasters — all the points apart
from one were randomly removed (Newbold, 2010). In this way, we

Fig. 2. The study area of Montarbu (central-eastern Sardinia, western Mediterranean Basin) with some typical vascular plant species and landscapes.



M. Fois et al.

minimized spatial autocorrelation, given that closely situated localities
are likely to represent similar environments (Mammola et al., 2018).

3.2. MaxEnt modelling and variable selection

Several techniques that have been used and projections can vary
startlingly among these techniques (Naimi and Aratjo, 2016). We chose
to use MaxEnt 3.3.3k (Phillips et al., 2006), which is generally one of
the most used methods for predicting species distribution (e.g. Merow
et al., 2013) and, specifically, for guiding the search of unknown popu-
lation localities (Table 1). In the setting panel, we selected the follow-
ing options: random seed, remove duplicate presence records, write plot
data, and 1000 maximum iterations. Models were repeated with four
different regularization multiplier values, fixed at 0.5, 1, 2 and 5. A
more recent version of MaxEnt (ver. 3.4.1; Phillips et al., 2017) is cur-
rently available; nonetheless, we preferred using the previous version
since it is still the most tested one and because no comparisons with
concrete examples, highlighting differences between the two versions,
are nowadays available.

The use of most common bioclimatic variables, usually at the reso-
lution of 1 X 1 km?, has been recently criticized (e.g. Bradie and Leung,
2017; Fourcade et al., 2018). The large majority of these studies in-
cluded all or some of the 19 bioclimatic variables popularized by the
Worldclim project (Hijmans et al., 2005). Based on the assumption that
climate must play an important role in driving species distributions,
they have become a standard default predictor set in most modelling
studies. Furthermore, it is recommended to include, at least, two dif-
ferent kinds of variables according to the ecology of each species and
to test possible problems of multicollinearity. Nonetheless, high resolu-
tion and diverse variables are not always available and, despite their
possible limitations, the globally retrievable datasets have been success-
fully tested in most of the reviewed cases. For these reasons, we used
the most commonly employed predictors (bioclimatic, topographic and
soil types) at the-at least in Europe-available resolution of 250 X 250 m.
In particular, we used the freely available bioclimatic variables at the
European scale (Metz et al., 2014), soil USDA classification at 250 m
resolution (Hengl et al., 2017) and the Shuttle Radar Topographic Mis-
sion (SRTM) digital elevation data at the 90m resolution (Jarvis et
al., 2008). Aspect and slope were calculated on the basis of the digi-
tal elevation data using the terrain analysis tool in QGIS version 2.4.0
(QGIS Development Team, 2013). All 90 m rasters were resampled to
the same pixel size (250 X 250 m) like the rest of variables by the neigh-
bor method in R, using the package ‘raster’ (Hijmans, 2014). Multi-
collinearity problems were tested by computing variance inflation fac-
tors (VIFs) (Marquardt, 1970), which measure how strongly each pre-
dictor can be explained by the rest of the predictors and are based on the
square of the multiple correlation coefficient (R?) resulting from regress-
ing the predictor variable against all other predictor variables (Naimi
and Aratjo, 2016). As a rule of thumb, a VIF of >10 signals that the
model has a collinearity problem (Chatterjee and Hadi, 2006). We used
a stepwise procedure, implemented through the ‘sdm’ package (Naimi
and Aratijo, 2016) in the R environment in order to remove all variables
with VIFs >5, which was imposed as a precautionary threshold.

The variable importance was measured according to the permuta-
tion importance, which is calculated by randomly permuting training
presence and pseudo-absence data in MaxEnt. In the absence of ade-
quate variance partitioning methods for MaxEnt, permutation impor-
tance values were used as gross estimates of the variance explained by
variables or groups of variables in SDM. It has to be noted, however,
that permutation importance values are not strictly additive and do not
account for shared variance between variables (Gallardo et al., 2015).
The significance of differences between permutation importance of
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species with strict and wide habitat preference was evaluated by
Wilcoxon’s paired rank test.

3.3. Models’ performance comparisons

Model performances were compared according to the ‘threshold in-
dependent’ test of the area under the curve (AUC), which is widely
considered as unavoidable. The AUC has values that typically range
from 0.5-1.0. Values close to 0.5 indicate a fit no better than that ex-
pected by random, while a value of 1.0 indicates a perfect fit (Baldwin,
2009). AUC values (trainAUC) of all replicate MaxEnt runs (as many
as the number of occurrences we had), following the ‘leave-one-out’
approach, especially recommended for small sample sizes (Pearson et
al., 2007), were firstly used. Few studies have had access to indepen-
dent evaluation data, which are fundamental for proper model evalua-
tion (Halvorsen, 2012). Following MaxEnt’s results, two intensive field
campaigns were conducted, in 2016 and 2017, when the entire study
area was visited at least once. All the data obtained from the inten-
sive field surveys were used for models’ evaluations. Specifically, true
records were included as test sample file in MaxEnt to calculate the AUC
by the use of independent test data (testAUC). The minimum difference
between trainAUC and testAUC (AUCAiff) (Warren and Seifert, 2011)
was then calculated. As a role of thumb, low AUCAiff values are desir-
able because it means that the risk of overfitting models, due to a good
performance with training data but poor with test data, is low (Warren
and Seifert, 2011).

Models’ comparisons were based on three main aspects: (i) num-
ber of input points, (ii) species traits and (iii) regularization multi-
plier settings. In order to test the discrimination ability among differ-
ent species traits and distribution patterns, we also took into account
the number of occurrences used for modelling each species. Therefore,
we subdivided the species set into two categories: (i) strict habitat pref-
erence, for species living in less than two localized habitat types (e.g.
cliffs, crevices, springs) or linear habitat types (e.g. riparian vegeta-
tion) and (ii) wide habitat preference, for species which were found
in more than two localized or linear habitat types or are able to col-
onize habitats that predominate in the study area. We also tested the
influence of species detectability by comparing model performances of
the (i) highly detectable species (e.g. trees and scrubs) and (ii) low
detectable species (e.g. ephemeral or cryptic species, species living in
difficult-to-reach areas). The specific categorization of each species is
reported in Appendix (Appendix A). A nonparametric two-group sam-
ple test (Wilcoxon signed-rank) was calculated to compare models’
performances for species within the two categorizations according to
their habitat preference and detectability. Significant differences among
models performances with four different regularization multiplier val-
ues were tested with the Tukey honest significant difference method
(TukeyHSD).

3.4. Results

A total of 280 model outputs (70 species X 4 regularization multi-
plier settings) were obtained from MaxEnt. Only six variables were re-
tained, after testing for multicollinearity among predictors (Table 2).
Occurrences used for modelling were limited (from 3 up to 19 points),
for a total number of 346 records. After the two field campaigns, sev-
eral new localities were georeferenced (1958 records) and used for the
post-hoc ground validation through the testAUC.

In most of cases, the highest percent of contribution was recorded for
bioclimatic variables, especially for Bio3 and Bio4 (Table 2). Significant
differences (at P < 0.05) between species with strict and wide habitat
preferences were only found for soil and slope.

Except for nine models with regularization value at 5 (Appendix
B), all the rest of outputs scored, at least, trainAUCs higher than 0.7,
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Comparison among averages and standard deviation of permutation importance in MaxEnt models. All variables used at this stage were retained after VIF analysis, removing variables
with VIFs of > 5. Significant differences among the variable contribution of species with strict and wide habitat preference were tested by Wilcoxon’s paired rank test.

Variable Importance (general) Importance (strict) Importance (wide) P
Mean Diurnal Range (Bio2) 3.34 (12.32) 0.9 (2.83) 6.01 (17.17) n.s
Isothermality (Mean Diurnal Range/ Temperature Annual Range; Bio3) 19.62 (23.33) 19.18 (21.9) 20.09 (24.79) n.s
Temperature Seasonality (Bio4) 8.23 (14.56) 5.80 (7.12) 10.9 (19.36) n.s
Minimum Temperature of Coldest Month (Bio6) 56.97 (29.57) 57.69 (26.04) 56.19 (32.97) ns
Slope 7.64 (13.01) 11.19 (15.57) 3.78 (7.78) 0.04*
Soil 3.96 (12.50) 5.01 (14.33) 2.82(9.98) 0.02*

which is a common threshold used to consider captured patterns far
from random. Although significant correlation between trainAUC and
testAUC was found, low testAUC resulted even in some cases of appar-
ently high performances according to the trainAUC values (Fig. 3). Sig-
nificant differences in model performances among regularization multi-
pliers (P < 0.01) were found only in the case of trainAUC (Regulariza-
tion = 5; Fig. 4).

A significant relationship was found between the number of input
points and the testAUC performance (Fig. 5a), revealing that model per-
formance decreases with the number of points. Such trend was however
not confirmed by the AUCDIff (Fig. 5c). No significant differences were
found between species with high or low detectability and strict or wide
distribution in terms of model performances (Fig. 5b,c)

3.5. Discussion

Model reliability, measured in terms of trainAUC values, were, with
some exception, generally high; nonetheless testAUCs measured with
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Fig. 3. Plot of the relationship between trainAUC and testAUC for models set with four
regularization multiplier values (0.5, 1, 2, 5). The R? and statistical significances of the
two simple regressions are reported.

independent data, were low even in the case of high performances
of the trainAUC, confirming the cautionary notes of several authors
on the use of AUC, especially when based on presence-only data (e.g.
Hernandez et al., 2006; Lobo et al., 2008; Merow et al., 2013; Proosdij
et al.,, 2016). In the case of trainAUCs, high values indicate that the
model can distinguish between presences and potentially unsampled lo-
cations (background), which is not necessarily a relevant distinction.
In addition, exceptionally high values of trainAUC for models based
on small sample sizes of narrow-ranged species are generally consid-
ered as overestimations since the chance that a random presence has a
higher probability of occurrence than a random absence for such species
is high (Proosdij et al., 2016). For these reasons, trainAUCs may be
used to identify SDMs that perform better than random expectations,
but not for comparing different models generated through MaxEnt, par-
ticularly for small sample sizes (Warren and Seifert, 2011; Morales et
al., 2017). Accordingly, our results confirms caution when using SDMs,
since also when trainAUC values were particularly high, realized dis-
tribution was in some cases far from the predicted one (Fig. 3). Even
if part of such drawbacks could be overcome by practices widely dis-
cussed (e.g. Halvorsen, 2012; Jiménez-Valverde et al., 2008a; Warren
and Seifert, 2011; Morales et al., 2017), practitioners may always con-
sider that predictions have always a degree of uncertainty and only very
accurate field data may reduce at minimum SDM uncertainties. Such un-
certainties could be considerably diminished through measuring model
performances by real independent records (which is our case). Our tes-
tAUCs generally confirmed the usefulness of modelling techniques to
guide field surveys of poorly known species, even in the case of a very
low number of input points used or for species with a restricted distri-
bution range. The partially decreasing performance with the number of
input points is likely to be not in line the general role (e.g. Proosdij et
al., 2016). Indeed it is generally considered that model performance de-
crease with sample size, even though there are many example of suc-
cessful model applications with small samples (Pearson et al., 2007;
McCune, 2016; Rus et al., 2017). We tried to explain this result by two
assumptions: first, that species with initial small sample size were ef-
fectively present in further previously unknown localities and, second,
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that species with several known localities were likely to be potentially
present in a great part of the study area, but no-ecological factors, such
as human disturbance, were effectively limiting the real distribution.

Our results showed that regularization multiplier settings could af-
fect model performances only in terms of trainAUCs, while no sub-
stantial differences were found at the time of measuring the perfor-
mance with independent real data. Even when more complex mod-
els (i.e with lower regularization values) show higher performances in
terms trainAUCs, such apparently higher ability was not confirmed by
the post-model validation through the data obtained in field. Accord-
ing to many authors (Anderson and Gonzalez, 2011; Radosavljevic and
Anderson, 2014; Moreno-Amat et al., 2015; Halvorsen et al., 2016), best
regularization values can sensibly vary depending on many factors, such
as sample size, study area extent and so, even this choice should be care-
fully pondered on a species-by-species basis.

In line with most of SDMs users (see Fig. 1 and most of refer-
ences reported in Table 1), our example confirmed that bioclimatic vari-
ables are useful inputs for modelling species. Indeed, in most of the
cases, the highest percent of contribution was recorded for such vari-
ables (Table 2). Significant differences (at P < 0.05) between species
with strict and wide habitat preferences were only found for soil and
slope (Table 2), suggesting that species with strict habitat preferences
are more linked to these variables than other species. Differently, bio-
climatic variables are generally determining the distribution of any kind
of species. Nonetheless, it is important to highlight the high standard
deviations for all variables. This suggests, once again, that general rules
are tricky, while variable selection should be species-specifically car-
ried out. Accordingly, starting from an as much as possible diverse set
of variables (including bioclimatic but preferably also combined with

other kind of available information categories) could allow to find a rep-
resentative set of environmental variables for each species.

4. General conclusions and future directions

Despite it is commonly considered one of main useful SDMs applica-
tions, our review highlighted that the use of SDMs to guide the search
of unknown species populations was rarely experimented. This is par-
ticular evident in under-investigated countries, even where their biodi-
versity heritage and the need of increasing data are widely recognized
(e.g. Kier et al., 2005; Grenyer et al., 2006). We may then consider that
field surveys are in some cases not feasible due to lack of resources or
because some areas are less safe or less easy to reach than others. Sec-
ondly, even if the Web is supporting the emergence of new forms of
scientific interaction and engagement, specific training opportunities on
modelling issues are uncommon in many countries. These are the first
reasons of why we would like to encourage even early stage practition-
ers to experiment this application with data from their local study sites.
Furthermore, among the variability in terms of organism and model-
ling characteristics, the experimental use of SDMs in this field was pos-
itively rated by the majority of authors, even if a certain degree of false
presences was always depicted. This degree of uncertainty is an implicit
characteristic of all predictions, and model predictions should be always
considered as a suggestion/proposal of distribution mechanisms and al-
ways followed by expert-based interpretations.

Our results adhere to the calls of several studies that already in-
clude recommendations how to use and set up MaxEnt or other SDM
techniques (e.g., Elith et al., 2006; Warren and Seifert, 2011; Merow et
al., 2013; Radosavljevic and Anderson, 2014; Morales et al., 2017). In
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particular, we confirm the caution expressed by other authors in con-
sidering consequences of considering the AUC alone as a performance
measure. Due to the complexity of all the raised questions, which were
mainly never discussed before for this specific application, it was un-
feasible to deeply investigate all issues in one research paper. For this
reason, only one shaft of light was provided by the experimental study
of Regional Park of Montarbu and further investigations are required to
improve the applicability of this approach.

This said, practitioners are once again encouraged to test the abil-
ity of SDMs in helping their next species searches in field, with their
own data, even if limited. Indeed, we demonstrated that even with small
and possibly biased initial samples, reliable results could be obtained.
Without underrating the importance of relevant recommendations, we
would like to highlight that eventual biases due to lack of data, experi-
ence or staff, have in this experimental application less irreparable con-
sequences than others, such as conservation assessments based on future
projections, which cannot be adjusted by explicit data from ground val-
idation.

In conclusion, our take-home keyword is ‘local’: local are such kind
of experimental SDMs applications and local should be the practition-
ers, since the knowledge of the territory and the willingness needed to
hold up the field trip efforts are, in this particular case, as important
as modelling skills. Furthermore, local experts may facilitate the often
complex and artificial data filtering of species localities retrieved from
the Web or other sources by their better knowledge on local species or
by implementing small-scale pilot surveys to obtain accurate locality in-
formation and refine sampling protocols (Peterman et al., 2013). On the
other side, the global expert community may strengthen cooperation for
the interchange of knowledge and funding for increasing the quality and
quantity of globally available environmental data, and for strengthening
research capacity by training local researchers.
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