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Abstract
Pointing is one of the communicative actions that infants acquire during their first year 
of life. Based on a hypothesis that early pointing is triggered by emergent reaching 
behavior toward objects placed at out- of- reach distances, we proposed a neural net-
work model that acquires reaching without explicit representation of ‘targets’. The 
proposed model controls a two- joint arm in a horizontal plane, and it learns a loop of 
internal forward and inverse transformations; the former predicts the visual feedback 
of hand position and the latter generates motor commands from the visual input 
through random generation of the motor commands. In the proposed model, the 
motor output and visual input were represented by broadly tuned neural units. Even 
though explicit ‘targets’ were not presented during learning, the simulation success-
fully generated reaching toward visually presented objects at within- reach and out-   
of- reach distances.

RESEARCH HIGHLIGHTS

• We hypothesized that infants’ primitive pointing behavior emerges 
as a nonsocial-orienting action based on the acquisition of 
 visuo-motor transformations through motor babbling.

• We proposed a neural network model for the development of 
reaching and pointing based on visuo-motor transformations.

• Through random arm movements (motor babbling), the network 
learned both forward (motor-to-vision) and inverse (vision-to- 
motor) transformations without the presentation of an explicit tar-
get for reaching.

• Although the network only learned these transformations for ran-
dom movements, the loop of the forward and inverse transforma-
tions can generate successive motor commands to reach toward 
visually presented objects, thereby implementing a feedback con-
trol with an internal estimation.

• The model can also simulate the infants’ primitive pointing behavior 
toward objects that are placed out of reach.

1  | INTRODUCTION

1.1 | Reaching and pointing development in infants

Human beings have the ability to communicate with each other using 
both language and symbolic gestures. As for symbolic gestures, even 
1- year- old infants use reaching and pointing in different social con-
texts. Reaching is used in the imperative- instrumental context, and 
pointing	 is	 used	 in	 the	 declarative-	referential	 context	 (Franco	 &	
Butterworth,	 1996).	 Tomasello,	 Carpenter,	 and	 Liszkowski	 (2007)	
have argued that pointing is an action that already exhibits a variety 
of communicative intentions even when performed by 1- year- old 
infants.

However, it is still unclear what developmental route mediates 
the acquisition of pointing that has a social function. One possibility 
is that infants first perform pointing as an individual action that has no 
communicative intention, but, subsequently, they acquire the social 
context	 of	 their	 action	 from	 the	 responses	 of	 adults	 (Carpendale	&	
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Carpendale, 2010). Specifically, the adults’ interpretations of the in-
fants’ actions help infants construct the association between their ori-
enting behaviors, where they extend their arm toward a target object 
and out- of- reach distances, and their social contexts.

Before infants begin to engage in orienting behavior at around 
9	months	 (Carpendale	&	Carpendale,	2010),	 they	begin	 to	 reach	to-
ward	visually	presented	 targets	at	3–5	months	of	age	 (von	Hofsten,	
1984). As a midpoint between reaching toward visual targets and com-
municative pointing, ‘pointing- like’ movement, as a nonsocial orient-
ing	 action	 (Carpendale	&	Carpendale,	2010),	 is	 indispensable	 for	 an	
infant’s developmental trajectory. The present study focuses on how 
this nonsocial orienting action emerges as a form of reaching toward a 
visual stimulus. Specifically, this study aims to elucidate the computa-
tional mechanisms that inform the emergence of this nonsocial action 
(i.e., extending one’s arm toward a target object located at an out- of- 
reach distance without social intention); it also seeks to identify how 
those mechanisms work.

1.2 | Feedback control of reaching

Infants monitor their hands during movement and they correct their 
hand trajectory against motor deviation or the target movement 
when performing visually guided reaching. Visually guided reaching 
is controlled by motor commands that are generated online from the 
current hand position and the target position. This feedback control 
using sensory- to- motor transformation is the basis for visually guided 
reaching. However, Bushnell (1985) showed that infants perform suc-
cessful reaching without online visual feedback of their hand after 
7	months	of	age.	The	importance	of	visual	feedback	of	the	hand	de-
creases, and the movement becomes smoother and more predictive. 
Reaching in the dark also develops at the same time as reaching in 
the	 light,	at	around	the	age	of	4	months	 (Clifton,	Muir,	Ashmead,	&	
Clarkson,	1993).

Feedback	motor	control	in	the	human	body	is	innately	capable	of	
incorporating with uncertainty in order to compensate for the neural 
noise and delay that interfere with the sensory and motor paths (van 
Beers,	 Baraduc,	 &	Wolpert,	 2002;	Wolpert,	 Ghahramani,	 &	 Jordan,	
1995). The idea of an internal forward model has been developed to 
compensate for this noise and delay. The forward model predicts sen-
sory feedback of the hand from the motor commands that have been 

generated, and then this prediction is used as an alternative feedback 
signal to generate the next motor command (e.g., Miall, Weir, Wolpert, 
&	Stein,	1993;	Todorov	&	Jordan,	2002).	This	type	of	control	mecha-
nism is called model predictive control (Maciejowski, 2000).

Model predictive control requires two types of sensory- to- motor 
transformations (internal models): forward and inverse transforma-
tions	 (see	 Figure	1).	A	 forward	 transformation	 (forward	model)	 pre-
dicts the resultant sensory feedback of a motor command while an 
inverse transformation (inverse model) generates a motor command 
necessary for the resultant (required) sensory signal. A forward trans-
formation is important for solving problems in the feedback motor 
control. In order to generate motor commands to achieve a desired 
state of the body and environment, the information about the ‘cur-
rent’ state is necessary. However, the sensory signal arrives at the 
central nervous system (CNS) with delay and noise. The CNS uses a 
forward transformation to estimate the current state before the sen-
sory	feedback	arrives	(Ogawa,	Inui,	&	Sugio,	2007)	with	an	efference	
copy	 (or	 reafference:	 von	Holst	&	Mittelstaedt,	 1971)	 of	 the	motor	
command. Then, the difference between the estimated and actual 
sensory feedback (prediction error) is used to update the current es-
timation (Wolpert et al., 1995). The loop of two sensorimotor trans-
formations allows the internal feedback control to achieve a reaching 
movement	(Desmurget	&	Grafton,	2000).	Less	dependence	on	vision	
during	reaching	(Bushnell,	1985;	Clifton	et	al.,	1993)	suggests	that	in-
fants	are	able	to	use	forward	prediction	at	the	age	of	7	months.	During	
the	period	of	4–7	months	of	age,	it	seems	that	infants	acquire	reaching	
control using forward and inverse transformations. We assume that 
an infant’s development of reaching is achieved by learning these two 
sensorimotor transformations.

1.3 | Neural network model for reaching 
development

Bullock,	 Grossberg,	 and	 Guenther	 (1993)	 proposed	 the	 DIRECT	
(DIrection- to- Rotation Effector Control Transform) model, a self- 
organizing	 neural	 model	 for	 eye–hand	 coordination	 in	 which	 the	
learning of spatial- to- motor and motor- to- spatial transformations 
is based on motor babbling (spontaneous random hand movement). 
Infants	at	2–3	months	of	age	persistently	look	at	their	hands	(hand	re-
gard)	(White,	Castle,	&	Held,	1964).	From	this	continuous	observation	

F IGURE  1 Schematic view of model. The forward model predicts visual feedback from an efference copy of the motor command, and learns 
their relationship through the error between predicted and actual vision. The inverse model generates the motor plan from visual input, and 
learns their relationship through the error between planned and actual motor output
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of hand movement, the neural network simultaneously learns both the 
forward (motor- to- spatial) and the inverse (spatial- to- motor) mapping 
of the movement. However, the DIRECT model explicitly requires a 
calculation of the difference between the current hand position and 
the target position, implying explicit target representation during 
learning, and it does not consider how this calculation is acquired. The 
DIRECT model cannot simulate the reaching action towards a target 
at an out- of- reach distance because it has to learn a non- existent 
reaching path.

Instead, we assumed that infants do not learn the entire move-
ment path to achieve reaching; rather, they learn forward and in-
verse transformations for small components of the movement 
through motor babbling. In order to achieve reaching, they need 
to ‘connect’ these small movements, but they do not learn how to 
connect them. Here, we propose a mechanism to generate a suc-
cession of small movements by assuming that the representations 
of the visual position and the motor command are ambiguous so 
that the broad relationship between these representations can be 
acquired. The model only generates a motor command that does 
not accomplish bringing the hand to the required visual position in 
one shot, but the loop of the forward and inverse transformations 
continuously generates the motor commands of emergent reaching 
toward the position. By this mechanism, infants can achieve an un-
experienced reaching movement even if they reach toward an out- 
of- reach position.

In the present study, we propose a neural network model 
(Figure	2)	to	explain	the	emergence	of	reaching	and	primitive	pointing	
actions. The model has the following features:

(1) Infants first acquire forward and inverse visuo-motor transforma-
tions of hand movements through their observation of random 
movement (motor babbling). Specifically, the forward transforma-
tion learns the resultant visual hand position of a random motor 
command with a simple recurrent network where an internal rep-
resentation of the visual hand position before the movement is 
held in the hidden layer, and the inverse transformation learns the 

required motor command that brings the hand from the visual 
position before the movement to the position after the 
movement.

(2) The visual hand position before the movement is internally repre-
sented in the hidden layer of the forward network, and the visual 
hand position after the movement is visually input. A feedback con-
trol using an internal estimation autonomously develops by con-
necting the hidden layer of the forward transformation to the 
hidden layer of the inverse transformation.

(3) The motor command and the visual feedback are ambiguous. 
Specifically, these signals are represented in a ‘place code’ (for re-
view,	 see	 Sanger,	 2003)	 by	 populations	 of	 broadly	 tuned	 neural	
units. This enables the neural units to react to the signals that are 
not preferred, making it possible to reach toward the out-of-reach 
distance even though motor babbling is a movement that occurs in 
the within-reach distance, and the movement toward an out-of-
reach position is not experienced during learning.

1.4 | Simulating reaching and pointing

After learning, we tested the capacity of the network to perform 
the forward and inverse transformations within one step of a motor 
command. Subsequently, the simulations of reaching toward tar-
gets presented in the within- reach distance and the out- of- reach 
distance were performed. The proposed mechanism explains the 
emergence of infant primitive pointing (or reaching) without com-
municative intentions. The behavior is a mere ‘reaction’ that is not 
driven by internal intention. The network does not learn how to 
reach toward a ‘target’; it only acquires the forward and inverse 
transformations through motor babbling. In the simulation of 
reaching and pointing, the input of the representation of a visual 
position instead of a hand position drives the hand toward that lo-
cation, without the need for any mechanism of intention. To avoid 
the model’s confusion by simultaneous visual representation of the 
hand and the target, the hand vision was removed during reaching 
and pointing.

F IGURE  2 Neural network structure. The network consists of forward transformation and inverse transformation. Black solid arrows and 
gray solid arrows denote neural encoding and neural connections, respectively. Gray dashed lines indicate teacher signals for learning. Black 
dashed lines signify interaction with the physical arm. In the forward transformation, the neural representation of motor command u(t) and visual 
feedback of hand position y(t), i.e., u~(t) and y~(t), respectively, are input, and the prediction of the next visual feedback y*(t + 1) is output. The 
hidden layer has a recurrent connection. In the inverse transformation, the neural representation of visual feedback y~(t + 1) and the activation 
of the hidden layer in the forward transformation hf(t) are input, and the ‘postdiction’ of motor command u*(t) is output
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2  | MODEL

A neural network model is proposed that learns the forward and in-
verse transformations for two- joint arm movements. The network 
learns the relationship of the motor command and the hand posi-
tion through the visual observation of the hand moving randomly 
(Figure	1).	Both	the	motor	command	and	the	visual	 input	are	repre-
sented by populations of neural units that have broad selectivity for 
the preferred motor command and visual hand position. The network 
is learned by the backpropagation algorithm. In this section, the over-
view of the model is described. Details of the model are explained in 
the Appendix.

The arm is modeled by two- joint limbs moving in the horizontal 
plane driven by motor commands in the form of relative displacements 
of	the	joint	angles	(Figure	3).	The	motor	commands	are	randomly	gen-
erated from a uniform distribution in a certain range during the learn-
ing phase. The endpoint of the hand is observed through vision. The 
visual signal is represented in polar coordinates that consist of the 
azimuth from the body axis and the distance from the body center 
(Figure	3a).	Infants	that	are	at	least	5	months	old	are	sensitive	to	bin-
ocular	information	for	depth	(Gordon	&	Yonas,	1976).	In	the	present	
model, we adopted the assumption that depth perception is already 
developed.	For	simplicity,	the	body	width	is	neglected	and	the	shoul-
der joint is placed at the center of the body.

The network consists of two streams of three- layered artificial 
neural units. Each stream learns the forward and inverse transforma-
tions	(Figure	2).	The	forward	network	learns	the	transformation	from	
a motor command to a visual hand position, which is the consequence 
of the motor command. In order to predict the visual hand position 
after the movement, the visual hand position before the movement 
is necessary. The network was provided with the visual hand position 
before the movement as input. At the same time, the forward network 
has an internal recurrent connection in its hidden layer, enabling the 
network to internally maintain the information about the current hand 
position. In the simulation, visual feedback is sometimes unavailable at 
a certain rate. This reflects the fact that an infant does not always look 
at its hand. The lack of visual feedback helps the network to learn to 
generate an internal representation of the hand position.

The inverse network learns the transformation from a visual hand 
position to a motor command, which is required to achieve the hand 

position. The information about the hand position before the move-
ment is provided by the connection from the hidden layer of the 
forward network. Although this scheme provides a ‘retrospective’ 
mapping of visual and motor information, it only reframed the senso-
rimotor mapping that was implemented in the DIRECT model (Bullock 
et	al.,	 1993).	The	 CNS	 does	 not	 incorporate	 the	 causal	 relationship	
between motor commands and vision; it only maps the sensorimotor 
contingency.

When the motor command and the visual hand position are input 
to the network, they are represented by populations of motor or visual 
units in the place code. Each unit has preferred joint displacements 
(motor commands) or hand positions (vision) and broad selectivity. In 
Figure	4a,	examples	of	visual	units	that	have	preferred	azimuths	and	a	
broad sensitivity (90 degrees) are shown. Neural unit A has a preferred 
azimuth at 0 degrees, that is, this unit is activated the most when the 
visual hand position is placed at 0 degrees in azimuth. Unit A also 
shows weak activation when the hand position is far from 0 degrees in 
azimuth due to broad selectivity. Unit B and C have preferred azimuths 

F IGURE  3  (a) The arm is modeled by two- joint limbs with 
joint angles (α, β), and the visual feedback of the hand position is 
obtained in polar coordinates (r, θ). (b) The arm is controlled by the 
motor command of the joint angle displacement (Δα, Δβ). After the 
movement, the joint angle is updated to (α′, β′) = (α + Δα, β + Δβ)

F IGURE  4  (a) Examples of visual unit that have preferred 
azimuths and a broad sensitivity (90 degrees). The preferred azimuths 
of	units	A,	B,	C	are	0,	45	and	−45	degrees,	respectively.	(b)	An	
example of neural population coding of a visual hand position. Each 
cell represents the activation level of units of the visual input layer. A 
greater amount of white indicates higher activation. The position of 
the cell is arranged in the order of preferred distance and preferred 
azimuth of each unit. This example is for the case in which the visual 
input is at half the distance of the arm length and where the visual 
angle is 0 degrees in azimuth. The cells located around the center, 
whose preferred distance is around 1 and preferred azimuth is 
around 0 degrees, show high activation
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at	45	and	−45	degrees,	respectively.	When	the	hand	position	is	at	0	
degree in azimuth, although unit A exhibits the highest activation, 
units B and C also show activation to some extent. Visual units have 
this kind of sensitivity for distances of the hand position as well. By 
preparing many visual units with slightly different preferred azimuths 
and distances, the visual hand position is represented ambiguously in 
the	population	(Figure	4b).	The	motor	units	also	have	broad	selectiv-
ity and preferred joint angle displacements both for the elbow and 
shoulder. The tuning curve of the sensitivity is determined by a cosine 
function, which minimizes the influence of the noise (Todorov, 2002).

The motor command generated by motor babbling is input to the 
forward transformation network, and the signal propagates through 
hidden units to form an output visual representation. Units in the 
input, hidden, and output layers exhibit activation that ranges from 
0 to 1. The activation of the units in the input layer represents the 
population- coded motor command described above. The units in the 
hidden layer have connections with all motor input units, the hidden 
units (recurrent connection), and the visual input units (for the hand 
position before the movement). The hidden units receive the signal 
from all the connected units. The units in the output layer have con-
nections with all the hidden units. The activation of the pre- synaptic 
units is multiplied by the connection weights and is input to the post- 
synaptic units. The post- synaptic units conduct a summation of the 
weighted activation of the pre- synaptic units and scale the summed 
signal to the activation ranging from 0 to 1 in a monotonic but non-
linear manner (with a logistic function). The visual representation of 
the output layer is compared to the visual representation of the actual 
hand position, which is a consequence of the motor command, and 
the error signal is used to update the network connection weights fol-
lowing	the	backpropagation	algorithm	(Rumelhart,	Hinton,	&	Williams,	
1986). At the same time, the population- coded visual hand position 
after the movement is input to the inverse transformation network 
and propagated through the hidden (inverse) layer to the output motor 
representation. Note that the hidden layer in the inverse network has 
a connection from the hidden layer in the forward network. The out-
put is compared to the representation of the motor command, which 
is generated to move the hand to the position just input to the inverse 
network, and the error signal is used to update the network connec-
tion	(Figure	2).

3  | SIMULATION

3.1 | Learning of the network

The network was learned following the procedure described above, 
and several tests of forward and inverse transformations were con-
ducted. In the simulation, the numbers of neural units in the motor 
input layer, the visual input layer, and the hidden layer were 100, 200, 
and 400, respectively. A unit in the motor input layer has one of 10 
different preferred angle displacements for each elbow and shoulder 
joint. Similarly, a unit in the visual input layer has one of 10 different 
preferred distances and one of 20 different preferred azimuths. The 
preferred vector is arranged at regular intervals to cover twice the 

size of the definition range of the vector. This means that some units 
have their preferred vector outside of the definition range. These out- 
of- range preferred vectors are necessary for the neural population to 
represent the edge of the vector space. Units that have the preferred 
vector slightly inside the edge also respond to the input vector just at 
the edge; consequently, the vector decoded from the neural popula-
tion shifts to the center of the space. Units with out- of- range pre-
ferred vectors allow representation of the vector at the edge.

The	range	of	motor	command	is	−20–20	degrees	for	each	joint,	and	
the	visual	range	is	0–3	for	distance	and	−90–90	degrees	for	azimuth,	
centered at the sagittal plane. Note that the length of each upper and 
lower arm is set to 1; therefore, the maximum reaching distance is 2, 
and the position at distances greater than 2 could be defined as the 
out-	of-	reach	area.	The	range	of	joint	motion	is	0–180	degrees	for	both	
the	shoulder	and	the	elbow	(see	Figure	3).	When	the	motor	command	
moves the joint out of range, the joint will stop at the edge of the 
range. The visual availability rate is 0.8, meaning that visual feedback 
is unavailable in 20% of the learning iterations.

The learning rate of the backpropagation was fixed to 0.05. We did 
not	use	a	momentum	term,	a	Falman	offset,	or	a	bias	node,	because	
our intent was to focus only on the availability of the network as the 
developmental mechanism, not on the quality of the network learning.

3.2 | Tests for the forward and inverse 
transformations

After 1,200,000 instances of learning iterations, we tested the net-
work’s ability to generate forward and inverse transformations. 
Before each test, the network state had to be initialized by iterating 
the network propagation several times and fixing the visual feedback 
and motor command, respectively, to the initial hand position and 
zero. This meant that the hidden layer in the forward transformation 
network would assume the internal representation of the initial hand 
position. We carried out 20 iterations for this initialization.

The forward transformation test examined the predicted visual 
feedback when several different motor commands were input into a 
network whose state was set to represent the initial hand position. 
The initial hand position was set to (r, θ) = (1, 0) (i.e., (α, β) = (30, 60) and 
(0, 1) in Cartesian space), and the motor commands for the test were 
25 combinations of Δα = {−20, −10, 0, 10, 20} and Δβ = {−20, −10, 0, 
10, 20}.	Figure	5	shows	the	resultant	actual	hand	position	and	the	pre-
dicted hand positions decoded from the neural representation y*(t + 1) 
in the output layer. The outputs of the forward transformation approx-
imately predicted the visual input of the hand position after move-
ment, although the prediction was comparatively inaccurate for the 
motor commands at the limits of the range.

The inverse transformation test examined the motor commands 
generated when the inputs into the settled network representations of 
visual positions were different from the actual hand position. During 
learning, the visual input was always derived from the hand position 
of the self after the movement. The movement had no target. Here, if 
the input was a new visual representation that was not the position 
of the hand, the inverse transformation network would interpret this 
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position as the hand position after the movement. It would then gener-
ate a motor command to achieve the movement toward the new visual 
input, that is, a ‘target’ position. The initial hand position in this test 
was (r, θ) = (1, 0), and the target positions were the hand positions that 
would be achieved when the motor commands of 25 combinations of 
Δα = {−20, −10, 0, 10, 20} and Δβ = {−20, −10, 0, 10, 20} were output. 
Figure	6	 shows	 the	 target	 positions	 and	motor	 commands	 decoded	
from the output layer u*(t) of the inverse transformations. The outputs 
of the inverse transformation moved the hand approximately toward 
the target positions, although the motor commands were compara-
tively small for the target at the limits of the motor command range.

3.3 | Simulations of reaching and pointing

For	the	inverse	transformation	test,	we	placed	the	targets	at	distances	
that were reachable in a single step of the transformation. However, 
as mentioned in the introduction, infants can reach for a target using 
a loop of forward and inverse transformations, even in the dark. To 
simulate this ability, we input the output of the inverse transformation 
to	 the	 forward	 transformation	 (Figure	7).	Note	 that	 visual	 feedback	
from the hand was not used in the simulation, making this equivalent 
to	a	movement	performed	in	the	dark	(see	Clifton	et	al.,	1993).

Figure	8	shows	the	trajectory	of	the	hand	generated	by	the	loop	
of the transformations with input from seven targets. We placed the 
targets at a distance of 2 (i.e., just at the reaching distance), with an 
initial arm configuration of (α, β) = (20, 40). The transformations were 
iterated four times. Because the distance traveled by a single motor 
command issued during learning is much smaller than the movement 

distance required in the reaching simulation, the network needs to 
generate successive motor commands to achieve reaching. The loop 
of the forward and inverse transformations successfully generated the 
sequence of motor commands toward the target, especially for a tar-
get in the ipsilateral space.

Even when the targets were placed at an out- of- reach distance, 
the	model	reached	toward	the	targets	(Figure	9).	The	network	was	ini-
tialized to attain the same state as in a simulation toward a target at a 
within-	reach	distance.	The	target	distance	was	set	to	3,	and	the	loop	
of the forward and inverse transformations was iterated seven times. 
The resultant trajectories of the hand first ran approximately straight 
ahead, and they then deviated toward each target. Note that the net-
work was not provided with the information about the arm length or 
the reaching distance, and it had not experienced visual input derived 
from the out- of- reach position during learning. Although the resulting 
reaching trajectories were biased rightward, and reaching toward the 
lateral targets fell in less lateral positions, observers of the behavior 
would understand that the behavior was oriented toward the targets. 
This emergence of arm extending behavior toward an out- of- reach 
target might be based on the development of pointing.

4  | DISCUSSION

4.1 | Emergence of reaching and primitive pointing 
action without social intention

The present model simulated emergent reaching toward a visual posi-
tion at a within- reach distance and an out- of- reach distance. During 
the simulation of reaching, the vision of the hand was removed. This 
means that the vision of the hand is not necessary for executing 

F IGURE  5 Results of the forward transformation test. The actual 
and predicted hand positions after movements are illustrated as black 
dots and circles in the Cartesian space, respectively. Alphabetic labels 
denote correspondence. Gray solid lines represent the arm in the 
initial configuration

F IGURE  6 Results of the inverse transformation test. The ‘target’ 
positions and output motor commands are illustrated as circles 
and black arrows in the Cartesian space. Alphabetic labels denote 
correspondence
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reaching, although it is necessary during learning, which is consistent 
with	the	observation	noted	by	Clifton	et	al.	(1993).

The simulation results showed that reaching toward a target 
placed in the contralateral space (the left side of the midline, because 
the right arm is modeled) is less accurate than in the ipsilateral space. 
This is mainly because the shoulder joint has to be flexed to reach 
the targets in the contralateral space, despite a relatively extended 
initial posture, while the elbow joint has to be fully extended for all 
of the targets. The targets in the contralateral space are further from 
the initial configuration in the joint space. This difficulty of reaching 
toward contralateral targets is also seen in infant behavior. Infants 

first contact objects in front of the ipsilateral shoulder, and between 9 
and	17	weeks,	there	is	an	increase	in	reaching	that	crosses	the	midline	
(Provine	&	Westerman,	1979).

Even in the ipsilateral space, the model’s output did not accurately 
point	 to	 the	 target.	 However,	 the	 ‘orientation’	 (see	 Carpendale	 &	
Carpendale, 2010) was accurate, due to constructing the relationship 
between the pointing action and the referent object through learning. 
Our current model suggests that infants would start their inaccurate 
pointing- like behavior before they accomplish an accurate pointing ac-
tion, and it also revealed one of the mechanisms underlying the emer-
gence of pointing behavior.

F IGURE  7 Network structure for 
reaching simulation by a loop of the 
forward and inverse transformations. The 
output of the inverse transformation is 
input to the forward transformation

F IGURE  8 Hand trajectories for targets 
placed at a reachable distance in the 
simulation of reaching. A circle, an ‘x’, a 
rectangle, an asterisk, a diamond, a cross, 
and a triangle denote targets for reaching, 
and these marks linked with solid lines 
denote corresponding hand trajectories. 
The dashed line represents the initial arm 
configuration

F IGURE  9 Hand trajectories for targets 
placed at an distance in the simulation 
of reaching. A circle, an ‘x’, a rectangle, 
an asterisk, a diamond, a cross, and a 
triangle denote targets for reaching, 
and these marks linked with solid lines 
denote corresponding hand trajectories. 
The dashed line represents the initial arm 
configuration
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The emergent action would help infants to obtain some kind of 
feedback (e.g., finger tactile) from the environment, and infants would 
discover the relationship between the action and the consequent feed-
back. If this resultant feedback of the action is a motivational force of 
infant behavior, the presented object that would lead infants to ex-
pect the (tactile) feedback when they reach toward it can be a ‘target’ 
of intentional reaching behavior. In the case of pointing, observers 
(e.g., parents or caregivers) of the action will provide social feedback 
to the infant in some manner. This reaction of the other person will 
then become the aim of the action, and communicative intention will 
ultimately emerge. Although the manner in which the reaction is sub-
limated to the intention remains unclear, the proposed model explains 
the emergence of actions that trigger reactions.

The current model did not include extension movement of the 
index finger, which plays a key role in typical pointing. While merely 
reaching toward an out- of- reach target without finger extension can 
be criticized as not being a referent behavior that indicates commu-
nication, Blake, O’Rourke, and Borzellino (1994) have reported ‘reach 
out’ gestures where infants reach toward out- of- reach targets without 
finger pointing, as we have simulated in the present study. Therefore, 
we could argue that this kind of reaching also appears to have commu-
nicative	intentions	(for	review,	Leavens	&	Hopkins,	1999).

4.2 | Reference frames and neural representations

The proposed model acquired sensorimotor transformations between 
a visual position in body- centered polar coordinates and a motor com-
mand in joint space. Pointing behavior performed in the dark in adults 
incurs a pointing error that varies systematically with the azimuth of the 
target	(Soechting	&	Flanders,	1989;	Yoshida	&	Inui,	2004).	This	indicates	
that the target of pointing is represented in body- centered polar coor-
dinates. The current result of pointing simulation showed that pointing 
to lateral targets fell in a less lateral position, as it did in adult point-
ing. Because signals in the early stage of the visual process are repre-
sented in a retinotopic reference frame, target representations have to 
be transformed between retinotopic and spatial reference frames, and 
neural network models with the ability to learn this transformation have 
been	proposed	(Xing	&	Andersen,	2000;	Zipser	&	Andersen,	1988).

The visual inconsistency was simulated by preventing visual 
feedback of the hand during the learning period. Although the ac-
tual biological system suffers from intrinsic neural noises, we did not 
implement them in the present model because we cannot determine 
the level of noise and where they interfere in the model’s simulation. 
These noises might affect the form of neural coding. The cosine tun-
ing, which is predetermined in the present model, is reported as an 
effective way to compensate for neural noise (Todorov, 2002).

4.3 | Advantages of the proposed model

The dynamical system as a motor development model was proposed 
especially in the context of cyclic movement, such as stepping (Kamm, 
Thelen,	 &	 Jensen,	 1990)	 or	 crawling	 (Kuniyoshi	 &	 Sangawa,	 2006).	
Although the dynamical system is well designed as a pattern generator, 

it does not explain how discrete ‘orienting’ movements such as reach-
ing and pointing develop. A neural network model is more appropriate 
for accommodating the relationship between input and output in a 
movement that has a target.

Schlesinger, Parisi, and Langer (2000) proposed a neural network 
model for infants’ reaching development using genetic algorithm- like 
ecological networks with unsupervised learning. Their model has suc-
ceeded in acquiring reaching toward a visually presented object without 
the explicit representation of the ‘error’ between the target object and 
the hand position. Instead, the tactile sensation of the contact of the 
hand with the object acts as the driving force for the network to learn 
reaching toward the object. However, the acquired reach was not the 
direct reach from the initial hand position to the object; rather, it was a 
two- step reach where the hand was brought back to the position near 
the body first before traveling toward the object. Although early infants 
show	indirect	(curved)	reach	(Mathew	&	Cook,	1990),	this	kind	of	‘re-
turning’ behavior was not observed in the present study. Moreover, the 
network proposed by Schlesinger et al. (2000) can only learn reaching 
toward touchable objects, not objects at an out- of- reach distance.

Our proposed model spontaneously acquired a non- circular reach-
ing action toward targets at within- reach and out- of- reach distances 
by the forward and inverse transformation loops and broadly tuned 
motor and visual representations.

4.4 | Limitation of the current model and future 
model implementation

The forward transformation in the present model is in line with Elman’s 
(1990) notion of Simple Recurrent Networks (SRNs). However, our 
model did not learn the sequence of motor commands, while an 
SRN has the ability to achieve sequential learning. In the future, by 
implementing infants’ intention of reaching, which requires a motor 
sequence, the implemented SRNs in the forward transformation may 
help the model learn more sophisticated motor sequences, such as 
those exhibited by infants after the age of 9 months (Bushnell, 1985).

When reaching toward and pointing at objects in three- dimensional 
(3D)	space	with	one	arm,	seven	degrees	of	freedom	(DoFs)	of	the	shoul-
der, elbow, and wrist joints were used. The control problem always 
involves	redundant	DoFs.	While	computationally	solving	the	problem	
of	DoFs	 is	an	 important	 issue,	how	humans	 (or	animals)	solve	this	 is	
still being debated. Therefore, for simplicity, our proposed model only 
moves in two- dimensional (2D) space with two control parameters. In 
the future, we would like to solve this problem by introducing mechan-
ical	(Hirashima	&	Oya,	2016)	or	neural	(Todorov,	2000)	constraints.

During the model’s learning, the only visual input was the infant’s 
hand. However, in real life, objects or others’ hands may also appear in in-
fants’ visual fields. Infants may develop the agency of the visual movement 
through	 sensorimotor	 contingency	 (Pitti,	Mori,	 Kouzuma,	 &	 Kuniyoshi,	
2009). Alternatively, the contingency may tell the learning system which 
visual input should be related to the motor command, and acquired visuo-
motor transformations may be used for recognition of the agency.

Although the proposed model explained the emergence of arm 
extending behavior toward targets at out- of- reach distances, how 
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the social meanings of the behavior are acquired was not modeled 
here. We speculate that infants discover the social meanings of the 
behavior	through	two	steps:	First,	they	will	acquire	this	meaning	by	
touching the object at the end of the reaching movement, wherein 
they will determine the relationship between the movement and the 
resultant tactile sensation. The contingency of the movement and 
the sensation may reinforce the behavior, and the richness of the 
sensory stimulus when infants manipulate the object would motivate 
them to reach toward the visual input generated by the object. This 
would make visually guided reaching within the reaching distance 
more frequent. Second, if people who observe an infant trying to 
reach toward out- of- reach objects bring the objects to the infant, the 
resultant tactile stimulus may also motivate the behavior and help 
infants to use it as a communicative tool to satisfy their motivation. 
In order to verify these possibilities, experiments involving the longi-
tudinal observation of infants and their caregivers would be helpful 
in uncovering the order of emergence of behaviors such as reaching, 
touching,	bringing,	and	pointing	(Carpendale	&	Carpendale,	2010).

5  | CONCLUSIONS

We proposed a neural network model that learns forward and in-
verse sensorimotor transformations and acquires reaching control 
using these transformations. Sensory inputs and motor commands 
are coded in place coding with neural units that have broad sensitivi-
ties, and the network is learned through motor babbling. Even in the 
absence of targets during learning, the learned network successfully 
simulated arm extending action toward targets located at a within- 
reach and out- of- reach distance. The ability of the proposed model to 
perform arm extending toward out- of- reach targets might be a basis 
for reaching and pointing behaviors that contain communicative in-
tentions, which leads to social behaviors.
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APPENDIX 

Arm configuration, motor command and vision

The proposed neural network model learns relationships between 
motor output and visual input of the hand. The arms are modeled with 
a two- joint link rotating in a horizontal plane. Consider that an arm con-
figuration x(t) = (α, β) at time t is updated by a motor command u(t) = (Δα, 
Δβ), and that the resultant arm configuration is x(t + 1) = (α′, β′).  
The hand position is observed visually in polar coordinates. Given that 
the visual feedback at time t is y(t) = (r, θ), the forward transformation 
predicts visual feedback y(t + 1) from the motor command u(t), and the 
inverse transformation calculates the motor command u(t) that is nec-
essary to achieve the hand position y(t + 1).

Network structure

The proposed model consists of two streams of three- layered neural 
networks to bring about learning of the forward and inverse transforma-
tions	(Figure	2).	In	the	forward	transformation	network,	the	motor	com-
mand u(t) is input, and the prediction of the visual feedback y*(t + 1) is 
output. The visual feedback y(t) is also input into the forward transfor-
mation because information on the hand position ‘before’ the motor 
command u(t) is necessary for prediction of the hand position ‘after’ the 
movement. The hidden layer in the forward transformation has a recur-
rent connection. At time t, the activation of the hidden layer in the for-
ward transformation, denoted by hf(t), contains internal intermediate 
representation of the hand position for the prediction of the visual feed-
back y*(t). Therefore, hf(t) has the hand position information before u(t) 
is generated. The recurrent connection can be used as an alternative to 
the visual input y(t) before the movement, enabling the network to work 
even in a case where visual feedback is unavailable. Note that in the 
actual network, the motor command u(t) and visual feedback y(t), re-
spectively, are encoded into the neural representations u~(t) and y~(t).
For	the	inverse	transformation	network,	the	visual	feedback	after	

the movement, y(t + 1), is input, and the ‘postdiction’ u*(t) of the motor 
command to achieve the observed hand position is output. The activa-
tion of the hidden layer in the forward transformation, that is, hf(t), is 
also input to the inverse transformation in order to provide informa-
tion about the hand position before the movement.

Motor and visual representations

The motor command and the visual feedback are encoded by a 
population of units that have broad selectivity for the preferred 

joint angle displacement and the preferred hand position, respec-
tively. The selectivity of each unit is cosine tuned; that is, given that 
the RN vector to be encoded is z = {zj | j = 1,…,N}, and that the unit i 
has the preferred vector pi = {pij}, the activation ai of the unit i is 
defined by:

Note that | - | denotes absolute value, and W is the size of the possible 
range of the encoded vector. In the cosine tuning, the activation of 
unit i will be large (up to 1) when the input vector z is close to the 
preferred vector pi, and the unit will show weak activation even when 
the vector input vector deviates from the preferred vector. Π denotes 
the production of each element. An example of the activation of visual 
units	 is	shown	in	Figure	5,	where	 it	 is	demonstrated	that	the	neural	
units that have preferred vectors around the input vector are more 
highly activated. Here, we do not mean that the positions of the neu-
rons in the actual brain are arranged in the order of preferred vectors; 
they	 are	 depicted	 in	 this	 way	 in	 Figure	5	 simply	 for	 easier	
understanding.

Network propagation and learning algorithm

The input signal propagates through the network following:

where ak denotes the activation of unit k in the hidden or output layer; 
al denotes the activation of unit l, which has a connection to unit k; wkl 
denotes a connection weight from unit l to unit k; and θk denotes an 
activation threshold of unit k.
The learning procedure is as follows: (1) Initialize the connection 
weights of the network to a small random value; (2) initialize the ac-
tivation of the hidden units in the forward transformation to a small 
random	value;	(3)	set	the	initial	arm	configuration	x(t) and calculate 
the visual observation y(t); (4) generate a random motor command 
u(t); (5) input the encoded u~(t) and y~(t) into the forward transforma-
tion network to obtain hf(t + 1) and output y*(t + 1); (6) move the arm 
by u(t) and obtain the next arm configuration x(t + 1);	(7)	obtain	visual	
observation y(t + 1); (8) input the encoded y~(t + 1) and hf(t) into the 
inverse transformation network and obtain output u*(t); (9) calculate 
the output error between y*(t + 1) and y~(t + 1), and u*(t) and u~(t); 
(10) change the connection weights and the thresholds following the 
backpropagation algorithm; and (11) generate the next motor com-
mand u(t + 1) and iterate the procedure from (5).

ai=𝛱j[0.5 cos(2𝜋 |zj−pij|∕W)+0.5] if |zj−pij| <W∕2 for all j,

ai=0 if otherwise.

ak=1∕
(

1+exp
(∑

l
wkl al+�k

))
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