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Introduction!
!

Chromatin structure defines the state in which genetic information is organized within a 

cell. This organization of the genome into a precise compact structure greatly influences the 

abilities of genes to be activated or silenced. Epigenetics, originally defined by 

C.H.Waddington [1] as ‘the causal interactions between genes and their products, which 

bring the phenotype into being’, involves understanding chromatin structure and its impact 

on gene function. Waddington’s definition initially referred to the role of epigenetics in 

embryonic development. However, the definition of epigenetics has evolved over time as it is 

implicated in a wide variety of biological processes. The current definition of epigenetics is 

‘the study of heritable changes in gene expression that occur independent of changes in the 

primary DNA sequence’. Most of these heritable changes are established during 

differentiation and are stably maintained through multiple cycles of cell division, enabling 

cells to have distinct identities while containing the same genetic information. This 

heritability of gene expression patterns is mediated by epigenetic modifications, which 

include methylation of cytosine bases in DNA, post-translational modifications of histone 

proteins as well as the positioning of nucleosomes along the DNA. The complement of these 

modifications, collectively referred to as the epigenome, provides a mechanism for cellular 

diversity by regulating what genetic information can be accessed by cellular machinery. 

Failure of the proper maintenance of heritable epigenetic marks can result in inappropriate 

activation or inhibition of various signaling pathways and lead to disease states such as 

cancer.	

DNA methylation: an overview	

!
DNA methylation is perhaps the most extensively studied epigenetic modification in 

mammals. It provides a stable gene silencing mechanism that plays an important role in 

regulating gene expression and chromatin architecture, in association with histone 

modifications and other chromatin associated proteins. In mammals, DNA methylation 

primarily occurs by donation of a methyl (CH3) group from S-adenosylmethionine to the 

fifth position in the cytosine pyrimidine ring resulting in the formation of 5–methylcytosine 

(5mC). The reaction is catalyzed by a family of enzymes called DNA methyltransferases 

(DNMTs). 5mC is predominantly found within the genome in the context of 5ʹ-cytosine-
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phosphateguanine-3ʹ (CpG) dinucleotides. CpG sites are globally rare throughout the 

genome [2] and predominantly (~85%) constitutively methylated in healthy cells [3]. 

Approximately 10% of CpG sites, are densely concentrated into “CpG islands” (CGIs) 

regions in the genome where the percentage of the CpG dinucleotides is higher than would 

be expected based upon a random distribution of nucleotides. Of interest, CpG sites are 

generally under-represented in the genome presumably due to the susceptibility of 5mC to 

undergo transition mutations secondary to deamination [4]. CpG islands are often defined as 

sequences greater than 200–500 bases in length with greater than 50% GC content and a 

ratio of observed to expected CpG ratio greater than 0.6 [5]. More than half of the CGIs are 

located in the promoter regions near the transcription start sites (TSS) of over 60% of human 

genes. Unlike the majority of CpG sites throughout the genome, the sites located within 

CGIs tend to be protected from methylation in healthy cells. Therefore the genome-wide 

DNA methylation pattern in all cells of the body is basically bimodal, with the large majority 

of CpG sites modified at high levels and CGIs largely unmethylated.	

Histone code: an overview	

!
Chromatin is made of repeating units of nucleosomes, which consist of ~146 base pairs of 

DNA wrapped around an octamer of four core histone proteins (H2A, H2B, H3, and H4) [6]. 

Histone proteins contain a globular C-terminal domain and an unstructured N-terminal tail 

[6]. The N-terminal tails of histones can undergo a variety of post-translational covalent 

modifications including methylation, acetylation, ubiquitylation, sumoylation and 

phosphorylation on specific residues [7]. The complement of modifications is proposed to 

store the epigenetic memory inside a cell in the form of a ‘histone code’ that determines the 

structure and activity of different chromatin regions [8]. Histone modifications work by 

either changing the accessibility of chromatin or by recruiting and/or occluding non-histone 

effector proteins, which decode the message encoded by the modification patterns. The 

mechanism of inheritance of this histone code, however, is still not fully understood. Unlike 

DNA methylation, histone modifications can lead to either activation or repression depending 

upon which residues are modified and the type of modifications present. For example, lysine 

acetylation correlates with transcriptional activation [9], whereas lysine methylation leads to 

transcriptional activation or repression depending upon which residue is modified and the 

degree of methylation. For example, trimethylation of lysine 4 on histone H3 (H3K4me3) is 

enriched at transcriptionally active gene promoters [10], whereas trimethylation of H3K9 
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(H3K9me3) and H3K27 (H3K27me3) is present at gene promoters that are transcriptionally 

repressed [7]. The latter two modifications together constitute the two main silencing 

mechanisms in mammalian cells, H3K9me3 working in concert with DNA methylation and 

H3K27me3 largely working exclusive of DNA methylation. Specific patterns of histone 

modifications are present within distinct cell types and are proposed to play a key role in 

determining cellular identity [11]. For example, embryonic stem (ES) cells possess ‘bivalent 

domains’ that contain coexisting active (H3K4me3) and repressive (H3K27me3) marks at 

promoters of developmentally important genes [12]. Such bivalent domains are established 

by the activity of two critical regulators of development in mammals: the polycomb group 

that catalyzes the repressive H3K27 trimethylation mark and is essential for maintaining ES 

cell pluripotency through silencing cell fate-specific genes and potentially the trithorax group 

that catalyzes the activating H3K4 trimethylation mark and is required for maintaining active 

chromatin states during development [13]. This bivalency is hypothesized to add phenotypic 

plasticity, enabling ES cells to tightly regulate gene expression during different 

developmental processes. Differentiated cells lose this bivalency and acquire a more rigid 

chromatin structure, which may be important for maintaining cell fate during cellular 

expansion [11]. Histone modification patterns are dynamically regulated by enzymes that add 

and remove covalent modifications to histone proteins. Histone acetyltransferases (HATs) 

and histone methyltransferases (HMTs) add acetyl and methyl groups, respectively, whereas 

HDACs and histone demethylases (HDMs) remove acetyl and methyl groups, respectively 

[14,15]. These histone-modifying enzymes interact with each other as well as other DNA 

regulatory mechanisms to tightly link chromatin state and transcription. 	

In addition, to performing their individual roles, histone modifications and DNA 

methylation interact with each other at multiple levels to determine gene expression status, 

chromatin organization and cellular identity [16]. Several HMTs can direct DNA methylation 

to specific genomic targets by directly recruiting DNA methyltransferases (DNMTs) to stably 

silence genes [17,18,19]. DNMTs can in turn recruit HDACs and methyl-binding proteins to 

achieve gene silencing and chromatin condensation [20,21]. DNA methylation can also 

direct H3K9 methylation through effector proteins, such as methyl-CpG-binding protein 2 

(MeCP2), thereby establishing a repressive chromatin state [22].	

!
!
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DNA methylation dynamics in normal cells	

!
Unlike the DNA sequence itself, the bimodal genome-wide DNA methylation pattern is 

not inherited from the gametes. Rather, it appears that almost all methylation is erased in the 

very early embryo and a new bimodal pattern is then reestablished at the time of 

implantation. This ‘clearing of the slate’ is a key component of the entire epigenetic marking 

system, as it symbolizes erasure of germ-line programming as a prelude to resetting 

totipotency. The removal of methyl groups initially begins in the zygote, where specific 

sequences in the paternal nucleus are actively demethylated [23], and this is followed by 

more widespread demethylation, which may take place through a combination of active 

DNA-repair processes together with passive loss of methylation through replication [24]. 

The function of demethylation before implantation may be important in resetting the genome 

after gametogenesis and for regenerating totipotency in the preimplantation embryo. 

However some repetitive sequences as well as other DNA sequences (imprinted regions) 

retain some of their methylation. The mammalian genome is complex consisting of not only 

coding sequences but also of transposons and other parasitic elements that have been 

acquired in the human genome over time. These repetitive sequences make up much of the 

intergenic and intronic regions of DNA. Many of these repetitive elements contain long 

terminal repeat promoters which permit the transcription of these sequences [25, 26]. Since 

the expression of these sequences can allow for the movement of the parasitic elements 

within the genome, these elements must be persistently silenced by DNA methylation in 

order to preserve the integrity of the genome [27]. In addition to silencing repetitive 

elements, CpG methylation in also an important constituent in the establishment and 

maintenance of imprinted genes in the preimplantation embryo. Gene imprinting is a form of 

non-Medelian inheritance in which one allele becomes methylated but not in the other 

leading to mono-allelic expression. Imprinting is important for determining which parental 

allele will be expressed. Imprinted genes are marked in the gonads by DNA methylation of 

the imprinted control region (ICR) allowing for the daughter cells to retain the same mono-

allelic expression as their parental origin [28]. After erasure of DNA methylation in the early 

embryo, a new pattern is then established in each individual at about the stage of 

implantation. This is largely accomplished by the upregulation of the de novo methylases, 

DNMT3A and DNMT3B, together with DNMT1, which bring about global methylation 

[29]. Although this active process of de novo methylation appears to be restricted to a short 

window of time in early development, the resulting pattern of methylation is then maintained 
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during all subsequent cell divisions [30, 31]. Thus, the bimodal pattern of methylation seen 

in all somatic cells is a direct reflection of events that occurred at the time of implantation. In 

coordination with this process, there is also a mechanism for protecting specific sequences, 

mostly CpG islands [32]. The precise mechanism of CpG island protection is not understood 

yet. Recently epigenome analyses show that a very high percentage of unmethylated islands 

contain known transcription start sites, and many specific motifs are also associated with 

these unmethylated regions, including transcription factor binding sites [30]. Transcription 

start sites are always packaged in nucleosomes containing H3K4me3 [33,34], and this mark 

may serve to inhibit the binding of de novo methylases [35,36]. Taken together, these 

analyses suggest a model whereby the binding of RNA polymerase or other proteins in 

preimplantation cells may be important in preventing local de novo methylation during the 

transition to implantation. This implies that the resulting basal methylation pattern simply 

reflects the potential transcription state of early embryos and, in this way, provides a 

mechanism to perpetuate this profile in a more stable manner. Although implantation 

embryos have the capacity to set up the bimodal methylation pattern, the molecular 

machinery for carrying this out must be downregulated very early in development, as 

somatic cells are no longer capable of global de novo methylation [37]. Nor do they seem to 

recognize CpG islands as sites to be protected. Nonetheless, the overall initial pattern formed 

at the time of implantation is then maintained after each cell division. This is accomplished 

through the action of DNMT1, which is constantly associated with the DNA replication 

machinery [38]. This enzyme is highly specific for hemimethylated CpG sites, like those 

generated during DNA synthesis, and it is this activity that perpetuates the methylation 

pattern present on the original DNA strands [39]. At the same time, this enzyme has only 

very low de novo activity, so unmethylated sites remain in this same state during replication. 

The maintenance of DNA methylation patterns serves an important function during 

development and aging. In general, gene expression patterns in any cell are determined by 

two key parameters: the availability of general and specific transcription factors as well as 

chromatin structure, which modulates local accessibility. Every time cells copy their genetic 

material as part of the cell division cycle, the replication machinery ‘plows’ through the 

DNA, thereby disrupting both chromatin structure and factor binding, and these must be 

rebuilt in every cell generation. In contrast, the underlying DNA methylation pattern is 

preserved throughout replication, and this serves as a template for guiding the repackaging of 

DNA without the need to completely rebuild these structures from scratch. In this way, DNA 

methylation serves as a mechanism for stabilizing gene expression patterns over the entire 

lifetime of the organism. 	
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After implantation, there are no additional global changes in DNA methylation, and all 

alterations, whether they involve de novo methylation or demethylation, appear to occur 

through sequence-specific targeting. One of the first developmental events of this nature is 

the methylation and silencing of genes responsible for pluripotency, such as Oct3/4 or Nanog 

[40,41]. Studies in ES cells and in mice have demonstrated that these genes become 

inactivated in a three-step manner. First, transcription is turned off by direct interactions with 

repression factors. In the second stage, the histone methylase G9a is recruited to these gene 

loci; this complex, in coordination with histone deacetylases and H3K4 demethylases, 

systematically removes all histone activating modifications from local nucleosomes and then 

brings about methylation of histone H3K9, which in turn binds HP1, leading to formation of 

heterochromatin. Finally, G9a itself can recruit DNMT3 molecules and cause de novo DNA 

methylation, an event that occurs with slower kinetics, even in vivo [42,43]. It is clear from 

this example that DNA methylation itself does not initiate the silencing of pluripotent genes 

but is rather a secondary or even tertiary effector. This raises the question of what might be 

the function of de novo methylation in this case. Experiment in ES cells suggest that 

although DNA methylation is not required for initiating gene silencing, it may be important 

in maintaining the repressed state over many cell generations, even covering the entire 

lifespan of the organism. This hypothesis is further supported from a well known example of 

de novo methylation after implantation: X-chromosome inactivation in female embryos. 

Random X-chromosome inactivation occurs in each cell concomitantly with differentiation. 

This process, which is directed by Xist expression on the chosen allele, involves 

chromosome-wide changes, including a shift to late replication, deacetylation of histones 

[44], methylation of H3K27 by the Polycomb complex [45,46], and inactivation of many 

genes. There is no question that the inactivation of X chromosome–linked genes can be 

accomplished in the absence of DNA methylation as actually occurs in extra-embryonic 

tissues and in marsupials. The added layer of methylation cells apparently provides long-

term stability, making it almost impossible to reactivate genes on the inactive X chromosome 

in somatic tissues [47]. In contrast, X chromosome–linked genes in marsupials readily 

undergo derepression over the lifetime of these animals [48]. One of the most interesting 

concepts that emerged from the targeted de novo methylation is that it is almost always 

mediated by histone methylases [15] that are recruited by local regulatory factors. As noted 

above, this is true for Oct3/4 methylation, which is directed by the H3K9 methylase G9a. 

Although most CGIs on autosomal genes remain unmethylated in somatic cells, a small 

number of them (<10%) become methylated in normal tissues and cells [49]. Chromatin 

immunoprecipitation–high throughput sequencing (ChIP-seq) analysis has shown that a very 
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high percentage of these CpG islands are actually binding sites for the Polycomb complex, 

which includes EZH2, a histone methylase specific for H3K27 that can recruit DNMT3 [50]. 

It appears that these histone-modifying proteins have evolved as a self-contained ‘machine’ 

programmed to bring about the epigenetic closure of local gene sequences, and this is 

accomplished at two different levels: first, by bringing about heterochromatin formation, and 

then by covalently attaching methyl groups to the DNA, allowing this mark to be stably 

maintained over many cell generations [15]. 	

An interesting hypothesis that come from the study of de novo methylation predicts that 

the higher the level of expression is, the less likely it is that a CGI is to become de novo 

methylated. Direct evidence in support of this prediction has recently come from several 

exciting papers that have shown that monoallelic methylation of CGIs preferentially occurs 

on the allele that is less highly expressed. For example, Hitchins et al. [51] showed that an 

allele of the MLH1 gene containing a single-nucleotide variant in the promoter, which was 

less active than the more common allele in transfection experiments, was more likely to 

become methylated in the somatic cells of cancer-affected families. In other words, the less 

active allele was the one that was more likely to acquire de novo methylation. An alternative 

scenario was shown by Boumber et al. [52], who found that an allele of RIL (also known as 

PDLIM4) bearing a polymorphism in the promoter that created an additional binding site for 

the transcription factor SP1 or SP3 was much less likely to become de novo methylated than 

the allele without this polymorphism. The extra SP1 site therefore confers resistance of this 

allele to de novo methylation, although the authors could not demonstrate that the extra 

transcription factor binding site increased gene expression.	

Mechanism of gene-specific demethylation	

!
Early studies demonstrated that demethylation is an active event and does not occur 

passively as a result of DNA replication in the absence of methyl maintenance. For many 

decades, the biochemical mechanism of demethylation was unknown. Over the past few 

years, much of the enzymology of demethylation has become clarified. A major advance in 

our understanding of this process came with the discovery of the Tet family enzymes that can 

convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) [53, 54] and this 

appears to represent a major intermediate in the demethylation pathway. Demethylation of 

tissue-specific genes is always associated with activation of these genes during development, 

but it is not always clear whether demethylation itself is actually required for activation. The 
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specificity of this process must be directed by factors that recognize nearby cis acting 

elements, implying that demethylation itself is not the primary event. Rather, it could provide 

a secondary mechanism for making sure the target gene stably remains in an open 

conformation. When tissue-specific genes are inserted into a non-expressing cell type by 

DNA-mediated gene transfer, unmethylated copies are transcribed at a basal level, whereas 

methylated templates are further inhibited and are expressed at very low levels, similar to 

that of the parallel endogenous gene in these cells [55, 56]. The same is true for tissue-

specific genes that have been programmed to be constitutively unmethylated in transgenic 

mice [57, 58]. These experiments clearly show that even after bypassing the activation step, 

one can still observe the effect of undermethylation on long-term expression patterns. Taken 

together, these studies show that both specific de novo methylation, as well as specific 

demethylation, operate through similar overall strategies, with targeting being accomplished 

by interactions between cis-acting sequences and trans-acting recognition factors. In the case 

of de novo modification, it was demonstrated that methylation enzymes are almost always 

recruited by local histone methylases [16]. In a similar manner, it is possible that site-specific 

demethylation of DNA is associated with the presence of histone acetylases or demethylases 

[59].	

Functions of DNA methylation in different genomic contexts: CGIs, start 

sites and gene bodies	

!
Thanks to improved genome-scale mapping of methylation, we can evaluate DNA 

methylation in different genomic contexts: transcriptional start sites with or without CpG 

islands, in gene bodies, at regulatory elements and at repeat sequences. The emerging picture 

is that the function of DNA methylation seems to vary with context, and the relationship 

between DNA methylation and transcription is more nuanced than we realized at first. 

Understanding the functions of DNA methylation requires consideration of the distribution 

of methylation across the genome.	

!
!
!
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Patterns at CpG island transcription start sites	

!
Until recently, much of the work on DNA methylation focused on CGIs at transcriptional 

start sites (TSSs), and it is this work that has tended to shape general perceptions about the 

function of DNA methylation. The promoter of ~ 60% of human genes falls near a CpG 

island [60] and the majority are protected from methylation during development and in 

differentiated tissues. When genes with CGIs at their TSS are actively transcribed, their 

promoters are usually characterized by nucleosome-depleted regions (NDRs) at the TSS, and 

these NDRs are often flanked by nucleosomes containing the histone variant H2A.Z and are 

marked with H3K4me3 [61]. CGI promoters can be repressed by histone modifications and 

chromatin structure, such as repression mediated by Polycomb proteins. For example, genes 

encoding master regulators of embryonic development, such as MYOD1 or PAX6, are 

suppressed by the Polycomb complex both in ESCs and in differentiated cells that are not 

expressing these genes; they have nucleosomes at the TSS and are marked by H3K27me3, 

which is generally associated with inactive genes [62]. However, these modifications are 

easily reversible making them make poor gatekeepers for long-term silencing [63, 64]. 

Therefore, mammalian cells must possess an additional mechanism for prolong silencing of 

these sequences. An important component of this process is DNA methylation. When found 

within promoters, DNA methylation prevents the reactivation of silent genes, even when the 

repressive histone marks are reversed. Numerous processes by which DNA methylation can 

influence transcription have been proposed. DNA methylation can directly impede the 

binding of transcriptional factors to their target sites, thus prohibiting transcription. Other 

proposed mechanisms are based on the idea that methylation of CpG sequences can alter 

chromatin structure by effecting histone modifications and nucleosome occupancy within the 

promoter regions of genes. Many transcription factors are targeted to CG-containing 

sequences and methylation of CpG sites within these sequences have been shown to prevent 

the binding of these proteins to these sites [65, 66]. In addition to directly inhibiting 

transcriptional factors from binding, DNA methylation also recruits methyl binding proteins 

(MBPs) that specifically bind to methylated CpGs. It has been shown that MBPs can bind 

repressors and histone deacetylases which may lead to an inactive chromatin structure [67]. 

Methylation of CpG sites within promoters may also promote nucleosome occupancy at the 

transcriptional start sites of genes. This in turn could effect transcriptional activation of these 

genes. Nucleosome occupancy has been shown to decrease the binding of transcription 

factors and RNA polymerase II [68]. 	
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Gene body methylation	

!
Most gene bodies are CpG-poor, are extensively methylated and contain multiple 

repetitive and transposable elements. Methylation of the CpG sites in gene exons is a major 

cause of C/T transition mutations, leading to disease-causing mutations in the germline and 

cancer-causing mutations in somatic cells. It is important to realize that although many CGIs 

are located at gene promoters, CGIs also exist within the bodies of genes and within gene 

deserts. Although their functions here remain unknown,  Adrian Bird has proposed that these 

regions may represent ‘orphan promoters’ that might be used at early stages of development 

and have escaped methylation in the germline so that their high CpG density is maintained 

[69]. It has been known from the early days of DNA methylation research that gene body 

methylation is a feature of transcribed genes [70]. Most gene bodies are not CGIs, and when 

CGIs are situated in intragenic regions, they were, with a few exceptions [71], thought to 

remain unmethylated. However, recent experiments have changed this perception: for 

example, as many as 34% of all intragenic CGIs are methylated in the human brain [72]. The 

role of this methylation, which is tissue-specific, is not yet clear. It is intriguing, especially 

because TSSs largely remain unmethylated. Intragenic CGIs can also be preferential sites for 

de novo methylation in cancer [73]. Even though gene body CGIs can become extensively 

methylated, this does not block transcription elongation. This is despite the fact that the 

methylated CGIs are marked by H3K9me3 and are bound by MeCP2, which are chromatin 

features that are associated with repressed transcription when they are present at the TSS 

[74]. This leads to an apparent paradox in which methylation in the promoter is inversely 

correlated with the expression, whereas methylation in the gene body is positively correlated 

with expression [75]. Thus, in mammals, it is the initiation of transcription but not 

transcription elongation that seems to be sensitive to DNA methylation silencing. Initially, it 

was thought that this methylation was primarily a mechanism for silencing repetitive DNA 

elements, such as retroviruses, LINE1 elements, Alu elements and others, and evidence has 

been obtained to substantiate this idea [26]. Methylation blocks initiation of transcription at 

these elements while at the same time allowing transcription of the host gene to run through 

them. However, whole-genome studies have shown that there might be alternative functions 

for DNA methylation in gene bodies. This work has shown that exons are more highly 

methylated than introns, and transitions in the degree of methylation occur at exon–intron 

boundaries, possibly suggesting a role for methylation in regulating splicing [31].	
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It is often assumed that TSSs and gene bodies are two separate genomic features. 

However, most genes have at least two TSSs, so the downstream start sites are within the 

‘bodies’ of the transcriptional units of the upstream promoters. These alternative promoters 

can be CGIs or non-CGIs, or there can be combinations of an upstream non-CGI and a 

downstream CGI, or vice versa. These alternative start sites complicate the interpretation of 

experiments linking expression to methylation, because probes that are used to measure 

expression often detect the output of all of the promoters, yet only one might be active in a 

given cell type. Methylation of a downstream promoter would only block transcription from 

that promoter — it would allow the elongation of a transcript that emanates from an 

upstream promoter [74]— leading to an apparent discordance between methylation and 

expression. Indeed, DNA methylation may well be a mechanism for controlling alternative 

promoter usage [72].	

Methylation at enhancers 	

!
Enhancers are situated at variable distances from promoters and are key to controlling 

gene expression in development and cell function. They are mostly CpG-poor, and their 

methylation status has been examined by whole-methylome analysis. In general, these 

regions tend to have fairly variable methylation. Stadler et al. [76] identified enhancers in the 

mouse genome on the basis that they are regions that are not 100% methylated or 

unmethylated and termed these ‘low-methylated regions’ (LMRs). Because a given cytosine 

can either be completely methylated or unmethylated, ‘variable methylation’ is the outcome 

of averaging these binary states. This might suggest that the CpG sites are in a dynamic state 

and that at a given time some are methylated and others are not, owing to competing 

methylation and demethylation events. Alternatively, the DNA methylation status of each 

CpG might not be accurately maintained during cell division, and so the LMR state might be 

due to inefficient inheritance.	

Methylation at insulators 	

!
Insulators (also known as boundary elements) function to block genes from being affected 

by the transcriptional activity of neighboring genes. They thus limit the action of 

transcriptional regulatory elements to defined domains, and partition the genome into 

discrete realms of expression. Insulators have two main properties: (a) they can block 
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enhancer-promoter communication (i.e., enhancer-blocking activity), and (b) they can 

prevent the spread of repressive chromatin (i.e., heterochromatin-barrier activity). For at 

least some insulators, these two activities can be separable [77]. Typically, insulators are ∼ 

0.5–3 kb in length, and function in a position-dependent, orientation independent manner. 

The most well-studied examples are DNA sequences bound by the CTCF protein, which 

binds to a somewhat heterogeneous sequence motif. A well-studied case is CFCF binding to 

a site within the imprinted IGF2–H19 locus, at which the presence or absence of CTCF 

binding controls enhancer–promoter interactions. It has been shown that methylation of a 

CTCF-binding site at this locus blocks the binding of CTCF, so DNA methylation has an 

important role in controlling this locus [78].	

Aberrant reprogramming of the epigenome in cancer	

!
Tumorigenesis is a multistep process, including initiation, promotion and progression, and 

a multifactorial pathology characterized by the accumulation of a multitude of alterations 

including genetic, cytogenetic, and epigenetic changes [79]. Feinberg and Vogelstein 

reported the first mutation known to result in a human transforming gene: the c-Ha-ras 

oncogene [80]. Since then, a large number of studies have focused on identifying new 

nonsense, silent DNA and point mutations, deletions, translocations and insertions, and 

polymorphisms associated with tumor cell growth [81]. High-throughput techniques have 

been essential for enabling the compilation of a catalogue of rare and common genetic 

variants. However, a crucial and complementary player in gene regulation — epigenetics — 

has come to be associated with cancer initiation and development, especially since the recent 

advent of whole-genome approaches, known as epigenomics. Epigenetic abnormalities in 

cancer comprise a multitude of aberrations occurring in almost every component of 

chromatin involved in packaging the human genome [82].	

Aberrant DNA methylation was the first epigenetic mark to be associated with cancer as a 

consequence of the alteration it causes in normal gene regulation [83]. A cancer epigenome is 

marked by genome-wide hypomethylation, site-specific CpG island promoter 

hypermethylation and loss of imprinting [84]. While the underlying mechanisms that initiate 

these global changes are still under investigation, recent studies indicate that some changes 

occur very early in cancer development and may contribute to cancer initiation. Global DNA 

hypomethylation plays a significant role in tumorigenesis and occurs at various genomic 

sequences including repetitive elements, retrotransposons, CpG poor promoters, introns and 
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gene deserts [85]. DNA hypomethylation at repeat sequences leads to increased genomic 

instability by promoting chromosomal rearrangements [86]. Hypomethylation of 

retrotransposons can result in their activation and translocation to other genomic regions, 

thus increasing genomic instability [87]. 	

In contrast to hypomethylation, which increases genomic instability and activates proto-

oncogenes, site-specific hypermethylation contributes to tumorigenesis by silencing tumor 

suppressor genes. Since the initial discovery of CpG island hypermethylation of the Rb 

promoter (a tumor suppressor gene associated with retinoblastoma) [88], various other tumor 

suppressor genes, including p16, MLH1 and BRCA1, have also been shown to undergo 

tumor-specific silencing by hypermethylation [89]. These genes are involved in cellular 

processes, which are integral to cancer development and progression, including DNA repair, 

cell cycle, cell adhesion, apoptosis and angiogenesis. Epigenetic silencing of such tumor 

suppressor genes can also lead to tumor initiation by serving as the second hit required for 

cancer initiation according to the ‘two-hit’ model proposed by Alfred Knudson [90]. In 

addition to direct inactivation of tumor suppressor genes, DNA hypermethylation can also 

indirectly silence additional classes of genes by silencing transcription factors and DNA 

repair genes. Promoter hypermethylation-induced silencing of transcription factors, such as 

RUNX3 in esophageal cancer [91] and GATA-4 and GATA-5 in colorectal and gastric cancers 

[92], leads to inactivation of their downstream targets. Silencing of DNA repair genes (e.g. 

MLH1, BRCA1 etc.) enables cells to accumulate further genetic lesions leading to the rapid 

progression of cancer. While the ability of DNA hypermethylation to silence tumor 

suppressor genes in cancer is well established, how genes are targeted for this aberrant DNA 

methylation is still unclear. One possibility is that silencing specific genes by 

hypermethylation provides a growth advantage to cells resulting in their clonal selection and 

proliferation. Although it is unlikely that aberrant DNA methylation is strictly a random 

event and that the methylated genes observed in cancer merely reflect clonal growth 

advantage resulting from the abnormal methylation, it is likely that many of the methylated 

genes observed in cancer have been clonally selected. Consistent with the concept of 

“selective advantage”, cancers have tumor specific methylation patterns and the frequency of 

specific methylated gene varies widely between tumors [93].	

Another possibility is that tumor-specific CpG island methylation can occur through a 

sequence-specific instructive mechanism by which DNMTs are targeted to specific genes by 

their association with hystone marks. As previously mentioned, DNA methylation and 
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histone modifications work independently and in concert to alter gene expression during 

tumorigenesis. A key facet of such silencing mechanisms is the formation of a rigid 

repressive chromatin state that results in reduced cellular plasticity. The recent discovery of 

tumor-specific de novo methylation of polycomb target genes, which are silenced by 

H3K27me3 in normal cells, is another example of this phenomenon [94, 95, 96]. In ES cells, 

developmentally important genes are reversibly silenced by polycomb proteins through the 

establishment of the repressive H3K27me3 mark. After differentiation, these genes continue 

to be repressed through the maintenance of the polycomb mark on their unmethylated 

promoters by EZH2. In cancer, the polycomb mark is replaced by de novo DNA methylation 

possibly through the recruitment of DNMTs via the polycomb complex [50]. This tumor 

specific ‘epigenetic switching’ of the plastic polycomb mark with more stable DNA 

methylation results in the permanent silencing of key regulatory genes that may contribute to 

cell proliferation and tumorigenesis [97]. However, which transformation associated factors 

trigger this switch is still unclear. The selective hypermethylation of polycomb target genes 

in cancer cells provide a link between stem cell biology and cancer initiation and a 

supporting evidence for the ‘cancer stem cell’ hypothesis. This model suggests that the 

epigenetic changes, which occur in normal stem or progenitor cells, are the earliest events in 

cancer initiation. These epigenetic alterations observed in cancers are reflective of the stem 

cells from which the cells are derived, and that the alterations observed in the cancers merely 

indicate the undifferentiated state of the tumor cells [98]. The idea that these initial events 

occur in stem cell populations is supported by the common finding that epigenetic 

aberrations are some of the earliest events that occur in various types of cancer and also by 

the discovery that normal tissues have altered progenitor cells in cancer patients. This stem 

cell-based cancer initiation model is consistent with the observation that tumors contain a 

heterogenous population of cells with diverse tumorigenic properties [99]. Since epigenetic 

mechanisms are central to maintenance of stem cell identity [100], it is reasonable to 

speculate that their disruption may give rise to a high-risk aberrant progenitor cell population 

that can undergo transformation upon gain of subsequent genetic gatekeeper mutations. Such 

epigenetic disruptions can lead to an overall increase in number of progenitor cells along 

with an increase in their ability to maintain their stem cell state, forming a high-risk substrate 

population that can readily become neoplastic on gain of additional genetic mutations. DNA 

methylation-induced silencing of genes involved in the regulation of stem/precursor cells’ 

self renewal capacity, such as p16, APC, SFRPs etc., is commonly observed in the early 

stages of colon and other cancers. Aberrant silencing of these so called ‘epigenetic 

gatekeeper’ genes in conditions of chronic stress, such as inflammation, enables stem/
�19



precursor cells to gain infinite renewal capacity thereby becoming immortal. These pre-

invasive immortal stem cells are selected for and then form a pool of abnormal precursor 

cells that can undergo further genetic mutations leading to tumorigenesis [101].	

Another common event in carcinogenesis is loss of imprinting defined as the loss of 

parental allele specific monoallelic expression of genes due to aberrant hypomethylation 

profiles at one of the two parental alleles. For example, loss of imprinting of IGF2 has been 

associated with an increased risk of cancer, including CRC. This event has been observed in 

different types of neoplasia [102].	

Thus, there are many proposed mechanisms by which epigenetic gene regulation is 

thought to be dysregulated in cancer, and each mechanism is supported by evidence from a 

variety of different lines of experimental evidence. It is likely that no single mechanism is 

sufficient to alter the cellular process and drive the pathogenesis of aberrant DNA 

methylation in cancer. It is most likely that all of these mechanisms contribute to the aberrant 

epigenetic regulation seen in human cancers, depending on the circumstances of the tumor.	

Molecular pathogenesis of sporadic CRCs	

!
CRC is the third most common cancer and the fourth leading cause of cancer-related 

death worldwide [103]. In 2012, 1.360.600 new cases were diagnosed and 693.900 deaths 

were attributed to CRC [104]. CRCs occur sporadically in the majority of cases, and only 

5%–10% are due to inherited mutations in well-known cancer-related genes. However, up to 

25% of patients have a family history of CRC, suggesting a specific contribution by genes 

that have yet to be identified [105].	

Three major genetic pathways for sporadic CRCs	

!
Sporadic CRCs is an heterogeneous disease and evolves through a stepwise accumulation 

of genetic and epigenetic alterations, leading to the transformation of normal colonic mucosa 

into invasive cancer. The CRC’s heterogeneity reflects the fact that there are many possible 

etiological pathways responsible for driving CRC development, each of which may be 

marked by distinct driver mutations and genetic or epigenetic signatures. Importantly, this 

heterogeneity can also have implications for CRC prognosis and the clinical management of 

this disease. The conventional model of CRC formation as initially suggested by Fearon and 
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Vogelstein [106] proposed the adenoma-carcinoma sequence theory, in which APC mutation 

serves as an initiating event, followed by the accumulation of multiple mutations of genes, 

such as KRAS, SMAD4, and TP53. According to this model, at least seven distinct mutations 

are required for CRC pathogenesis.	

Presently, three major distinct genetic pathways to CRC have been postulated. 

Approximately 70% of sporadic CRCs develop through the chromosomal instability (CIN) 

pathway. These cancers are characterized by the accumulation of numerical or structural 

chromosomal abnormalities, resulting in aneuploid karyotype, frequent loss-of-

heterozygosity (LOH) at tumor suppressor gene loci, and chromosomal rearrangements 

[107]. Moreover, CIN tumors are distinguished by the accumulation of mutations in specific 

oncogenes and tumor suppressor genes [e.g., APC, KRAS, phosphatidylinositol-4,5-

bisphosphate 3-kinase, PIK3CA, BRAF, SMAD4, and TP53], thereby activating pathways 

critical for carcinogenesis.	

Another important pathway is the microsatellite instability (MSI) pathway, caused by 

dysfunction of DNA mismatch repair (MMR) genes. MSI is found in 15% of sporadic CRCs. 

Unlike Lynch syndrome that is caused by germ-line mutations of MMR genes, such as 

MLH1 (32% of cases), MSH2 (39%), PMS2 (15%), and MSH6 (14%), MMR deficiency in 

sporadic CRCs is due mainly to silencing of the MMR genes, mostly MLH1 (>80% of 

cases), by promoter hypermethylation [108, 109]. Classification of MSI is based on altered 

size of various mono and dinucleotide repeat sequences, such as BAT25, BAT26, D2S123, 

D5S346, and D17S250, known as the Bethesda panel [110]. Altered size of at least two of the 

five microsatellite panel markers is defined as MSI-high (MSI-H). Sporadic MSI-H is 

associated with a third pathway implicated in CRC development namely CpG island 

methylation phenotype (CIMP). CRCs with one abnormal marker in the panel are termed 

MSI-low (MSI-L), and their clinical significance is controversial. MSI-L is often grouped 

with microsatellite-stable (MSS) tumors. Loss or abnormal expression of the MMR proteins 

MLH1, MSH2, MSH6 and PMS2, assessed by immunohistochemistry, is standard practice in 

many pathology laboratories and is used to help identify Lynch syndrome along with MSI 

typing of tumour DNA [111]. Distinguishing Lynch syndrome that show loss of MLH1 

expression from sporadic MMR-deficient cancers is currently most appropriately performed 

by detection of the specific mutation BRAF V600E, which is found in around 80–90 % of 

sporadic MSI-H CRC, but rarely—if ever—in CRC due to Lynch syndrome [112]. The 

presence of MLH1 promoter hypermethylation may be used to distinguish sporadic CRC 
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from Lynch syndrome-associated CRC, but there are interpretative problems as constitutive 

MLH1 promoter methylation may occur, as well as technical challenges of performing this 

test [113].	

The third pathway, designated as CpG island methylation phenotype (CIMP), is 

characterized by a widespread CpG island methylation [114]. Approximately 30%–40% of 

sporadic proximal CRCs are CIMP-positive, compared with 3%–12% of distal CRCs [115, 

116, 117]. CIMP-positive CRCs often have MSI-H due to methylation of the MLH1 

promoter, but more than 50% of CIMP tumors are MSS. CIMP is uncommon in Lynch 

syndrome that exhibits MSI [118]. CIMP is also associated with BRAF mutations in both 

MSI and MSS CRCs [119]. No consensus exists yet for what constitutes the optimal panel of 

CpG sites for CIMP determination. The classic panel consists of CpG sites in MLH1, 

CDKN2A MINT1, MINT2, and MINT31 [120]. CIMP positive tumors based on the classic 

panel can be divided in two types, namely CIMP-high, related to BRAF mutations and MLH1 

methylation, and CIMP-low, related to KRAS mutations and MSS [121]. CIMP-negative 

tumors are MSS with frequent TP53 mutation [122]. Based on a systematic screen of 195 

CpG sites, CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1 was proposed as an 

alternative to the classic panel [109]. CIMP, which was defined by this panel, did not show a 

relationship to KRAS, but did strongly associate with BRAF V600E mutation [123]. The 

CIMP concept has not been accepted by all researchers in this field, and over the past few 

years there has been much debate as to whether the CIMP tumours represent a biologically 

distinct group of CRCs or are an artificially selected group from a continuum of tumours 

showing different degrees of methylation at particular loci [124].	

The definition of the three genetic pathways is not mutually exclusive, as in the case of 

CIMP, which often results in MLH1 promoter methylation and MSI. Up to 25% of MSI 

CRCs can exhibit CIN [125], In addition, whereas CIMP can account for most of the MSI-

positive/CIN-negative CRCs, up to 33% of CIMP-positive tumors can exhibit a high degree 

of chromosomal aberrations [126]. Conversely, as many as 12% of CIN-positive tumors 

exhibit high levels of MSI [121]. The significance and implications of these overlapping 

features are not yet fully defined.	

Consistent with genetic models, there appear to be at least three distinct clinicopathologic 

evolutional routes to sporadic CRCs [127, 128]. The first is the traditional pathway, which 

starts from normal mucosa via tubular adenomas (with APC mutations) and results in typical 

CRC in the distal colon (with TP53 mutation and CIN). The second is the serrated pathway, 
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which starts from normal mucosa via serrated adenomas (with BRAF mutations and CIMP) 

and results in colon cancer in the proximal colon with good prognosis (with MLH1 loss and 

MSI). The third is the alternative pathway, which starts from normal mucosa via villous, 

partly serrated adenomas (with KRAS, BRAF, and APC mutations and CIMP) and results in 

colon cancer with poor prognosis (with CIMP). The traditional and serrated pathways are 

homogenous, but the alternative pathway is more heterogeneous. The prevalence of each 

pathway is estimated at 50%–70% (traditional), 10%–20% (serrated), and 10%–30% 

(alternative) [128].	

Genome-wide detection methodologies for DNA methylation	

!
There are over 28 million CpG sites in the human genome. Assessing the methylation 

status of each of these sites will be required to understand fully the role of DNA methylation 

in health and disease. A wide range of experimental methods in a genome-wide scale have 

been developed to generate quantitative and qualitative information on DNA methylation. 

Generally, all of the methods include two procedures: the methylation-dependent 

pretreatment of the DNA and the following analytical step. There are mainly three kinds of 

pretreatment approaches: enzyme digestion, affinity enrichment and bisulfite conversion.	

Whole-genome bisulfite sequencing	

!
Bisulfite-sequencing, which was developed by Frommer and Clark [129], is considered 

the ‘gold standard’ for DNA methylation analyses. DNA is treated with sodium bisulfite to 

convert cytosine to uracil, which is converted to thymine after PCR amplification, whereas 

5MeC residues are not converted and remain as cytosines [130]. To perform whole-genome 

bisulfite sequencing (WGBS), genomic DNA (1–5 mg) is sheared and ligated to methylated 

adaptors before size selection and bisulfite conversion, followed by library construction and 

highthroughput sequencing. More than 500 million paired-end reads are required to achieve 

approximately 30-fold coverage of the 28 217 009 CpG sites on autosomes and sex 

chromosomes; typically approximately 95% of all CpG sites in the genome can be assessed 

using WBGS. WGBS is fairly accurate and reproduciblehas and has the advantage of 

providing single nucleotide resolution and whole-genome coverage. However, it typically 

requires relatively large quantities of DNA (1–5 ug) and accurate interpretation requires 
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computational expertise. In addition, its high cost makes it unpractical to be applied to large 

sample size.	

Enrichment-based technologies	

!
Genome-wide affinity-based methods rely on enrichment of methylated regions. Two of 

the common enrichment approaches include methyl-DNA immunoprecipitation (MeDIP), 

which uses a monoclonal antibody specific for 5-methylcytosine [131] and affinity capture 

with MBDCap proteins [132, 133]. Both MeDIP and MBDCap can be combined with next-

generation sequencing (MeDIP-Seq and MBDCap-Seq). MBDCap-Seq is one of the most 

widely used capture approaches. The workflow for MBDCap-Seq exhibits similarities to 

WGBS, but is devoid of a bisulfite conversion step. To perform MBDCap-Seq, genomic 

DNA (0.2–1 mg) is sonicated before capturing methylated DNA with MBD protein coupled 

to streptavidin beads. Following capture, the bound methylated DNA can be eluted as a 

single fraction or in a step-wise elution series to enrich different CpG densities. Enriched 

DNA is then subjected to library preparation and high-throughput sequencing. 

Approximately 30 million single-end reads are required for accurate interpretation of data. 

MBDCap-Seq performed on fully methylated DNA can yield approximately 18% coverage 

of the genome because it captures approximately 5 million methylated CpG sites. MBDCap-

seq is a simple approach that does not require bisulfite conversion and can be used to identify 

differentially methylated regions [134, 135]. However, a notable disadvantage of MBDCap-

Seq is that it does not provide single-nucleotide resolution. Rather, it identifies regions 

containing multiple methylated CpG sites typically at CpG-rich regions in a readout similar 

to chromatin immunoprecipitation (ChIP-Seq).	

Reduced representative bisulfite sequencing	

!
Reduced representative bisulfite sequencing (RRBS) is an efficient and high-throughput 

technique used to analyze methylation profiles at a single-nucleotide level from regions of 

high CpG content (e.g., CpG islands), but does not interrogate intergenic or lowly 

methylated regions of the genome [136]. RRBS relies first on the digestion of genomic DNA 

(0.01–0.03 mg) with a methylation-insensitive restriction enzyme, such as MspI, that selects 

genomic regions with moderate to high CpG density, such as CpG islands, followed by DNA 

size fractionation. This ‘reduced representation’ of the genome is sequenced similarly to 
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WGBS to generate a single-base pair resolution DNA methylation map [136]. A minimum of 

approximately 10 million sequencing reads are required for the downstream analysis of 

RRBS data sets, leading to approximately 3.7% actual coverage of CpG dinucleotides 

genome-wide or approximately 1 million CpG sites. One of the main advantages of RRBS is 

that it is more cost-effective than WGBS, because it targets bisulfite sequencing to an 

enriched population of the genome, while retaining single-nucleotide resolution. RRBS data 

are restricted to regions with moderate to high CpG density, and are enriched for promoter-

associated CpG islands. However, RRBS interrogates only ~ 4% of the approximately 28 

million CpG dinucleotides distributed throughout the human genome. Thus, a lack of 

coverage at intergenic and distal regulatory elements is a potential disadvantage of the 

method.	

Infinium HumanMethylation450 BeadChip	

!
The Infinium HumanMethylation450 BeadChip (450K) is an attractive option for 

genome-wide DNA methylation analyses in a variety of cell types. It is suitable for clinical 

samples, it requires little starting material (approximately 0.5 mg), is cost effective, and can 

be used in a high-throughput manner. The 450K protocol begins with the bisulfite conversion 

of genomic DNA (0.5–1 mg). Converted genomic DNA is hybridized to arrays that contain 

predesigned probes to distinguish chemically methylated (cytosine) and unmethylated 

(converted to uracil). A single-base extension step incorporates a labeled nucleotide that is 

fluorescently stained. Scanning of the array detects the ratio of fluorescent signal arising 

from the unmethylated probe compared with the methylated probe, allowing the level of 

methylation to be determined. The 450K BeadChip interrogates 482422 cytosines across the 

human genome, which represents only approximately 1.7% of all CpG sites in the human 

genome, substantially less than other methods. However, these sites are enriched for CpG 

(99.3%) residues and almost half (> 41%, approximately 197790 CpG sites) of the probes on 

the array cover intergenic regions, such as bioinformatically predicted enhancers, DNase I 

hypersensitive sites, and validated differentially methylated regions (DMRs) [137, 138]. 

Therefore, 450K has become the method of choice for genome-wide DNA methylation 

analyses of profile large cohorts, because it requires a low amount of input material and it is 

cost effective. Of note, up to now, thousands of DNA methylation publicly available data sets 

(e.g TCGA) [139] have been generated from this array-based detection method and these 

data have been widely used to infer the candidate biomarkers for cancer diagnosis. However, 
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when using 450K BeadChip technology, there are also some issues to consider. First, the 

design is heavily biased due to preselection and inclusion of probes that interrogate only 

certain CpG sites that have been previously identified in methylation-based assays and, 

therefore, the design is not hypothesis neutral. Second, it is assumed that CpG sites located 

adjacent to those interrogated by the probes will be similarly un/methylated, which is known 

as the ‘co-methylation assumption’ [140]. Finally, there are behavioral differences between 

the two types of probe design on the array, and the filtering of probes may be affected by 

single nucleotide polymorphisms, which need to be factored in to the data analysis pipelines 

[141].	

Processing and analysis methods for Infinium HumanMethylation450 

BeadChip	

!
The 450K arrays are based on the Infinium chemistry and represent an extension of the 

previous Infinium Human Methylation27 BeadChip (27K) platform, which was biased 

toward promoter regions. This extension resulted in wider coverage, specially toward other 

genomic regions like gene bodies and CpG shores. However, this also resulted in the 

introduction of two different bead types associated to two different chemical assays, Infinium 

I and Infinium II. Infinium I consists of two bead types (Methylated and Unmethylated) for 

the same CpG locus, both sharing the same color channel, whereas Infinium II utilizes a 

single bead type and two color channels (green and red) [137]. Infinium II assays have larger 

variance and are less sensitive for the detection of extreme methylation values, which is 

probably associated to the dual-channel readout, thus rendering the Infinium I assay a better 

estimator of the true methylation state [142, 143, 144]. Moreover, different genomic 

elements (promoters, CpG islands, gene bodies, etc.) have different relative fraction of type I 

or type II probes [144]. The inclusion of two different bead types (Infinium I and Infinium II) 

introduce probe-type bias complicating the analysis of the 450K arrays. Different statistical 

methods has been developed to correct the bias due to the two different chemical assays. 	

The cytosine methylation status for single CpG sites at each allele is always binary (0 or 

1). However, the measured methylation levels can, in principle, take any value between 0 

and 1 when averaging over many cells, or when the methylation status differs between the 

two alleles (imprinting, X-chromosome inactivation). For bisulfite microarrays, the 

methylation level is usually measured in two different scales, the β value and the M-value. 
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The β value is calculated as β = M/(M + U + α) where M and U are methylated and 

unmethylated signal intensities and α is an arbitrary offset (usually 100) and can be 

interpreted as the percentage of methylation (it ranges from 0 to 1). The alternative index is 

not bounded by 0 and 1 and is calculated as M = log2((M + α)/(U + α)), which is essentially 

equivalent to a logit transformation of β. Even if M-values cannot be directly interpreted as 

methylation percentages, they offer several advantages, including the possibility of 

employing downstream association models that rely on the assumption of Gaussianity, as β 

values appear compressed in the high and low range and often display heteroscedasticity. 

However, from a pragmatic point of view and to allow biological interpretation, it is always 

advisable to report the final effect size in terms of median or mean β value change, even if 

the feature selection step has been performed in the M-value space.	

Normalisation	

!
Normalisation concerns the removal of sources of experimental artifacts, random noise 

and technical and systematic variation caused by microarray technology, which, if left 

unaddressed, has the potential to mask true biological differences [145]. Two different types 

of normalisation exist: (1) within-array normalisation, correcting for intensity-related dye 

biases, and (2) between-array normalisation, removing technical artifacts between samples 

on different arrays [146].	

Within-array normalisation: probe-type normalization	

!
Independently of the scale used (β value or M-value), the methylation profile for each 

sample shows a bimodal distribution, with two peaks corresponding to the unmethylated and 

methylated CpG positions. Because of the technical differences in probe design, a correction 

method is advisable. Specifically, the 450K array has 485577 probes, of which 72% use the 

Infinium type II primer extension assay where the unmethylated (red channel) and 

methylated (green channel) signals are measured by a single bead. The remainder use the 

Infinium type I primer extension assay (also used in the 27K) where the unmethylated and 

methylated signals are measured by different beads in the same colour channel. Importantly, 

the two probes differ in terms of CpG density, with more CpGs mapping to CpG islands for 

type I probes (57%) as compared with type II probes (21%). Moreover, compared with 

Infinium I probes, the range of β-values obtained from the Infinium II probes is smaller; in 
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addition, the Infinium II probes also appear to be less sensitive for the detection of extreme 

methylation values and display a greater variance between replicates [137, 144]. The 

divergence in the methylation distribution range has implications for statistical analysis of 

the array data. For example, in a supervised analysis of all probes, an enrichment bias 

towards type I probes may be created when ranking probes because of the higher range of 

type I probes [147]. Attempts have been made to use rescaling to ‘repair’ the divergence 

between these two types of probes. Methods for reducing the probe-type bias include a peak-

based correction [144], SWAN method [147], subset quantile normalization [148], and 

BMIQ [143]. In a benchmarking work [142], BMIQ resulted as the best algorithm for 

reducing probe design bias. BMIQ, which employs a betamixture and quantile dilation intra-

array normalization strategy, is available through several R packages, RnBeads [149], 

WateRmelon [150].	

Between-array normalisation	

!
Between-array normalization is intended to remove part of the technical variability that is 

not associated with any biological factor, but which can be considered as caused by 

experimental procedures. Specifically, there is an imbalance in methylation levels throughout 

the genome creating a skewness to the methylation log-ratio distribution [146]. This 

imbalance is due to the non-random distribution of CpG sites throughout the genome and the 

link between CpG density and DNA methylation; for instance, CGI are often unmethylated, 

whereas the opposite relationship is typically seen in non-CGIs in normal human cells [151]. 

Owing to this features of DNA methylation, there is a lack of consensus regarding the 

optimal approach for normalisation of methylation data although a comparison of different 

normalization pipelines has been performed in recent works [142]. Many of the proposed 

approaches employ a form of quantile normalization (QN), which has been shown to perform 

well for gene expression studies. The goal of QN is to produce identical distribution of probe 

intensities for all the arrays and it has been applied to 450K data in several forms [152]. 

While forcing the distribution of the methylation estimates to be the same for all the samples 

is a reasonably too strong an assumption for many biological comparisons, normalizing 

signal intensities appears a valid alternative in reducing technical variability in several 

contexts [142, 152]. However, examination of the signal intensities and the study design 

should guide the application of this level of between-samples normalization, in order not to 

harm the integrity of the biological signal. A recent extension of QN, termed functional 
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normalization [153], uses control probes from the array to remove unwanted variation, 

assuming that summarized control probes function as surrogates of the nonbiological 

variation, which may include batch effects. Several comprehensive R packages have been 

developed for the processing and the analysis of 450K data such as lumi [154], methylumi 

[155], minfi [156], wateRmelon [150], ChAMP [157], and RnBeads [149].	

Another type of unwanted variation in 450K data is represented by batch effects, which 

contaminate many high-throughput experiments including 450K arrays. A batch is defined as 

a subgroup of samples or experiments exhibiting a systematic non-biological difference that 

is not correlated with the biological variables under study. For example, different batches are 

represented by groups of samples that are processed separately, on different days or by a 

different operator. Batch effects can only affect a subset of probes instead of generating 

artifacts globally; therefore, many normalization methods fail in eliminating or reducing 

batch effects. Specific methods have been developed to deal with this source of variability, 

including ComBat [158] and SVA (Surrogate Variable Analysis) [159]. These methods aim at 

removing the unwanted variation that remains in high-throughput assays despite the 

application of between-sample normalization procedures. ComBat method rely on the 

explicit specification of the experimental design, in order to maintain the variability 

associated to a biological factor, while removing variability associated to either known or 

unknown batch covariates. The ComBat method directly removes known batch effects and 

returns adjusted methylation data, by using an empirical Bayes procedure. However, when 

the sources of unwanted variation are unknown, surrogate variables can be identified by SVA 

directly from the array data. It is important to remember that the best safeguard against 

problematic batch effects is a careful experimental design, coupled with a random 

assignment of the samples to the arrays, the inclusion of a method to account for batch effect 

and possibly the presence of technical replicates, one for each processing subgroup, if the 

samples cannot be processed together in the case of large cohorts.	

Biomarkers	

!
A biomarker is any biological characteristic that can be objectively measured and 

evaluated as an indicator of normal biological process, pathogenic process, or 

pharmacological response to a therapeutic intervention [160]. Biomarkers can be used at any 

stage of a disease and can be associated with its cause or latency (risk biomarkers), onset 

(diagnostic biomarkers), clinical course (prognostic biomarkers), or response to treatment 
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(predictive biomarkers) [161, 162]. Biomarkers can also be associated with specific 

environments (exposure biomarkers). As almost all complex human diseases are caused by a 

mixture of genetic and environmental variation, biomarkers, especially those antecedent to 

disease, can be influenced by either of these factors. Biomarkers can also reflect the 

mechanisms by which exposure and disease are related. They can stratify individuals 

according to risk or prognosis and they can be used as targets or surrogate endpoints in 

clinical trials. An ideal biomarker must be able to provide clinically-relevant information, be 

accurately measurable in multiple individuals, ideally across multiple populations. Almost 

any biological tissue sample or bodily fluid can be used for DNA methylation analysis. DNA 

methylation is the most robust epigenetic mark and will survive most sample storage 

conditions. The robustness of DNA methylation marks makes DNA methylation analysis 

very attractive in a clinical environment for the early detection of cancer and easy-to-access 

tissues or bodily fluids can be collected. Such samples include venous peripheral blood, 

buccal epithelium or saliva, urine, stools, bronchial aspirates, and, even in some cases, 

muscle or adipose tissue.	

Colon cancer can be cured by a relatively simple surgical procedure when the cancer is 

diagnosed early before metastasis occurs. CRC is suitable for early detection approaches due 

to its recognizable early stage and its defined natural history. The progression from an 

adenoma to carcinoma may take decades, which provides a window of opportunity for early 

CRC detection. To reduce disease-specific mortality, it is therefore important to identify and 

treat CRC as early as possible. Mass screening would therefore greatly contribute to the early 

diagnosis and timely treatment of CRC. Among screening tests for CRC, colonoscopy and 

fecal occult blood test (FOBT) are used most frequently; the former is highly sensitive but 

often requires hospitalization of the patient and is, therefore, costly, while the latter is 

relatively simple to use but has a low positive predictive value. The FOBT is an additional 

screening method that has been shown to be a highly cost-effective, noninvasive screening 

method, reducing CRC-related mortality [163]. The FOBT checks for non-visible “occult” 

blood in the stool of patients. However, although the performance of the immunochemical 

FOBT has been improved, and is now widely used in Europe for CRC screening, FOBT 

remains limited in the detection of early-stage CRC [164]. Therefore, there is an urgent need 

to develop simple and less invasive tests with high sensitivity and specificity.	

For the diagnosis of colon cancer, markers that have high sensitivity and specificity are 

essential and initiating cancer screening programs is the very first step in reducing cancer-
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related mortality. Patients are more willing to participate with less invasive screening 

methods. Epigenetic alterations of specific genes have recently emerged as potential 

candidate biomarkers for the early detection of cancer [165]. The most easily accessible 

sources to study DNA methylation are bodily fluids, such as blood, stool or urine. It is 

therefore interesting to discover novel non-invasive biomarkers with diagnostic utility for the 

detection of CRC. Currently, many highly methylated markers have been reported in CRC, 

but only Vimentin (VIM) and SEPT9 are included in commercial non-invasive tests [166].	

Markers in stool samples	

!
Detection of tumor-derived DNA alterations in stool is an intriguing new approach with a 

high potential for the noninvasive detection of CRC. Tumors release markers at different 

stages of progression, by different mechanisms, into different media that can be assayed. 

Tumor cells and most tumor markers likely enter into stool at earlier stages than into blood 

or urine, an advantage of stool testing for cancer precursor lesions and early-stage tumors. 

Dysplastic cells and their constituents are released into stool by exfoliation from the surface 

of precancerous lesions and early-stage cancers. Exfoliation from colorectal neoplasms 

appears to be a continuous process that occurs more frequently than exfoliation from normal 

epithelium [167]. Factors that might contribute to the high rate of exfoliation from tumors 

include increased proliferation and reduced cell-cell or basement membrane adhesion. In 

normal colon, epithelial renewal does not necessarily lead to exfoliation, but instead, often 

involves engulfment of effete colonocytes by sub-epithelial phagocytes[168]. Recent studies 

have identified an increasing number of genes that are methylated in stool samples of CRC 

patients and VIM is unique and particularly interesting. The expression of VIM does not seem 

to be under epigenetic regulation since the gene is not methylated and is transcriptionally 

silent in normal colorectal epithelial crypt cells. VIM has been thus rarely considered as a 

target for cancer-associated aberrant methylation. However, the usefulness and potential of 

the VIM gene as a methylation marker in CRC has recently emerged. Chen et al. [169] found 

that a CpG island of VIM, located upstream of the first exon and normally unmethylated, 

became densely methylated in CRC and was significantly associated with Dukes' stage with 

a trend toward preferentially developing liver metastasis and peritoneal dissemination. 

Aberrant VIM methylation can be detected in fecal DNA from CRC patients [170], but rarely 

in normal colon tissues and control fecal DNA from healthy subjects. Therefore, VIM 

methylation might be useful in identifying individuals with colon cancer [171]. As 
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mentioned, the detection of aberrantly methylated genes in fecal DNA has potential value in 

the noninvasive diagnosis of colorectal neoplasms. For this purpose, the novel identification 

of genes that are frequently methylated in cancer in stool samples from CRC patients 

requires high detection sensitivity/specificity for clinical use. Detection of patients with 

colon polyps and larger adenomas in stool samples by testing gene methylation may improve 

overall sensitivity. Current approaches to test gene methylation in fecal DNA samples need 

to be further developed because of false-negative and false-positive cases which currently 

limit the detection accuracy [172].	

Markers in serum/plasma	

!
Tumor cells gain entry into blood via blood vessel invasion which occurs in cancers but 

not precancerous lesions. Histological analyses have shown that blood vessel invasion occurs 

more frequently from advanced than early-stage tumors [173] and that there is more 

abundant release of tumor cells into the circulation with advanced cancers[174]. Therefore 

circulating tumor cells in peripheral blood (PB) may reflect certain biological characteristics 

of tumors which in turn may predict the potential of tumor metastasis and recurrence[175]. 

Tumor markers can also enter blood indirectly via inflammatory cells that infiltrate tumors, 

phagocytose dysplastic cells (part of the immune response), and then re-enter the circulation 

carrying detectable patterns of tumor-derived nucleic acids or proteins. This alternative route 

of circulatory marker release via phagocytic leukocytes can occur during all stages of 

tumorigenesis and could potentially allow for detection of precancerous lesions as well as 

cancers by a blood test. Conventional cancer markers such as carcinoembryonic antigen 

(CEA) were developed by quantifying small amounts of circulating proteins. These markers 

are specific for certain types of cancer, having proven to be of some value in the early 

detection of cancers and cancer relapse, monitoring the response of cancers to therapy, and as 

predictors of cancer prognosis [176]. However, the shortcomings of this approach due to the 

limited sensitivity and specificity are now well-recognized [177]. The measurements of 

serum CEA levels are now used to monitor disease progression and response to therapy in 

patients with CRC [178]. It is the only serum marker that is recommended to be added to the 

established tumor–node– metastasis staging system [179] due to its prognostic significance 

in Dukes' B or equivalent stages. However, only a proportion of CRC express elevated CEA 

levels at the time of diagnosis. In the search for increasing the pool of useful serologic 

markers, the potential use of nucleic acid markers in plasma and serum has been examined. 
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PCR-based assays in small amounts of nucleic acids can thereby detect and quantify genetic 

and epigenetic alterations in the circulating tumor DNA [180]. Although it is widely accepted 

that DNA methylation markers might increase cancer detection at earlier stages and 

eventually contribute to future advances in assessing clinical outcome of cancer patients, 

methylation analysis of a number of gene promoters in DNA from blood samples has been 

limited. Despite great efforts in detected of diagnostic/prognostic biomarkers for CRC, since 

1997, there is not any reliable serum biomarker that could be used as a noninvasive screening 

method. A SEPT9 represent a promising blood-based biomarker assay developed and 

validated in case-control studies by deVos et al. [181]. The performance of the SEPT9 assay 

was examined in a study of 97 cases with CRC and 172 healthy controls. The SEPT9 assay 

yielded a sensitivity of 72% at a specificity of 92% in the training study and 68% sensitivity 

at a 89% specificity in the testing study. The authors concluded that circulating methylated 

SEPT9 DNA is a valuable biomarker for minimally invasive detection of CRC and could be 

implemented in a standardized assay.	

Technical aspects in biomarker research and in its clinical application	

!
Research into methods for noninvasive molecular detection of colorectal neoplasia is a 

continuously changing field. Technological advances that have improved test performance 

include innovative methods to increase analytical sensitivity, development of buffers that 

prevent marker degradation during transport and storage, and identification of marker panels 

that effectively cover the various genotypes of colorectal neoplasms. Development of high 

throughput platforms should expand the capacity of these assays and lower costs. Tests to 

reliably detect the minute quantities of marker analytes in stool, blood, and urine must have 

high levels of sensitivity, especially if precancerous lesions and small, early-stage tumors are 

to be identified. The technical challenges differ depending on the medium and the markers 

tested. In stool samples, it is a challenge to detect trace amounts of target DNA among large 

amounts of background DNA and high analytical sensitivity (ie, reliable detection of low 

analyte concentrations) is required. Human DNA concentrations average about 100 ng/g, 

which is roughly 0.01% of the total stool DNA. The other 99.99% of stool DNA is 

nonhuman, mostly bacterial and some dietary. The mutated or aberrantly methylated copies 

of the tumor genes to be identified are only a small proportion of the minute fraction of stool 

DNA that is of human origin[182, 183]. Accordingly, an enrichment step is often needed to 

capture target gene sequences for use as a polymerase chain reaction (PCR) template and 

�33



remove PCR inhibitors before the assay is performed. A number of new approaches have 

substantially improved analytical sensitivity. For example, Methyl-BEAMING and a digital 

melt curve method[182, 183, 184] detect <0.1% of mutant copies, providing the requisite 

analytical sensitivity for detection of precursor lesions. In contrast to stool, essentially all 

DNA in a plasma or serum sample is of host origin; tumor-derived DNA can account for 

>25% of total circulating DNA levels[185]. Although the minimal amount of background 

DNA in plasma or serum may enhance assay discrimination, the amount of altered DNA is 

often absent or below detectable limits from patients with precancerous lesions or early-stage 

tumors[185]. As with stool and urine, optimized sample processing and removal of PCR 

inhibitors are required for high levels of sensitivity[185].	

Markers are often degraded during specimen transport or storage, which can reduce test 

sensitivity. Adding stabilizing buffers to the biospecimen at the time of collection can 

eliminate or substantially reduce marker degradation. Addition of buffers containing 

DNAase inhibitors effectively prevents marker degradation during transport and storage[186, 

187]. As assays are developed, it will be important to include specifically designed 

stabilization approaches, based on the markers and medium tested.	

Aims!!
The aims of the present work were:	

• To identify signature alterations in CRC methylome 	

• To test whether these alterations represent early events in CRC development	

• To explore the use of non-invasive techniques (stool and ctDNA) to reveal altered 

methylation	

• To correlate the mRNA gene expression of CRCs with the altered DNA methylation	

!
!
!
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Materials and methods!

Samples for whole genome methylation analysis	

!
The methylome analysis was first performed in 18 CRCs among which four had matched 

peritumoral samples (selected to represent the four anatomic region affected by cancer: left, 

right, sigmoid colon, rectum). Tissue samples were collected at the Department of Surgical 

Sciences, University of Cagliari (Italy). Table 1 describes the clinical features of the analysed 

samples.	

Table 1:  CRC samples used for the methylome study	

KRAS MSI Dukes Histology CIMP_like Anatomic site

254_P Wt Wt Peritumoral CIMP_neg Left Colon

264_P Wt Wt Peritumoral CIMP_neg Sigmoid colon

279_P Wt Wt Peritumoral CIMP_neg Rectum

359_P Wt Wt Peritumoral CIMP_neg Right Colon

254_T Wt Wt b CRC CIMP_neg Left Colon

264_T Wt Wt b CRC CIMP_neg Sigmoid colon

279_T Mutated Wt d CRC CIMP_neg Rectum

308_T Wt Wt b CRC CIMP_neg Sigmoid colon

309_T Wt Wt a CRC CIMP_neg Sigmoid colon

310_T Wt Wt a CRC CIMP_pos(>20%) Left Colon

311_T Wt Mutated a CRC CIMP_neg Rectum

313_T Wt Wt b CRC CIMP_pos(>20%) Sigmoid colon

325_T Wt Wt d CRC CIMP_neg Rectum

337_T Wt Wt d CRC CIMP_pos(>20%) Left Colon

352_T Wt Wt d CRC CIMP_neg Sigmoid colon

359_T Mutated Wt b CRC CIMP_pos(>30%) Right Colon

362_T Wt Wt a CRC CIMP_neg Rectum

368_T Mutated Wt b CRC CIMP_neg Sigmoid colon

376_T Wt Mutated b CRC CIMP_pos(>30%) Right Colon

400_T Mutated Wt d CRC CIMP_neg Rectum

407_T Mutated Wt d CRC CIMP_neg Sigmoid colon

455_T Wt Wt d CRC CIMP_neg Sigmoid colon
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In a second step, methylome analysis was conducted in 21 adenomas and three matched 

intestinal mucosa controls, from 21 patients bearing an adenoma. Lesions were removed 

during endoscopy (De Benedetti et al. 1994).  DNA samples were collected at the National 

Institute for Cancer Research of Genoa (Italy). Table 2 describes the clinical features of the 

analyses samples.	

Table 2: Adenomas samples used for the methylome study	

!

KRAS APC Grade Histology CIMP_like
Anatomic	

site

CTE1279 Wt Wt Normal CIMP_neg Right	Colon

CTE1434 Wt Wt Normal CIMP_neg Le6	Colon

CTE1620 Wt Wt Normal CIMP_neg Le6	Colon

CTE1266 Wt Mutated Adenoma_mild_dysplasia Adenoma CIMP_neg Le6	Colon

CTE1280 Mutated Wt Adenoma_mild_dysplasia Adenoma CIMP_pos(>30%) Right	Colon

CTE1435 Mutated Wt
Adenoma_severe_dysplasi

a Adenoma CIMP_neg Le6	Colon

CTE1470 Wt Wt Adenoma_low_dysplasia Adenoma CIMP_neg Le6	Colon

CTE1473 Mutated Wt Adenoma_mild_dysplasia Adenoma CIMP_neg Le6	Colon

CTE1474 Mutated Wt Adenoma_mild_dysplasia Adenoma CIMP_neg NA

CTE1540 Wt Wt Early	cancer	in	adenoma Adenoma CIMP_neg Le6	Colon

CTE1619 Wt Wt Adenoma_mild_dysplasia Adenoma CIMP_neg Le6	Colon

CTE1621 Wt Mutated
Adenoma_severe_dysplasi

a Adenoma CIMP_neg Le6	Colon

CTE1727 Wt Mutated Early	cancer	in	adenoma Adenoma CIMP_neg Le6	Colon

CTE1730 Wt Wt Early	cancer	in	adenoma Adenoma CIMP_neg Le6	Colon

CTE1748 Mutated Wt Early	cancer	in	adenoma Adenoma CIMP_neg Le6	Colon

CTE1877 Wt Wt Early	cancer	in	adenoma Adenoma CIMP_neg Le6	Colon

CTE2032 Wt Wt Adenoma_mild_dysplasia Adenoma CIMP_neg Le6	Colon

CTE2034 Wt Mutated Adenoma_low_dysplasia Adenoma CIMP_neg Le6	Colon

CTE2035 Wt Wt Adenoma_low_dysplasia Adenoma CIMP_neg Right	Colon

CTE2036 Wt Wt HyperplasHc	polyp Adenoma CIMP_neg Le6	Colon

CTE2040 Wt Wt Adenoma_low_dysplasia Adenoma CIMP_neg Le6	Colon

CTE2046 Wt Wt
Adenoma_severe_dysplasi

a Adenoma CIMP_neg Right	Colon

CTE2052 Wt Wt Adenoma_low_dysplasia Adenoma CIMP_neg Le6	Colon

CTE2055 Wt Wt HyperplasHc	polyp Adenoma CIMP_neg Le6	Colon
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DNA extraction and bisulphite treatment of the DNA	

!
Genomic DNA was extracted from tumoral and peritumoral tissue using the DNeasy 

Blood & Tissue Kit (Qiagen). Quality control and quantification of DNA were performed 

before and after bisulphite conversion. DNA was quantified with NanoDrop (NanoDrop 

Products Thermo Scientific Wilmington, DE) and by fluorometric reading (Quant-iT™ 

PicoGreen® dsDNA Assay Kit); quality was assessed by visualization of genomic DNA on 

1% agarose gel electrophoresis. Only DNA samples not fragmented and with a concentration 

higher than 50 ng/μl were subsequently processed. The genomic DNA was treated with 

sodium bisulfite using the EZ DNA Methylation Kit ™ (Zymo Research); the technique 

requires only 500 ng of input DNA.	

DNA methylation assay	

!
Four microliters of bisulfite-converted DNA were used for hybridization on Infinium 

HumanMethylation 450 BeadChip, following the Illumina Infinium HD Methylation 

protocol. Data were acquired on an Illumina HiScan SQ scanner. Image intensities were 

extracted using GenomeStudio (2010.3). The methylation score for each CpG site was 

represented as β values according to the fluorescent intensity ratio between methylated and 

unmethylated probes. Same procedure has undergone the DNA extracted from 21 adenomas 

and three normal mucosae.	

Data management, quality control, preprocessing, normalisation and 

annotation	

!
Illumina methylation 450K raw data were analysed using the R/Bioncondictor package 

“RnBeads”. RnBeads is an R/Bioconductor package for the comprehensive analysis of 

genome-wide DNA methylation data with single base-pair resolution. RnBeads builds upon 

extensive prior research on bioinformatic and statistical methods for DNA methylation 

analysis and implements a comprehensive analysis pipeline from data import via filtering, 

normalization and exploratory analyses to characterizing differential methylation. RnBeads 

is straightforward to run, and the standard pipeline requires an R installation and basic R 

programming experience. An RnBeads analysis can be launched using a single command in 
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R: rnb.run.analysis(…), which takes a user-provided sample annotation table as input and 

extracts relevant information needed to automatically configure the analysis. RnBeads 

workflows can also be fine-tuned using global configuration parameters, which are specified 

using rnb.options(...). It is also possible to run some or all steps of the RnBeads workflow 

interactively and to write R scripts that operate directly on the RnBSet object containing all 

DNA methylation data and sample annotations of a given analysis.	

Illumina methylation 450K data were in the form of Intensity Data (IDAT) files. This is a 

proprietary format that is output by the scanner and stores summary intensities for each 

probe on the array. Typically, each IDAT file is approximately 8MB in size. It is 

recommended to start the analysis from IDAT files to let RnBeads perform quality control for 

the Infinium 450k data using the microarray control probe information which should be 

present in the input raw data but not in pre-normalized data (i.e Illumina GenomeStudio 

files). When IDAT files are loaded into RnBeads, the R/Bioconductor package methylumi is 

internally used for performing the low-level processing. RnBeads combines the loaded data 

into a single RnBSet object that constitutes the basis for all further analysis steps. The 

RnBSet object links the DNA methylation data to genome annotations such as CpG islands, 

genes and promoters, genome-wide tiling regions and user-defined genomic region sets. The 

RnBSet object primarily stores DNA methylation levels as beta values, which are used by 

most modules; nevertheless, RnBeads also calculates M-values and uses them for the limma 

analysis as part of the differential DNA methylation module. After the DNA methylation data 

have been loaded in a RnBSet object the next step in the analysis is the quality control (QC) 

which involves plotting the microarray’s quality control probes to monitor different technical 

parameter such as bisulfite conversion efficiency and unspecific probe hybridization for the 

detection of technical failures and the evaluation of background signal analysing the 

distributions of intensities for the approximately 600 negative control probes which are 

present on the Infinium 450k array. In both channels the negative control probe intensities 

are expected to be normally distributed around a relatively low mean (as a simple rule, the 

0.9 quantile should be below 1000). Any strong deviations from such a picture in one or 

more samples may indicate quality issues; discarding such samples could be beneficial for 

downstream analyses. The Infinium 450k BeadChip also contains a small number of 

genotyping probes that could be used to evaluate the sample mix-ups and to confirm sample 

identity. 	
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Preprocessing and normalization steps are further required to prepare the methylation data 

for downstream analysis. Preprocessing the Infinium 450k data, which include probe 

filtering, it is an important and recommended step to be carried out before and after data 

normalization to minimize the risk of measurement biases affecting the analysis. In RnBeads 

this happens in an automated fashion after the user specifies filtering criteria. In our analysis 

we exclude Infinium probes on sex chromosomes as well as those overlapping with too many 

SNPs, that stand a high chance of influencing DNA methylation measurements, and sites 

with too many missing values. Additionally we discarded CpGs that contain a substantial 

fraction of measurements with low technical quality (e.g., bad detection p-value) using a 

Greedycut algorithm. The next step is the normalization of    Infinium 450k data. RnBeads 

offers several alternative options for signal intensity-based normalization, which is an 

important step to reduce probe biases that could interfere with the analysis. We used the 

SWAN method as implemented in the minfi package which is the RnBeads default for 

Infinium data normalization. In addition, background subtraction NOOB method as 

implemented in the methylumi package was applied in combination with the above 

normalization method. 	

The case/control differential methylation analysis was conduced using RnBeads default 

settings. The default differential methylation analysis in RnBeads can be conducted not only 

at the level of individual CpGs but also by combining measurements across larger genomic 

regions, which increases statistical power and can result in more interpretable sets of 

differentially methylated regions. Genomic regions are inferred from the annotation data 

package, named RnBeads.hg19, that contain annotations for CpG sites, array probes and 

predefined genomic regions. The default genomic regions taken into account by RnBeads are 

Ensembl genes (defined as the whole locus from transcription start site to transcription end 

site), promoters (defined as the regions 1.5 kb upstream and 0.5 kb downstream of 

transcription start sites), CpG island and tiling regions (5kb windows). In each comparison 

defined by the sample annotation table, RnBeads initially computes p-values for all covered 

CpGs. By default, this analysis is performed with hierarchical linear models as implemented 

in the limma package and using M-values, which exhibit a distribution that is more 

consistent with limma’s statistical model assumptions than the beta values that RnBeads uses 

in most parts of its analysis. The CpG-level p-values are corrected for multiple testing using 

the false discovery rate (FDR) method. Furthermore, to obtain aggregate p-values at the level 

of predefined genomic regions, the uncorrected, CpG-specific p-values within a given region 

are combined using an extension of Fisher’s method. This procedure results in a single 
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aggregate p-value for each region, and the aggregate p-values are subjected to multiple 

testing correction using the FDR method.	

The results of differential methylation analysis are stored in tabular format, one table for 

each region considered (CpG sites, genes, promoters, CpG island, tiling), and easily saved in 

plain text (i.e comma separated values (*.csv)). The subsequent analysis steps are focused on 

CpG island differential methylation table. While the reasons for this choice are explained in 

details in the discussion, the following describe how to handle this type of genomic data, 

from the annotation to gene set/pathways enrichment analysis. 	

The genome is typically represented as a linear sequence, split over multiple 

chromosomes, and data are linked to the genome by occupying a range of positions on the 

sequence. These data fall into two broad categories. First, there are the annotations, such as 

gene models, transcription factor binding site predictions, GC percentage, polymorphisms, 

and conservation scores. Second, there are primary experimental measurements, such as 

percentage of methylation at each CpG locus. Data integration, within and between those 

two categories, is made possible by treating the data as ranges on the genome, which acts as 

a common scaffold. Thus, ranges play a central role in genomic data analysis and statistical 

tools should consider ranges to be as fundamental as quantitative and categorical data types. 

In R/Bioconductor the packages that form the core of the infrastructure for the integrative 

statistical analysis of range-based genomic data include IRanges and GenomicRanges. The 

IRanges package provides the fundamental range data structures and operations but data 

structures should support the storage of per-range metadata, because genomic data is 

multivariate and consists of much more than the ranges alone. GenomicRanges builds upon 

IRanges to add biological semantics, including explicit treatment of chromosome name and 

strand. The GRanges class supports many of the same range operations as IRanges and 

specializes them for genomic data. There is a wide set of possible range operations. 

Certainly, a recurrent operation used is the overlap detection and GRanges method is 

specifically able to take advantage of the chromosome information when detecting overlaps 

using the function findOverlaps(…).	

Starting from the differential methylation tables of CRC and adenomas and filtering out 

the most significant results selecting for p-value adjusted < 0.05 in each table, one could be 

interested in finding which CpG islands are shared between the two groups of samples and 

findOverlaps is really straightforward in doing so. What is needed first is to convert the CpG 
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island genomic coordinates into GRanges object and give them to findOverlaps(…) as query 

and subject arguments:	

##	Loading	the	required	packages 
library(data.table) 
library(GenomicRanges) 
 
setwd("/Users/antoniofadda/Desktop/Tesi_PhD") 
 
#	Loading	the	CpG	island	differential	methylation	table  
diffade	<-	fread("diffMethTable_region_cmp1_cpgislands_ADE.csv",	data.table	=	F)  
diffcrc	<-	fread("diffMethTable_region_cmp1_cpgislands_CRC.csv",	data.table	=	F)  !
#	Selecting	CpG	island	for	p-value	adj	<	0.05  
diffade0.05	<-	subset(diffade,	diffcrc$comb.p.adj.fdr	<	0.05)  
diffcrc0.05	<-	subset(diffcrc,	diffcrc$comb.p.adj.fdr	<	0.05)	

 
head(diffade0.05)	

##			Chromosome				Start						End	mean.mean.ADENOMA	mean.mean.CONTROLLO  
##	1							chr1		1474963		1475220									0.4821670											0.1709788  
##	2							chr1	13910138	13910868									0.4095413											0.1716099  
##	3							chr1	14924611	14925993									0.4046099											0.1710108  
##	4							chr1	16085148	16085862									0.4545077											0.1650601  
##	5							chr1	35394748	35396206									0.3954926											0.1015762  
##	6							chr1	37498378	37500624									0.4854369											0.2727011  !
##			mean.mean.diff	comb.p.adj.fdr 
##	1						0.3111882					-0.7751399 
##	2						0.2379314					-0.5063615 
##	3						0.2335991					-0.6345648 
##	4						0.2894476					-0.7682760 
##	5						0.2939164					-0.7298783 
##	6						0.2127358					-0.7733608	

head(diffcrc0.05)	

##			Chromosome			Start					End	mean.mean.N	mean.mean.T	mean.mean.diff  
##	1							chr1		949330		949851			0.8143145			0.6510705						0.1632439  
##	2							chr1	1011510	1013402			0.6277643			0.5218388						0.1059255  
##	3							chr1	1145569	1145878			0.7745339			0.6532945						0.1212394  
##	4							chr1	1267086	1267286			0.7404203			0.5659855						0.1744347  
##	5							chr1	1897582	1897786			0.7481844			0.6462189						0.1019655  
##	6							chr1	2066368	2066666			0.8695007			0.7582984						0.1112023  
##			comb.p.adj.fdr 
##	1					-0.7399810 
##	2					-0.3565740 
##	3					-0.6358825 
##	4					-0.9049239 
##	5					-0.4376749 
##	6					-0.2459306	

#	Making	GRanges	object 
diffade0.05_ranges	<-	makeGRangesFromDataFrame(diffade,	keep.extra.columns	=	T) 
diffcrc0.05_ranges	<-	makeGRangesFromDataFrame(diffcrc,	keep.extra.columns	=	T) !
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#	Finding	the	common	Cpg	islands	between	CRCs	and	adenomas  
ov	<-	findOverlaps(diffade0.05_ranges,	diffcrc0.05_ranges) 
CpGIsland_common	<-	data.frame(diffade0.05[queryHits(ov),],	
diffcrc0.05[subjectHits(ov),]) !
head(CpGIsland_common)	

##					Chromosome					Start							End	mean.mean.ADENOMA	mean.mean.CONTROLLO  
##	20								chr1			2983926			2987962									0.3008001											0.0827585  
##	23								chr1			3111580			3111909									0.3423944											0.1260499  
##	59								chr1	161008378	161008830									0.4184193											0.1975752  
##	128							chr7			5886993			5887483									0.4746991											0.2667575  
##	196							chr9	133805005	133805453									0.6224305											0.4186714  
##	262						chr10				459693				460058									0.4431057											0.2301509  !
##					mean.mean.diff	comb.p.adj.fdr	Chromosome.1			Start.1					End.1  
##	20							0.2180416					-0.5125252									chr1			2983926			2987962  
##	23							0.2163445					-0.6142758									chr1			3111580			3111909  
##	59							0.2208441					-0.6776491									chr1	161008378	161008830  
##	128						0.2079416					-0.5407409									chr7			5886993			5887483  
##	196						0.2037591					-0.7986960									chr9	133805005	133805453  
##	262						0.2129548					-0.5646725								chr10				459693				460058  
##					mean.mean.N	mean.mean.T	mean.mean.diff.1	comb.p.adj.fdr.1  
##	20				0.8451489			0.7150053								0.1301437							-0.8368488  
##	23				0.7911255			0.6740829								0.1170427							-0.5554766  
##	59				0.2144357			0.1059864								0.1084493							-0.7967306  
##	128			0.8458280			0.6896105								0.1562176							-0.9252555  
##	196			0.7627675			0.5542964								0.2084711							-0.8404978  
##	262			0.8876532			0.7856511								0.1020021							-0.2244568	

!
To proceed with the pathways enrichment analysis these ranges must first be annotated 

with a gene name. The annotation of CpG islands could be done according to their proximity 

to other ranges  (proximity criterion), such as gene structure, or to their overlap with the 

promoter region of a gene (functional criterion).	

The proximity criterion involves the use of the FDb.InfiniumMethylation.hg19 package 

that merges all of the existing Illumina Infinium DNA methylation probe annotations into a 

FeatureDb object, a data container for storing, querying and analysing large sets of genomic 

annotations. The main function getNearestGene(…) takes as argument the GRanges object to 

be annotated and return, as the same function name suggest, the gene symbol that is much 

close to the CpG island of interest. 	

##	Loading	the	required	packages 
library(FDb.InfiniumMethylation.hg19) 
 
setwd("/Users/antoniofadda/Desktop/Tesi_PhD") 
 
#	Making	GRanges	object	of	common	CpG	island  
CpGIsland_common	<-	CpGIsland_common[,c(1:3)] 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CpGIsland_common_ranges	<-	makeGRangesFromDataFrame(CpGIsland_common) !
#	Annotating	according	to	the	proximity	criterion  
Gene_names	<-	getNearestGene(CpGIsland_common_ranges) 
head(Gene_names)	

##					queryHits	subjectHits	distance	nearestGeneSymbol  
##	20										1							18295								0												PRDM16  
##	23										2							18295								0												PRDM16  
##	59										3							14334								0														F11R  
##	128									4							12766								0											ZNF815P  
##	196									5							23016								0												FIBCD1  
##	262									6								7377								0													DIP2C	

##	601								17								5330								0										C19orf25  
##	634								18							10039								0													FFAR1  
##	660								19							11879								0													KCNQ2  
##	666								20								6342								0													DSCAM  
##	671								21							18896								0														CERK	

!
The second annotation method could be defined as functional criterion given the possible 

repressive role of the transcription if a hypermetilated CpG Island overlap a gene promoter 

region. The TxDb family of Bioncoductor packages and data objects manages and stores the 

range of each exon, the coding range, the transcript ID, the gene ID, and metadata about the 

source of the transcript information. In particular TxDb.Hsapiens.UCSC.hg19.knownGene 

package has been used to retrieve the transcription start site (TSS) of each transcript in the 

human transcriptome. The promoters(…) function has been used to calculate the promoter 

region of each transcript creating a range of 2000 bp upstream and 1000 bp downstream 

around each TSS. The CpG island ranges was then overlapped to these promoter ranges to 

find out which CpG island overlap with.	

##	Loading	the	required	packages 
library(Homo.sapiens) 
Homo.sapiens	

##	OrganismDb	Object: 
##	#	Includes	GODb	Object:		GO.db	 
##	#	With	data	about:		Gene	Ontology	 
##	#	Includes	OrgDb	Object:		org.Hs.eg.db	 
##	#	Gene	data	about:		Homo	sapiens	 
##	#	Taxonomy	Id:		9606	 
##	#	Includes	TxDb	Object:		TxDb.Hsapiens.UCSC.hg19.knownGene	  
##	#	Transcriptome	data	about:		Homo	sapiens	  
##	#	Based	on	genome:		hg19	 
##	#	The	OrgDb	gene	id	ENTREZID	is	mapped	to	the	TxDb	gene	id	GENEID	.	

#	retriving	the	transcripts	coordinates	and	calculating	the	promoter	region  
transx	<-	transcripts(Homo.sapiens,	columns=c("TXNAME","SYMBOL")) 
prom	<-	promoters(transx,	upstream	=	2000,	downstream	=	1000)  !
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#	Overlap	between	CpG	island	and	promoters 
CpG_overlpping_promoter	<-	subsetByOverlaps(prom,	CpGIsland_common_ranges) 
head(CpG_overlpping_promoter)	

##	GRanges	object	with	6	ranges	and	2	metadata	columns:  
##							seqnames																	ranges	strand	|										TXNAME  
##										<Rle>														<IRanges>		<Rle>	|	<CharacterList>  
##			[1]					chr1	[		2983742,			2986741]						+	|						uc001akc.3  
##			[2]					chr1	[		2983742,			2986741]						+	|						uc001ake.3  
##			[3]					chr1	[		2983742,			2986741]						+	|						uc001akf.3  
##			[4]					chr1	[		2983742,			2986741]						+	|						uc009vlh.3  
##			[5]					chr1	[		2983290,			2986289]						-	|						uc010nzg.1  
##			[6]					chr1	[161007775,	161010774]						-	|						uc001fxf.4  
##																SYMBOL 
##							<CharacterList> 
##			[1]										PRDM16 
##			[2]										PRDM16 
##			[3]										PRDM16 
##			[4]										PRDM16 
##			[5]							LINC00982 
##			[6]												F11R 
##			------- 
##			seqinfo:	93	sequences	(1	circular)	from	hg19	genome	

!
There could be some inconsistencies between the two annotation methods because CpG 

islands do not always overlap the promoter region but could be located in other genomic 

regions such as gene body or 3'  end. This discrepancy can easily be exemplified by the 

situation reported in Figure 1 in which, using the proximity criterion will be the Gene 1 that 

turn out to be closer to the CpG island but localized into the 3’ of the gene. While with the 

functional criterion will be the Gene 2 to be annotated as the CpG island overlap its promoter 

and therefore more likely involved in its regulation. The main disadvantage of the functional 

criterion is that not all the CpG islands in the genome overlap with a gene promoter region 

(only in 60% of the genes see introduction) therefore a consistent fraction would remain 

excluded from the annotation especially when the number of CpG islands to be annotated 

increase.	
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Samples for transcriptome analysis	

!
RNA was extracted from remaining tissue available from the first methylome step using 

the RNeasy Lipid Tissue Mini Kit (Qiagen). After controlling for integrity, seventeen tumoral 

and 2 peritumoral samples achieved an optimal RIN (>7) and were processed for further 

analyses. In addition, 2 new peritumoral samples were recruited for the whole genome gene 

expression analysis, that was performed using the HumanHT-12 v4 Expression BeadChip Kit 

according to manufacturer’s protocol. The RNA, quantified by spectrophotometric 

(NanoDrop) and fluorometric (PicoGreen) reading, is qualitatively checked by means of the 

tool Bioanalyzer2100 (Agilent Technologies), which provides an index of integrity of the 

RNA (RNA Integrity Number, RIN), ranging between 0 (complete degradation) and 10 

(excellent quality); in our study, were further processed only the samples with RIN>7. 200 

ng of RNA are then copied to cDNA and recopied to cRNA, marking them; then hybridized 

to the chip, colored and, subsequently to scan, the expression levels of the transcripts tested 

will be expressed as fluorescence intensity values.	

Transcriptome analysis	

!
After a series of steps to normalize the fluorescence intensity value obtained for each 

probe, differential expression analyses were carried out between CRCs and peritumoral 

samples. The differential expression is given in this case in fold change (FC). False 

Discovery Rate of 0.05 was chosen as a threshold for significance.	

Samples for Real-Time qRT-PCR validation	

!
In order to verify whether the hypermethylation of certain gene promoters in CRCs vs. 

peritumoral tissues, effectively causes a downregulation in gene expression, a total of 26 

RNA samples (eight CRC with matched peritumoral tissues and ten individual CRCs) were 

tested by qRT-PCR. The same samples were used to validate the downregulation, in tumor 

tissues, of genes identified by the transcriptome analysis. RNA extraction from tumor and 

peritumoral tissues stored in RNA later was performed by using the RNeasy Lipid Tissue 

Mini Kit (Qiagen, Germany). Retro-transcription was performed starting from 1μg RNA/

sample using the High Capacity Kit (Applied Biosystems, Carlsbad, CA, USA). Gene 
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expression was assessed by quantitative RT-PCR using Express Sybr Green (Invitrogen, 

Paisley, UK) for each gene tested and for the endogenous TFRC.	

qRT-PCR analysis	

!
Data are expressed as mean ± standard deviation (SD) or mean ± standard error (SEM). 

Analysis of significance was done by t Student’s test and by One-Way ANOVA using the 

GraphPad software (La Jolla, California). P-values were considered significant at p< 0.05.	

Samples for pyrosequencing methylation validation	

!
A validation of three selected CpG islands hypermethylation was performed in 78 CRCs 

and the respective 78 peritumoral samples. Tissue samples were collected at the Department 

of Surgical Sciences, University of Cagliari (Italy). 	

Pyrosequencing analysis	

!
Primers were designed for three selected CpG islands using the PyroMark® Assay Design 

SW 2.0 (Qiagen). Amplification was carried out using the Platinum® Taq (Life 

technologies). PCR products were purified on the PyroMark Q24 Vacuum Workstation 

according to manufacturer protocol and annealed with the sequencing primer before being 

run on the PyroMark Q24 (Qiagen). Pyrograms were analyzed using PyroMark Q24 

Software.	

Stool samples for methyl-BEAMing analyses	

!
Stool samples were collected from 24 patients with colorectal cancer and taken at the time 

of surgical resection. All stools sample were immediatly frozen after collection and stored at 

−80°C until being processed. DNA extraction was performed using the QIAamp DNA Stool 

Mini Kit according to the manufacturer's instructions. All samples were collected at 

Department of Surgical Sciences, University of Cagliari and Department of Clinical and 

experimental medicine, University of Sassari.	

!
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Plasma samples for methyl-BEAMing analyses	

!
Blood draws were collected from forty five cases of CRC enrolled at the medical 

oncology department of the Candiolo Cancer Institute-FPO, IRCCS (Torino, Italy) between 

November 2015 and April 2016. Twelve cases were under adjuvant therapy after surgical 

resection of their lesion and were considered with no evidence of disease (NED). Remaining 

cases (N=33) were metastatic CRC with different level of tumor burden. Collection was 

approved by local ethic committee. Whole blood were processed within samples three hours 

after collection. Samples were centrifuged at 1600g for 10 minutes for phase separation. 

Plasma was collected and submitted to a second centrifugation step at 3000g for 10 minutes 

to remove platelets and cell debris. Upper phase was collected, aliquoted and stored at -80°C 

until further processing. One milliliter of plasma was processed for DNA extraction using the 

Maxwell® RSC ccfDNA Plasma Kit (Promega) using 100µl for the elution volume. Bisulfite 

conversion was performed with the EZ DNA Methylation Gold kit (Zymo Research) using 

20µl of DNA as initial input, and twice 20µl for the elution.	

MethylBEAMing analysis 	

!
Methyl-BEAMING is an ultra-sensitive emulsion PCR based technique that, counting the 

methylated and unmethylated molecules one-by-one increase the signal- to-noise ratio of the 

assay, with an improvement sensitivity for disease detection and test specificity. Briefly, a 

first amplification is carried out allowing the enrichment of the locus of interest. Amplicons 

of ~100 bp were chosen to accommodate the small size of circulating DNA molecules. The 

PCR primers were designed to amplify bisulfite-converted products derived from both 

methylated and unmethylated templates. PCR products were diluted and reamplified in an 

emulsion PCR allowing physical separation and independent amplification of the different 

templates. Emulsion was performed by repetitive pipetting. PCR amplification of individual 

DNA molecules takes place within aqueous nanocompartments suspended in a continuous oil 

phase. Each aqueous nanocompartment contains the DNA polymerase, cofactors and dNTPs 

required for PCR. When a compartment contains a single DNA template molecule as well as 

a bead, each bead ends up with thousands of identical copies of the template within its 

nanocompartment, a process similar to that resulting from cloning an individual DNA 

fragment into a plasmid vector to form a bacterial colony. After PCR, the beads are collected 

by breaking the emulsion, and their status is individually assessed by incubation with 
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fluorescent hybridization probes. In methyl-BEAMing, the status of harvested beads is 

interrogated by fluorescent probes that specifically hybridize to bisulfite-converted sequences 

derived from either methylated or unmethylated parental DNA sequences. Flow cytometry 

then provides an accurate enumeration of the original template molecules that are methylated 

or unmethylated within the queried sequence. Because each bead contains thousands of 

molecules of the identical sequence, the signal to noise ratio obtained by hybridization or 

enzymatic assays is extremely high and it is a quantitative method because beads obtained 

via BEAMing accurately reflect the DNA diversity present in template populations. To 

perform methyl-BEAMING assay on three selected CpG islands we used the same primers 

used for pyrosequencing coupled with Tag sequence as previously described [182]. Two 

microliters of bisulfite converted cfDNA was amplified in replicate and processed following 

the same protocol than previously described [188]. Purified beads were run on a BD Accuri 

C6 (Becton-Dickinson), methylation percentage was expressed as the number of event in the 

methylated gate divided by the sum of events in methylated and unmethylated gates multiply 

by 100.	

RNAseq data and differential expression analysis	

!
To facilitate cross-sample comparison and differential expression analysis, the Upper 

Quartile normalized FPKM (UQ-FPKM) values has been obtained from TCGA open-access 

data for 478 CRC solid tumor tissues and 41 solid normal tissues from the GDC (Genomic 

Data Commons) data portal. The data downloading and differential expression analysis has 

been conducted using the Bioconductor “TCGAbiolinks” package.	

Gene Set/pathways Enrichment Analysis	

!
Gene Set/pathways Enrichment Analysis (GSEA) is a computational method that 

determines whether an a priori defined set of genes shows statistically significant, concordant 

differences between two biological states. This powerful approach allows to extract 

biological insight from a large list of genes, such as derived from methylome or 

transcriptome studies, to give a meaningful biological interpretation of the results, (i.e 

identifying groups of genes that function in the same pathways), and to reduce the number of 

candidate genes to a manageable number for further validation. Analyzing high-throughput 

molecular measurements at the pathways level is very appealing for two reasons. First, 
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grouping thousands of genes by the pathways they are involved reduces the complexity to 

just several dozen pathways for the experiment. Second, identifying active pathways that 

differ between two conditions can have more explanatory power than a simple list of 

differently methylated or expressed genes. The GSEA was conducted by the web portal 

ToppGene Suite, a one-stop online assembly of computational software tools. ToppFun is the 

application specifically used to perform and gene list/pathways enrichment analysis. It uses 

as many as 14 annotation categories including GO terms, pathways, protein–protein 

interactions, protein functional domains, transcription factor-binding sites, microRNAs, gene 

tissue expressions and literatures. One or any of the 14 annotation sources can be used for 

feature enrichment analyses. Each feature analysis can be adjusted based on the pvalue cut-

off, the multiple testing correction method or the minimum and maximum number of genes 

present for each annotation type. Gene-pathway annotations were compiled by combining 

data from KEGG, BioCarta, BioCyc, Reactome, GenMAPP, and MSigDb. Hypergeometric 

distribution with Bonferroni correction is used as the standard method for determining 

statistical significance. ToppFun takes as input a gene list (i.e HGCN symbols), such as 

derived from annotating differently methylated CpG islands, and gives as result a table with 

columns containing the name of the pathways, the calculated q-values and the “Hit in Query 

List” column that contain all the genes from the input list belonging the corresponding 

pathway. Flexible options are provided to either download results as a tab-delimited file or 

display as a chart.	

Biomarkers selection and validation.	

!
Biomarker selection takes place starting from the result tables of GSEA analysis 

conducted using as input list the genes coming from the annotation of the significant 

differently methylated CpG islands of CRC and adenomas. A gene list was then created, for 

each table, filtering out the most significant pathways, either by Bonferroni or Benjamini & 

Hochberg correction (q-value adjusted < 0.05), and unifying the genes in the “Hit in Query 

List” column. The two gene lists were then intersected each other to obtain the significant 

differently methylated genes, shared between CRC and adenomas, belonging to the most 

altered pathways in each group. This selected group of genes were then subjected to 

validation to verify its feasibility as potential diagnostic biomarker either as single gene or as 

entire panel. 	
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As described in the introduction, biomarker is a broad term that can be associated with 

many aspects of the disease. Here, the term biomarker is used as indicative of the presence of 

cancer in a body and therefore, unless otherwise specified, is used as synonym of diagnostic 

biomarker.	

A first approach useful to verify the biomarker ability to distinguish between two states, 

(i.e tumoral vs non tumoral status), is the Unsupervised Hierarchical Clustering (UHC). 

Cluster analysis is the task of grouping a set of objects in such a way that objects in the same 

group (called a cluster) are more similar to each other than to those in other groups. In order 

to decide which clusters should be combined a measure of dissimilarity between sets of 

observations is required. In most methods of hierarchical clustering, this is achieved by use 

of an appropriate metric (a measure of distance between pairs of observations), and a linkage 

criterion which specifies the dissimilarity of sets as a function of the pairwise distances of 

observations in the sets. In UHC, which does not require to pre-specify the number of 

clusters to be generated as opposed to partitioning methods (e.g., k-means), relationships 

among objects are represented by a tree whose branch lengths reflect the degree of similarity 

between objects. In particular, the hierarchical dendrogram can help visualize the object 

relationship structure between and within clusters. Hierarchical clustering uses pairwise 

distance matrix between observations as clustering criteria. In R software, the euclidean 

distance is used by default to measure the dissimilarity between each pair of observations 

and the function dist(…) were used to calculate the distance matrix. The function hclust(…) 

were used for computing UHC using as linkage criterion, which determines the distance 

between sets of observations as a function of the pairwise distance matrix, the maximum or 

complete linkage clustering. This linkage criterion computes all pairwise dissimilarities 

between the elements in cluster 1 and the elements in cluster 2, and considers the largest 

value (i.e., maximum value) of these dissimilarities as the distance between the two clusters. 

It tends to produce more compact clusters.	

Logistic regression model is one of the most common statistical technique used to 

estimate the probability of predict a dichotomous outcome, such as the presence or absence 

of a disease, given biomarker values. The goal of logistic regression is to find the best fitting 

model to describe the relationship between the dichotomous characteristic of interest 

(dependent variable = presence/absence of a disease) and a set of independent (predictor or 

explanatory) variables, i.e the methylation level of the single biomarker. Logistic regression 

generates the coefficients of a formula to predict a logit transformation of the probability of 
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presence of the characteristic of interest. The ability of the model to predicts dichotomous 

outcomes, or in other words, the ability of the biomarker to distinguish between those 

patients having and those not having the disease, is evaluated using two indices: sensitivity 

and specificity. The biomarker sensitivity describes the proportion of patients with disease 

that are correctly identified as such (true positive rate), whereas the biomarker specificity 

describes the proportion of patients without disease that are correctly identified as such (true 

negative result). The ideal biomarker would show 100% sensitivity and 100% specificity. In 

other words, the biomarker test is never positive for a disease-free patient and never negative 

for a patient with disease. However, this ideal scenario is rarely achieved. The biomarker 

sensitivity is a composite of the marker prevalence in the tumour, the efficiency of transfer of 

the marker to the remote media being tested, and the analytical sensitivity of the assay. The 

biomarker sensitivity is also enhanced by the application of panels of multiple biomarkers, 

because it take into account the heterogeneity of the cancer, providing more diagnostic 

information and cancer specificity than single-marker assays. It is also important to note that 

a biomarker with a sensitivity of 50% and a specificity of 50% is no better than tossing a coin 

to decide if the patient is harboring the disease or is disease-free. Some molecular methods 

are able to produce data as a categorical variable (presence or absence of methylation for 

each samples for a particular biomarker). For this type of measurement, the performance of a 

biomarker can be described simply by its sensitivity and specificity. However other 

technologies, such as 450k B	

eadchip, are able to quantify the methylation level for each samples for a particular 

biomarker, generating quantitatively accurate data as a continuous variable. This data can 

then be dichotomized at a threshold to determine the sensitivity and specificity. However, the 

choice of threshold will affect these two variables differentially. Setting a higher threshold 

for a cancer-specific marker will increase the specificity of the biomarker, but reduce its 

sensitivity. Therefore, methods have been developed to describe the performance of a 

biomarker that take both measurements into account simultaneously. The receiver operating 

characteristic (ROC) curve is a fundamental tool for diagnostic test or biomarker evaluation 

and visually displays the interdependency of specificity and sensitivity. This curve can be 

plotted as the true positive rate  (sensitivity; y-axis) against the false positive rate (1-

specificity; x-axis), in which each point in the curve represents the fraction of cancer cases 

with a biomarker measurement above a threshold (true-positive rate for that threshold) versus 

the corresponding fraction of control subjects above the same threshold (false-positive rate 

for that threshold). The area under the curve (AUC) is equal to the probability that a 
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classifier will rank a randomly chosen positive instance higher than a randomly chosen 

negative one. In other words, for a well performing diagnostic test or biomarker the curve is 

located towards the upper left corner. On the other hand a less well-performing diagnostic 

test or biomarker is characterized by a curve close to a diagonal line, representing a state in 

which sensitivity and specificity are similar. This value is a useful way to describe the 

performance of a biomarker with a continuous output variable, regardless of the threshold 

level, and is identical to the non-parametric Wilcoxon statistic. It is desirable to achieve 

values for sensitivity and specificity as high as possible. However, for some tests it might be 

acceptable to achieve a higher sensitivity by sacrificing assay specificity or vice versa. 

Acceptable values for sensitivity and specificity of a testing procedure can be determined by 

comparing to existing values of a test currently considered as gold standard. We evaluate the 

association of each biomarker with a binary outcome fitting a logistic regression model to the 

individual biomarker data and the new probabilities used to calculate the AUC, specificity 

and sensitivity values using the “OptimalCutpoints” package.	

Occasionally, building a logistic regression model could be possible run into the problem 

of so-called complete separation and this happen when the outcome variable can be perfectly 

predicted by one predictor variable or a combination of predictor variables. This problem 

often arise with small data sets, when the event is rare or when the predictor variables are too 

many. The more predictor variables are in the model, the more likely separation is to occur. A 

solution to this problem could be the usage of a penalized logistic regression model that, 

adding a penalty to control properties of the regression coefficients, avoid the overfitting of 

the logistc regression model. This penalty causes the regression coefficients to shrink toward 

zero. If the shrinkage is large enough, some regression coefficients are set to zero exactly. 

Thus, penalized regression methods perform variable selection and coefficient estimation 

simultaneously. The main goal of this method is to find the simplest model, with fewer 

predictor variables, that also has good predictive performance from among the possible 

alternative models. 	

However one might be interested in evaluating the performance of the model using all the 

predictive variables together without performing a variable selection. A possible solution is 

to consider an alternative model. The support vector machine (SVM) is becoming popular in 

a wide variety of biological applications and it is a relatively new classification or prediction 

method developed by Cortes and Vapnik [189] in the 1990s. SVM tries to classify cases by 

finding a separating boundary called hyperplane. The main advantage of the SVM is that it 
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can, with relative ease, overcome ‘the high dimensionality problem’, i.e., the problem that 

arises when there is a large number of input variables relative to the number of available 

observations. SVM is one of the most well-known supervised machine learning algorithms 

for classification. For a given set of training data, each marked as belonging to one of two 

categories, SVM training algorithm develops a model by finding a hyperplane, which 

classifies the given data as correctly as possible by maximizing the distance between two 

data clusters. In practice, however, it is frequently not possible to clearly separate the given 

data set because some of the data points in the two classes might fall into gray area that is not 

easy to separate linearly. As one of the solutions for this problem, data are mapped to a 

higher dimension such that the two classes could be separable in the higher dimension called 

kernel function.	

We evaluate the ability of the entire biomarkers panel to correctly classify between two 

possible conditions (i.e Tumoral vs non tumoral) building a SVM learning model randomly 

splitting the TCGA dataset in a training set (70%) and test set (30%) and performed a 1000 

iterations to calculate the accuracy and stability of prediction performance in the training set 

based on AUC value. The prediction ability of the model was also evaluated on several 

independent in silico datasets.	

In silico validation datasets	

!
Three cross-validation datasets were retrieved from the database NCBI Gene Expression 

Omnibus (GEO) portal (http://www.ncbi.nlm.nih.gov/geo/) under accession numbers 

GSE48684, GSE52270, GSE53051. Processed data were used for all datasets above 

mentioned. The Cancer Genome Atlas (TCGA) dataset is available online at RnBeads 

website under Methylome Resources (http://RnBeads.mpi-inf.mpg.de/methylomes.php). For 

each of these datasets the mean methylation value for each CpG island of interest has been 

calculated and visualized by heatmap using Bioconductor package “ComplexHeatmap”.	

Microsatellite instability analysis	

!
The microsatellite instability analysis was conducted by using the “MSI Analysis System, 

Version 1.2” (Promega Italia). Amplification were carried out according to manufacturer’s 

protocol. The PCR products were then run on an ABI PRISM® 3100 - Applied Biosystems® 
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Genetic Analyzer and the output data were analyzed with GeneMapper® software (Applied 

Biosystems).	

Genetic mutations screening	

!
The genetic mutation screening in adenomas was conducted as previously reported [190, 

191]. To search for KRAS mutations in CRCs, we amplified two fragments corresponding to 

the exons 2 and 3 (codon 1-97) (annealing 60 °C). To amplify exon 2, we used the following 

primers (forward: 5’-ACTGGTGGAGTATTTGATAGTGTAT-3’; Reverse: 5’-

A G A AT G G T C C T G C A C C A G T A A - 3 ’ ) ; E x o n 3 : F o r w a r d : 5 ’ -

T C C A G A C T G T G T T T C T C C C T - 3 ’ ; R e v e r s e : 5 ’ -

AACCCACCTATAATGGTGAATATCT-3’). PCR products were amplified with High-

Fidelity Taq polymerase (Platinum® Taq DNA Polymerase High Fidelity, Invitrogen), 

purified (by exonuclease 1 and shrimp alkaline phosphatase) and sequenced by fluorescent 

based Sanger’s direct sequencing in an ABI 3130 DNA capillary sequencer.	

CIMP phenotype definition 	

!
To infer a CIMP phenotype definition from the output data obtained by using Infinium® 

HumanMethylation450 BeadChip in the 18 CRCs and 21 adenomas, we referred to the 

SALSA® MLPA® kit (MRC-Holland, Amsterdam, the Netherlands) as reference panel. This 

ME042-C1 CIMP MS-MLPA probemix contains 31 MS-MLPA probes which detect the 

methylation status of promoter regions of the following 8 genes: CACNA1G, CDKN2A, 

CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1. In the present study, several CpG 

loci were analyzed for each of these gene promoters, mapping inside the MS-MLPA probe 

sequence. All positions/probes were scored using two different thresholds of methylation (≥ 

20% or ≥ 30%), for defining a specific position/probe as methylated. To define a gene as 

methylated, at least one probe/position has to be methylated. To assign the CIMP positivity 

to a sample, at least 60% of the genes in the panel must be labelled as CIMP positive.	

!
!
!
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!

Results!
!

Figure 2a shows the results of the differential methylation analysis conducted on 18 CRCs 

and 4 matched peritumoral samples. Red dots represent the significant differential 

methylated regions (p value adjusted < 0.05) in each sub-categories taken into account by the 

default differential methylation analysis in RnBeads. What can be observed is a 

hypomethylation of the tumoral sample  in the genome-wide tiling regions that switch 

gradually towards an hypermethylation as the focus of the differential methylation analysis is 

restricted to the coding region (genes) and even more to the regulatory regions such as 

promoters and CpG islands. Focusing on the CpG islands results, which show a more 

pronounced hypermethylation in the tumoral samples compared to the other regions, the 

number of CpG islands significantly altered in CRC (p-value adjusted < 0.05) were 875. The 

annotation of the CpG islands based on 450k manifest using a proximity criterion, which 

consist in finding the closest gene to each CpG island, has allowed to create a gene list whose 

CpG islands were significantly altered by aberrant methylation. This gene list was then 

subjected to GSEA using the bioinformatics ToppGene Suite. This analysis allowed the 

identification of the pathways most affected by aberrant methylation (Table 3). After 

narrowing the focus to the pathways significantly involved by stringent statistical 

corrections, the 10 pathways mostly affected by gene promoter methylation status alterations 

were: Wnt signaling, Neuronal System, Cadherin signaling, Transmission across Chemical 

Synapses, Neuroactive ligand-receptor interaction, Neurotransmitter Release Cycle, 

GABAergic synapse, Core extracellular matrix, Calcium signaling, Cholinergic synapse.	

Figure 2b also show the results of the differential methylation analysis conducted on 21 

adenomas vs. 3 samples of control mucosa. The observed methylation pattern, a genome 

wide hypomethylation and site specific CpG islands hypermethylation, is similar to that 

observed in CRCs. The number of CpG islands significantly altered in adenomas (p-value < 

0.05) was 2393. The number of CpG islands that resist to the multiple test correction were 

too low to guarantee robusteness to the subsequent analysis therefore we used the nominal p-

value event though this increase the probability of making type I error (false positive). 

However the GSEA analysis show that the most affected pathways (Table 4) were largely 

comparable to those identified in CRCs. Filtering out the most significant pathways, either by 
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Bonferroni or Benjamini & Hochberg correction (q-value adjusted < 0.05) the 10 pathways 

mostly affected by gene promoter methylation status alterations were: Cadherin signaling 

pathway, Wnt signaling pathway, Neuroactive ligand-receptor interaction, Neuronal System, 

Neural Crest Differentiation, Extracellular matrix organization, Transmission across 

Chemical Synapses, Calcium signaling pathway, GPCR ligand binding, Nicotine addiction.	

Comparing the GSEA results of CRCs and adenomas, it appeared that the two groups of 

samples shared the most significantly modified pathways. Alongside to pathways that are not 

perviously described as associated with CRCs, such as Wnt signaling and Cadherin 

signaling, there are others that are not previously described as associated with CRC: 

Neuronal System, Transmission across Chemical Synapses, Neuroactive ligand-receptor 

interaction (Figure 2c). Of note, most of the genes whose associated CpG islands were 

altered in CRCs, were already aberrant in adenomas. From the intersection of the gene lists 

belonging to the significantly altered pathways in CRC and adenomas ,we selected 74 genes 

whose altered CpG island are shared between CRC and adenomas. In Table 5 are listed 74 

CpG islands resulting from the described intersection, with the respective average beta 

values and Δs calculated between the average value in the tested samples (CRCs or 

adenomas) and in the respective controls.	

The UHC analysis (Figure 3) conducted on these 74 CpG islands show that all CRCs, 

except one sample (352T), clusterize together well separated from the peritoumoral 

counterpart. The UHC on the same CpG islands in adenomas (Figure 4) reveal the presence 

of two different clusters: a cluster made up of the samples whose methylation pattern 

resemble to the normal mucosa and the other one whose methylation pattern is closely 

related to the one of CRCs samples. Of note two islands behaved in an opposite way 

resulting highly methylated in peritumoral samples both in CRC and adenomas. No 

correlation trend was observed between methylation pattern and staging, localization or 

mutational pattern in both CRCs and adenomas. 	

This panel of 74 altered CpG island is therefore able to clearly distinguish CRC and 

peritumoral counterpart. These alterations are also detectable in adenomas suggesting that 

these 74 CpG islands could be used as biomarker panel for early detection of colorectal 

cancer.	

To verify the robustness of our results, the biomarker panel was validated in silico using 

publicly available dataset coming from studies performed using 450k technology. First we 
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tested the ability of our biomarkers to clearly distinguish CRC and peritumoral counterpart 

using the methylation data from two databases: 	

• 248 colon and 94 rectum adenocarcinomas, vs. 37 colon and 7 rectum normal tissues 

from The Cancer Genome Atlas (TCGA) consortium; 	

• GSE48684, consisting of samples from 42 adenomas, 64 carcinomas, and 41 normal 

mucosa from colon [195].	

The UHC analysis on the TCGA dataset (Figures 5) and GSE48684 (Figures 6) show that 

the panel is capable of clusterize the majority of CRCs and adenomas from the peritumoral/

normal counterpart. The performance of each single biomarker was evaluated from an 

analytical point of view, fitting a logistic regression model to the individual biomarker data, 

using the TCGA dataset as reference. As shown in Table 6, the specificity of many markers 

was equal to 1, i.e. 100% (ranging from 0.89 and 1), the sensitivity was ≥ 0.9 in over 70% of 

the islands (ranging from 0.7 and 0.97) and AUC value above the 0.9 for most of the 

biomarkers. We also evaluated the specificity, sensitivity and AUC for the entire biomarkers 

panel fitting a SVM model, obtaining respectively: SP = 1; SE = 0.9992; AUC = 0.9999.	

Afterwards, the biomarkers specificity for CRCs was evaluated examining the GSE52270 

dataset [195], consisting of 103 CRC samples, 18 colon peritumoral tissues, 66 breast cancer 

and 19 no-tumoral breast, 48 glioblastomas and 10 white matter samples. The UHC analysis 

on GSE52270 (Figure 7) shows that the hypermethylation pattern represent a distinctive trait 

of CRCs and  colorectal adenomas with rare exception only for few biomarkers. Of note, the 

only two CpG islands that behave in opposite way resulting hypomethylated in CRCs and 

adenomas, show this characteristic  tendency to the hypermethylation in all samples except 

for CRCs and adenomas. The second dataset, (GSE53051) [196], is similar to the previous 

one but include colon cancer metastases localized in the lung and in the liver (indicated in 

Figure 8 with longer reddish barline). The UHC (Figure 8) shows that colon cancer 

metastases clusterize along with CRCs, with the exception of two cases.	

Even though we have validated our biomarkers as predictor of colon cancer using a huge 

amount of in silico data, to propose their use in clinical practice, such as in patients 

screening, the next step was to test the methylation alteration of some selected CpG islands 

in DNA extracted from more accessible biological matrices, such as stool samples and 

plasma. The CpG islands were selected based on both a large differential methylation 

between tumor and non-tumor tissue and the feasibility of the assay design. The three 
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selected genes, as the rest of the panel, are protected by patent therefore at the moment we 

can not show their names but are indicated as biomarker 1, biomarker 2 and biomarker 3. 

Since the tumoral DNA, extracted from such biological matrices, is subjected to a rapid 

degradation the assay was design so that significant probes were not distant more than 150 

bp. Before to proceed with the analysis on stool and plasma samples we further verify the 

strength of the three selected markers performing a methylation analysis by pyrosequencing 

in a second data set of 78 tumoral and 78 matched peritumoral. All three selected CpG 

islands were significantly hypermethylated in tumor vs. peritumoral samples (Figure 9).	

Methylation of the three selected biomarkers was assessed by methyl-BEAMING in DNA 

isolated from stool samples of patients who were diagnosed with colorectal cancer, taken at 

the time of surgical resection. As shown in Figure 10, all except three samples tested (87.5%) 

showed more than 1% of methylation for at least one of the three markers. In particular, 

79.2% of samples showed more than 1% of methylation at biomarker 1 (average percentage 

of methylation equal to 21%); 70.8% of samples at biomarker 2 (methylation average 10%); 

62.5% of samples at biomarker 3 (methylation average 13%).	

Methylation of the three selected biomarkers was then assessed by methyl-BEAMING in 

DNA isolated from plasma samples of 45 colorectal cancer patients divided into two cohorts: 	

• 12 patients were under adjuvant therapy after surgical resection of their lesion and were 

considered with no evidence of disease (NED). 	

• 33 colorectal cancer metastatic patients with different level of tumor burden	

the Assay detected the presence of tumor DNA in at least one replicate for 43, 45 and 41 

cases for biomarker 1, biomarker 2 and biomarker 3 respectively. The methylation level was 

significantly different for biomarker 1 and biomarker 2 between the NED patients and the 

metastatic ones (u-test, biomarker 1: p value =0.029; biomarker 2: p value =0.024). This 

result suggest the specificity of the two selected biomakers for colorectal cancer patients. 

Biomarker 3 did not show any difference, possibly due to low number of cases which 

displayed methylation (Figure 11). Looking at the clinical features, the metastatic samples 

were stratified in two subgroups (CEA-low and CEA-high) based on CEA level threshold of 

5 ng/dl. CEA (which stand for Carcinoembryonic antigen) is a glycoprotein and its level 

increased in serum during cancer progression. It is a conventional cancer marker used to 

monitor disease progression, cancer relapse, and response to therapy in patients with CRC 

(prognostic biomarker). Dividing the sample in the three groups (NED, CEA-low, CEA-
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high) there were no significant differences between NED and CEA-low while significantly 

higher levels of methylation were evident for biomarker 1 and 2 in the CEA-high group. 

Absence of alteration observed in the low-CEA subgroup might be due to specific biologic 

features of these tumors, such as early tumor stage and absence of vascular network,  that 

impair the release of circulating markers. Moreover, the current assay was designed for 

monitoring purposes and not early detection as expected in clinical field. Therefore assay 

improvements for the early detection are suggested in a possible future clinical application.	

To investigate whether the alterations found in the CRC methylome result in 

dysregulation of gene expression, we performed the analysis of the transcriptome using the 

Illumina Whole Genome Gene Expression technology in the same tumoral and peritumoral 

samples used for the methylome analysis. As expected, the UHC analysis revealed that all 

CRCs clustered well separated from peritumoral samples (Figure 12). The results of the 

differential expression analysis showed the presence of 725 downregulated transcripts and 

381 upregulated transcripts. The GSEA analysis conducted on the disregulated genes didn’t 

show pathways directly overlapping with those coming from the methylome analysis, except 

for those relating to the extracellular matrix. However a number of downregulated pathways, 

namely those involved in the amines degradation, are likely downstream of those altered as a 

consequences of hypermethylation (Figure 13). Of note, none of the 74 biomarker genes 

resulted dysregulated by the transcriptome analysis but displayed an extremely low level of 

expression close to the background intensity level of the Beadchip. Therefore to test whether 

the alterations found in these CpG islands could modulate the expression of their target 

genes, the expression level of three selected genes was determined by qRT-PCR on 8 CRCs 

and their matched peritumoral tissues and 10 additional CRCs. As shown, all the three tested 

genes were strongly down-regulated in cancer (Figure 14).	

Since it was not possible to perform a qRT-PCR analysis for all 74 CpG islands, we 

validated in silico using the RNA seq data from the TCGA samples. As shown in Figure 15, 

almost all the selected altered CpG islands were located in the promoter region (defined as 

the sequence between 2kb upstream and 1kb downstream the TSS), and the majority of them 

(> 70%) were associated to a down-regulation of the corresponding genes in the tumor 

tissues. There were only three CpG islands that appear strongly upregulated; actually they 

were not located into the related promoter gene regions but instead in the gene body or 

downstream.	

!
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Discussion and conclusions!
!

The results of this study have identified a panel of early biomarkers for CRC.	

The analysis of the CRC methylome revealed alterations in the methylation status of CpG 

loci compared to peritumoral tissues. In particular, epimutations characterizing CRC 

frequently relate to CpG islands, typically occurring at or near the transcription start site of 

genes, so likely involved in the regulation of gene expression. The vast majority of these 

epimutations are hypermethylation in CRC respect to peritumoral tissue. As expected from 

literature, analysis of CpG loci scattered along the genome, but not localized in CpG islands, 

are rather more hypomethylated in CRC. The GSEA analysis of genes likely dysregulated by 

the epimutations identified, has shown the involvement of pathways in part not yet described 

as associated with CRC. The data suggest that the mechanisms most affected by 

hypermethylation, concern the reception and transmission of nerve impulses through 

neuroactive ligands, in addition to Wnt signaling and Cadherin signaling pathways. As 

shown in Figures 13 and 14, the majority of genes whose CpG islands are hypermethylated, 

are effectively silenced, at the mRNA level, both in the cases analyzed in wet in laboratory 

(for some genes) (Figure 13), and in silico in the TCGA series (Figure 14). Interpreting what 

can be deduced from this data, it appears that, to become cancerous, the cell isolates itself, 

closing ways of signal reception, since the early stages of neoplastic transformation.	

As known, epigenetic alterations probably represent the first modification that the cell 

undergoes in the carcinogenetic process. In order to verify whether the epimutations 

identified in CRC in this study are important to the onset of cancer and therefore already 

present at the stage of adenoma, we have extended the methylome analysis to a group of 

adenomas, comparing them to control mucosa. The results are completely in line with the 

premises: also adenomas are characterized by the presence of hypermethylated CpG islands, 

surrounded by a broader genomic context widely hypomethylated; the gene ontology 

analysis showed that the most altered pathways largely correspond to those identified in 

CRC; genes altered in the promoter, belonging to these pathways, are largely shared by CRC 

and adenomas. Performing a cross comparison analysis between CRC and adenomas 

methylation alterations, it was possible to select a panel of 74 CpG islands, which we define 

therefore early biomarkers of the CRC carcinogenic process. To test the strength of this panel 

in identifying alterations typical of CRC, since the early stages, we performed a cross 

�60



validation in silico, by examining the methylation pattern of the 74 CpG islands in other 

databases, including both samples from CRC, adenomas and normal mucosa from colon, 

both from other types of tumor tissues. The panel appear very robust and informative 

(sensitivity 0.9992), specific for colorectal cancer (specificity 1) and is a very good marker of 

early and metastatic stages. Multiple studies have investigated the use of single or combined 

DNA methylation-based biomarkers for diagnostic purposes[192]. Some of them have 

compared their result with the two only commercially available methylation biomakers: 

SEPT9 and VIM. Essentially all of these studies show that the SEPT9 and VIM performance 

ability to distinguish CRC/adenomas from the normal counterpart greatly vary between these 

different studies, depending on the different experimental design, but in general demonstrate 

the value of combining markers into a panel, because it could improve the diagnostic 

accuracy and achieve the highest clinical sensitivity compared to the use of single markers. 

Our results are not only consistent with this observation but also the performance ability of 

most of our single biomarkers greatly outperform those ones commercially available, based 

on data collected on TCGA dataset, the most powerful in silico dataset that we used in this 

study to validate our biomarkers.	

The heterogeneity that occurs between adenomas relatively to the selected CpG islands 

panel, with adenomas which have a pattern much similar to normal mucosa and others 

definitely similar to CRC, and the lack of correlation between adenomas staging (histology) 

and methylation alteration, might suggest that the methylome alteration occur during the 

early stages but characterizes only a cohort of patients. This would therefore represent a 

signature, typical of carcinomas, probably defining adenomas that would follow such a 

destiny.	

CRC is known as a “silent disease,” as many people do not have complaint until the 

disease is difficult to cure. Therefore, detection of patients at early stage of precancerous 

colorectal lesions can play a pivotal role in improving the outcome of patients. The currently 

available screening methods are colonoscopy and FOBT.  Colonoscopy is a gold-standard 

screening test to identify and remove the lesion; however, its application can be limited by its 

invasive nature and high cost and is not routinely recommended to all risk-eligible patients, 

while limitations of FOBT screening includes its low sensitivity for polyps, a relatively low 

specificity, and false positive screens. Carcinoembryonic antigen (CEA) is a glycoprotein 

that its level increased in serum during cancer progression. It is a useful marker in detecting 

of recurrence of cancer following surgical/medical treatment. Due to low sensitivity and 
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specificity of this biomarker (30–40 % and 87 % respectively), it is not a suitable screening 

test for the early diagnosis of CRC. No conventional methods meet all of the desired criteria 

of an ideal screening tool, therefore, there is an urgent need to develop simple and less 

invasive tests with high sensitivity and specificity. 	

Therefore, a very ambitious goal of this study was to identify CRC cancer biomarkers to 

be used in large screenings and designed to detect the presence of CRC with non-invasive 

methods. For this reason, some of the CpG islands identified in this study as CRC 

biomarkers, have been sought in ctDNA of patients suffering from CRC. This test was 

absolutely suitable for the identification of ctDNA in the blood of patients, confirming the 

state of hypermethylation, thus resulting a good diagnostic test.	

But even more ambitiously this study aims to find selected biomarkers in stool samples, to 

enhance even more their predictability. The same markers used to search for ctDNA were 

then tested on stool samples collected from the intestine of CRC patients during surgical 

resection. Carmona et al. [193] aimed to identify a set of stool-based DNA methylation 

markers that are suitable for early diagnosis of CRC. They selected, from a comprehensive 

analysis of DNA methylation profile differences in pairs of tumor and matching normal 

mucosa samples, three candidate markers (AGTR1, WNT2, SLIT2) and then performed a 

validation in stool DNA samples from CRC patients. AGTR, WNT2 and SLIT2 had a 

sensitivity of 21% (n = 68), 40% (n = 52) and 52% (n = 71) respectively. A panel of these 

genes obtained a sensitivity of 78% (n = 64) based on the criteria that at least one of the 

genes was methylated. By contrast, VIM and SEPT9 only yielded a sensitivity of 55 (n = 33) 

and 20% (n = 35) respectively. In comparison, our three selected biomarkers perfomerd 

better in terms of sensitivity with a percentage of samples that showed more than 1% of 

methylation that ranges from 62.5% to 79.2% for the three selected biomarkers. The panel of 

our selected genes obtained an overall sensitivity of 87,5% with all except three samples 

tested that showed more than 1% of methylation for at least one of the three markers. We can 

conclude that even in these samples the CpG islands tested came out as excellent tumor 

markers despite the technical difficulties to detect trace amounts of target methylated DNA 

among large amounts of background DNA in a biological challenging matrix such as stool.	

The whole genome gene expression (WGGE) analysis conducted on the same CRC 

samples showed a picture of disregulation very noticeable compared to peritumoral tissues. 

In this analysis it was not possible to verify the expression levels of the transcripts directly 

silenced by hypermethylation, since these probes have shown intensity signals comparable to 
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the background (both in tumoral and peritumoral samples). However, bioinformatics analysis 

conducted on the genes significantly differentially expressed, showed a functional link 

between the results obtained by WGGE analysis and the study of the methylome. In fact, the 

pathways involved in the degradation of the main neuroactive ligands (dopamine, serotonin, 

norepinephrine, GABA) are strongly downregulated.	

It should be noted that most of the genes found highly downregulated in this study, do not 

have a hypermethylated promoter and that all the 74 CpG islands coming from the 

methylome analysis displayed an extremely low level of expression close to the background 

intensity level of the Beadchip despite the qRT-PCR on three selected CpG islands, an more 

comprehensive in silico with RNA seq data, clearly show a strongly downregulation of the 

corresponding genes in the tumoral samples. Our results are consistent with the general 

understanding that is emerging in recent years mainly thanks to the technological progress 

made in the genome wide methylation analysis. A growing number of evidences suggest that 

transcriptionally repressed genes are also the predominant target of cancer-associated 

aberrant hypermethylation[51, 52]. These recent findings from the study of cancer 

methylomes draw parallels with our understanding of DNA methylation during normal 

development which does not initiate the silencing of genes but is rather a secondary or even 

tertiary effector and there is a complex interplay between all the elements involved in the 

transcription machinery. This new framework could led to a better understanding of the 

impact of aberrant DNA methylation pattern in carcinogenesis, to determine why specific 

genes are prone to targeted de novo hypermethylation while others are protected against it, to 

get new insights regarding the biology of the tumors.	

In conclusion, this study show the relevance of multi-omics profiling on matched tissue 

and non-invasive cohorts along with matched cohorts of adenoma to carcinoma as 

indispensable approach to concurrently stratify CRC and find novel, robust biomarkers. The 

results of this study have shown pathways altered since the early stages of CRC 

carcinogenesis, so far not associated with CRC development and related to the reception and 

transmission of nerve impulses through neuroactive ligands. This allowed us to define, and 

validate in vitro and in silico, a panel of CpG islands with altered methylation both in 

adenomas, CRC and in colon metastases. We also demonstrated the functional relevance of 

these alterations in gene expression. Finally, it was shown the power of these alterations as 

tumoral markers traceable even in ctDNA and stool samples.	
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New innovative technologies have the potential to yield automated high throughput 

platforms for efficient performance of molecular screening assays in the future. Such systems 

could allow assay of multi-marker panels at high capacity and low cost. The use of a 

biotechnological platform allowing to reveal the methylation status of the entire CpG islands 

panel recommended in the present study, will be likely very useful both as CRC diagnostic 

test, prevention and tracking minimal residual disease.	
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Figure 2: RnBeads differential methylation analysis performed for single CpGs and for 
sets of pre-defined genomic regions such as genome-wide 5kb tiling regions, genes, 
promoters and CpG islands, in CRC vs. peritumoral tissue samples (a) and adenomas 
vs. normal mucosa samples (b). Circos plot resulting by comparison of pathways 
significantly altered in CRC (left) and adenomas (right) (c). The red arrow indicates the 
pathway increased significant enrichment of altered loci (decreasing p value) in CRC; 
the blue arrow in adenomas. The name of the five pathways most significantly altered in 
CRC are given and highlighted in color. Colored beams link the shared genes.
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Figure 3: Heat map obtained by an unsupervised hierarchical clustering analysis performed on 
CRC versus peritumoral tissue samples 
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The Cancer Genome Atlas (TCGA)
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Figure 5: Heat map obtained by an unsupervised hierarchical clustering analysis performed on the 
TCGA data set by using the average methylation beta value for each of the 74 CpG islands.
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GSE48684
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Figure 6: Heat map obtained by an unsupervised hierarchical clustering analysis performed on 
the GSE48684 data set by using the average methylation beta value for each of the 74 CpG 
islands.
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Figure 7: Heat map obtained by an unsupervised hierarchical clustering analysis performed on the 
GSE52270 data set by using the average methylation beta value for each of the 74 CpG islands.
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Figure 8: Heat map obtained by an unsupervised hierarchical clustering analysis performed on the 
GSE53051 data set by using the average methylation beta value for each of the 74 CpG islands.
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Figure 9: Pyrosequencing methylation analysis of three selected islands, performed in a second 
data set of 78 tumoral and 78 peritumoral samples. 
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Figure 10: MethylBEAMing analysis results obtained for the three selected biomarkers in DNA 
isolated from stool samples of CRC patients, taken at the time of surgical resection. Colored bars 
show the methylation percentage at the three islands, cumulated for each sample. 
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Figure 11: MethylBEAMing methylation value in cfDNA, isolated from plasma, for the three 
selected biomarkers. Samples were divided into three groups: NED, CEA-low and CEA-high, using 
a threshold of 5 ng/dl.
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performed on the average intensity values obtained from the WGGE analysis on the discovery 
CRC and peritumoral tissue samples set
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Figure 13: Pathways resulting disregulated by functional annotation of genes differentially 
expressed in the WGGE analysis, performed by ToppGene package. 
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Figure 14: Validation of changes in gene expression observed by WGGE analysis, evaluated by 
qRT-PCR on three selected genes
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Table 3: Pathways resulting disregulated by functional annotation of genes differentially methylated 
in the methylome analysis in CRC samples vs peritumoral samples, performed by ToppGene 
package.
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Table 4: Pathways resulting disregulated by functional annotation of genes differentially methylated 
in the methylome analysis in adenoma samples vs normal samples mucosa, performed by 
ToppGene package.



Adenomas Controls
Adenomas 

Δβ value
CRC Peritumoral CRC Δβ 

value

CRC-
Adenomas 

ΔΔβ value

Biomarker	1 0,55 0,35 0,20 0,67 0,39 0,29 0,08

Biomarker	2 0,51 0,29 0,22 0,59 0,35 0,25 0,03

Biomarker	3 0,49 0,27 0,21 0,58 0,29 0,29 0,08

Biomarker	4 0,50 0,34 0,16 0,58 0,39 0,20 0,04

Biomarker	5 0,40 0,16 0,24 0,53 0,17 0,36 0,12

Biomarker	6 0,47 0,21 0,26 0,55 0,24 0,31 0,05

Biomarker	7 0,50 0,28 0,22 0,61 0,30 0,31 0,09

Biomarker	8 0,53 0,17 0,36 0,63 0,18 0,45 0,08

Biomarker	9 0,41 0,18 0,23 0,56 0,19 0,37 0,14

Biomarker	10 0,49 0,24 0,25 0,60 0,24 0,36 0,11

Biomarker	11 0,50 0,33 0,18 0,61 0,18 0,43 0,25

Biomarker	12 0,40 0,19 0,21 0,50 0,19 0,30 0,09

Biomarker	13 0,46 0,25 0,21 0,55 0,23 0,32 0,11

Biomarker	14 0,45 0,19 0,26 0,59 0,19 0,40 0,14

Biomarker	15 0,53 0,27 0,26 0,59 0,36 0,23 -0,03

Biomarker	16 0,35 0,11 0,24 0,49 0,08 0,41 0,16

Biomarker	17 0,25 0,06 0,19 0,38 0,05 0,32 0,13

Biomarker	18 0,49 0,23 0,26 0,58 0,24 0,34 0,08

Biomarker	19 0,64 0,83 -0,19 0,63 0,87 -0,24 -0,05

Biomarker	20 0,48 0,24 0,24 0,58 0,21 0,38 0,13

Biomarker	21 0,52 0,32 0,20 0,63 0,32 0,31 0,11

Biomarker	22 0,65 0,85 -0,20 0,60 0,89 -0,29 -0,09

Biomarker	23 0,42 0,17 0,25 0,58 0,17 0,42 0,16

Biomarker	24 0,63 0,39 0,23 0,73 0,46 0,26 0,03

Biomarker	25 0,53 0,34 0,19 0,63 0,33 0,31 0,11

Biomarker	26 0,43 0,23 0,20 0,52 0,26 0,27 0,06

Biomarker	27 0,44 0,25 0,18 0,56 0,25 0,31 0,12

Biomarker	28 0,50 0,26 0,24 0,64 0,24 0,40 0,17

Biomarker	29 0,48 0,16 0,32 0,61 0,19 0,42 0,10

Biomarker	30 0,56 0,25 0,30 0,69 0,31 0,38 0,08

Biomarker	31 0,56 0,37 0,19 0,66 0,39 0,28 0,09

Biomarker	32 0,48 0,28 0,19 0,57 0,30 0,27 0,08

Biomarker	33 0,59 0,43 0,16 0,69 0,46 0,23 0,07

Biomarker	34 0,58 0,41 0,17 0,69 0,44 0,25 0,08

Biomarker	35 0,48 0,17 0,30 0,64 0,15 0,49 0,19

Biomarker	36 0,44 0,18 0,26 0,57 0,16 0,41 0,14

Biomarker	37 0,49 0,25 0,24 0,55 0,21 0,33 0,09
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Biomarker	38 0,40 0,19 0,22 0,51 0,17 0,34 0,13

Biomarker	39 0,55 0,39 0,16 0,65 0,42 0,22 0,06

Biomarker	40 0,49 0,31 0,18 0,57 0,31 0,25 0,07

Biomarker	41 0,43 0,26 0,17 0,56 0,30 0,26 0,09

Biomarker	42 0,62 0,38 0,24 0,70 0,47 0,24 0,00

Biomarker	43 0,45 0,15 0,30 0,54 0,19 0,35 0,05

Biomarker	44 0,41 0,19 0,22 0,54 0,16 0,38 0,16

Biomarker	45 0,38 0,16 0,22 0,47 0,16 0,32 0,09

Biomarker	46 0,42 0,20 0,22 0,56 0,16 0,40 0,18

Biomarker	47 0,47 0,28 0,19 0,59 0,28 0,32 0,13

Biomarker	48 0,45 0,18 0,27 0,59 0,18 0,41 0,14

Biomarker	49 0,39 0,17 0,23 0,53 0,17 0,37 0,14

Biomarker	50 0,64 0,38 0,26 0,74 0,44 0,31 0,05

Biomarker	51 0,50 0,23 0,28 0,65 0,22 0,43 0,16

Biomarker	52 0,43 0,23 0,20 0,58 0,25 0,33 0,13

Biomarker	53 0,33 0,14 0,18 0,48 0,15 0,33 0,15

Biomarker	54 0,49 0,19 0,30 0,60 0,19 0,40 0,10

Biomarker	55 0,34 0,13 0,20 0,51 0,12 0,39 0,19

Biomarker	56 0,62 0,46 0,16 0,70 0,50 0,20 0,04

Biomarker	57 0,35 0,12 0,22 0,52 0,10 0,42 0,20

Biomarker	58 0,36 0,11 0,25 0,49 0,10 0,39 0,15

Biomarker	59 0,48 0,25 0,23 0,59 0,28 0,31 0,08

Biomarker	60 0,43 0,16 0,27 0,52 0,13 0,39 0,12

Biomarker	61 0,44 0,15 0,29 0,57 0,14 0,44 0,15

Biomarker	62 0,46 0,22 0,25 0,59 0,27 0,32 0,08

Biomarker	63 0,49 0,26 0,23 0,59 0,26 0,33 0,10

Biomarker	64 0,48 0,23 0,26 0,64 0,23 0,41 0,15

Biomarker	65 0,35 0,13 0,22 0,48 0,15 0,33 0,11

Biomarker	66 0,37 0,15 0,23 0,49 0,13 0,36 0,13

Biomarker	67 0,51 0,17 0,34 0,67 0,27 0,40 0,06

Biomarker	68 0,44 0,18 0,26 0,56 0,18 0,38 0,12

Biomarker	69 0,49 0,29 0,20 0,60 0,35 0,25 0,05

Biomarker	70 0,52 0,28 0,24 0,62 0,34 0,29 0,04

Biomarker	71 0,45 0,22 0,23 0,57 0,25 0,33 0,09

Biomarker	72 0,52 0,25 0,27 0,59 0,27 0,32 0,05

Biomarker	73 0,38 0,20 0,17 0,51 0,24 0,27 0,10

Biomarker	74 0,33 0,08 0,25 0,43 0,08 0,35 0,10

�80

Table 5: List of biomarkers whose CpG islands were altered both in CRC and in adenomas; for 
each CpG island are shown the methylation and differential methylation values.



!!!

!!

!!!
�81

!!!!
!!!
!!!!

Biomarker	38 0,92 0,80 1,00
Biomarker	39 0,97 0,88 0,98
Biomarker	40 0,97 0,92 1,00
Biomarker	41 0,97 0,88 0,98
Biomarker	42 0,96 0,79 1,00
Biomarker	43 0,97 0,91 1,00
Biomarker	44 0,96 0,93 1,00
Biomarker	45 0,97 0,91 0,95
Biomarker	46 0,97 0,96 1,00
Biomarker	47 0,98 0,96 1,00
Biomarker	48 0,98 0,94 1,00
Biomarker	49 0,98 0,95 1,00
Biomarker	50 0,98 0,96 0,98
Biomarker	51 1,00 0,96 1,00
Biomarker	52 0,98 0,92 1,00
Biomarker	53 0,97 0,94 0,95
Biomarker	54 0,96 0,92 1,00
Biomarker	55 0,96 0,89 1,00
Biomarker	56 0,93 0,70 1,00
Biomarker	57 0,96 0,91 0,98
Biomarker	58 0,93 0,86 1,00
Biomarker	59 0,95 0,89 0,98
Biomarker	60 0,96 0,90 1,00
Biomarker	61 0,98 0,94 1,00
Biomarker	62 0,96 0,88 1,00
Biomarker	63 0,98 0,96 1,00
Biomarker	64 0,99 0,97 1,00
Biomarker	65 0,96 0,91 1,00
Biomarker	66 0,96 0,91 1,00
Biomarker	67 0,99 0,96 1,00
Biomarker	68 0,99 0,95 0,98
Biomarker	69 0,98 0,89 0,98
Biomarker	70 0,98 0,94 1,00
Biomarker	71 0,99 0,97 1,00
Biomarker	72 0,96 0,92 0,95
Biomarker	73 0,96 0,91 0,95
Biomarker	74 0,96 0,94 0,98

Biomarker	1 0,98 0,91 0,98
Biomarker	2 0,96 0,86 1,00
Biomarker	3 0,97 0,94 0,98
Biomarker	4 0,98 0,96 1,00
Biomarker	5 0,98 0,93 1,00
Biomarker	6 0,99 0,95 1,00
Biomarker	7 0,94 0,87 0,91
Biomarker	8 0,97 0,92 0,98
Biomarker	9 0,97 0,90 1,00
Biomarker	10 0,99 0,97 0,98
Biomarker	11 0,92 0,79 0,91
Biomarker	12 0,97 0,93 1,00
Biomarker	13 0,96 0,90 0,98
Biomarker	14 0,98 0,94 0,95
Biomarker	15 0,90 0,85 0,89
Biomarker	16 0,95 0,91 1,00
Biomarker	17 0,96 0,89 1,00
Biomarker	18 0,97 0,93 0,98
Biomarker	19 0,98 0,97 1,00
Biomarker	20 1,00 0,97 0,95
Biomarker	21 0,99 0,96 1,00
Biomarker	22 0,94 0,86 0,95
Biomarker	23 0,98 0,94 0,98
Biomarker	24 0,93 0,81 0,95
Biomarker	25 0,97 0,90 1,00
Biomarker	26 0,93 0,82 0,95
Biomarker	27 0,98 0,92 1,00
Biomarker	28 0,91 0,78 0,95
Biomarker	29 0,93 0,75 0,98
Biomarker	30 0,99 0,96 0,98
Biomarker	31 0,89 0,77 0,98
Biomarker	32 0,99 0,95 0,98
Biomarker	33 0,97 0,91 1,00
Biomarker	34 0,94 0,86 0,95
Biomarker	35 0,96 0,93 1,00
Biomarker	36 0,99 0,96 0,98
Biomarker	37 0,97 0,92 0,95

AU
C

Se
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y

Sp
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ifi
ci
ty

AU
C

Se
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ib
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y
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Table 6: List of  AUC, specificity and sensitivity for each biomarker calculated in the TCGA dataset
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