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Abstract
Plants have endogenous biological clocks that allow organisms to anticipate and prepare for daily and seasonal environmen-
tal changes and increase their fitness in changing environments. The circadian clock in plants, as in animals and insects, 
mainly consists of multiple interlocking transcriptional/translational feedback loops. The circadian clock can be entrained by 
environmental cues such as light, temperature and nutrient status to synchronize internal biological rhythms with surround-
ing environments. Output pathways link the circadian oscillator to various physiological, developmental, and reproductive 
processes for adjusting the timing of these biological processes to an appropriate time of day or a suitable season. Recent 
genomic studies have demonstrated that polymorphism in circadian clock genes may contribute to local adaptations over 
a wide range of latitudes in many plant species. In the present review, we summarize the circadian regulation of biological 
processes throughout the life cycle of plants, and describe the contribution of the circadian clock to local adaptation.
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Introduction

Plants as sessile organisms must precisely perceive envi-
ronmental cues such as light and temperature to adapt their 
growth and development to surrounding environments. Cir-
cadian clocks are endogenous time-keeping mechanisms that 
allow organisms to anticipate and prepare for daily and sea-
sonal changes in surrounding environments. Plants adjust the 
timing of various physiological, developmental, and repro-
ductive processes to a proper time of day or an appropriate 
season based on the day length measured by the circadian 
clock (McClung 2006). Indeed, it has been reported that the 
circadian clock in plants achieves higher survival advantage 
and fitness (Dodd et al. 2005; Green et al. 2002). The circa-
dian clock in plants mainly consists of interlocked transcrip-
tional/translational feedback loops similar to the clocks in 
mammals or insects (Harmer et al. 2001). Previous studies 

have identified the core circadian clock genes, including 
CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), PSEUDO 
RESPONSE REGULATOR (PRR) family genes, TIMING 
OF CAB EXPRESSION 1 (TOC1), GIGANTEA (GI), EARLY 
FLOWERING (ELF) genes, and LUX ARRHYTHMO (LUX), 
which form multiple interlocked negative feedback loops 
(Nohales and Kay 2016). In addition, positive regulators 
such as REVEILLE (RVE) genes, LIGHT-REGULATED 
WD (LWD) genes, and NIGHT LIGHT-INDUCIBLE AND 
CLOCK-REGULATED (LNK) genes have also been identi-
fied (Rawat et al. 2011; Rugnone et al. 2013; Wu et al. 2016).

The circadian clock in plants can be entrained by environ-
mental cues, such as light, temperature, and nutrient status 
through multiple input pathways (Inoue et al. 2017). Then, 
the clock regulates various biological processes at an appro-
priate time of day through output pathways. Recent studies 
using natural accessions have revealed that altering circa-
dian timing due to natural variation in circadian clock genes 
could contribute to the adaptation to local environments over 
a wide range of latitudes. In this review, we focus on out-
put responses regulated by the circadian clock (Fig. 1). We 
summarize the circadian regulation of biological processes 
throughout the life cycle of plants at the cellular, tissue/
organ, and individual levels.

The original version of this article was revised due to a 
retrospective open access order.
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The role of the circadian clock at the cellular 
level processes

The circadian clock system is found not only in multicellu-
lar organisms but also in unicellular organisms. It has been 
reported that cell cycle of the cyanobacterium Synechoc-
occus elongatus exhibits circadian gating, and therefore is 
probably regulated by the circadian clock (Mori et al. 1996; 
Yang et al. 2010). A time-lapse imaging revealed that phos-
phorylation state of the oscillator protein KaiC that is associ-
ated with elevated ATPase activity applies a circadian check-
point on the cell division in S. elongatus by inhibiting FtsZ 
ring formation (Dong et al. 2010). Intriguingly, circadian 
rhythms are sustained in cells that divide three or more times 
during one circadian period, suggesting that cell division 

cycling does not interfere with the circadian clock of S. 
elongatus (Kondo et al. 1997). Clock-regulated cell cycle 
progression is also found in the unicellular red algae Cyan-
idioschyzon merolae. The cell cycle of C. merolae is highly 
synchronized with external light/dark cycle in which cell 
division occurred during the dark period (Imoto et al. 2011; 
Suzuki et al. 1994). The phosphorylation of the E2F protein, 
a key regulator for G1/S transition, is regulated by the circa-
dian clock, resulting in the restriction of the G1/S transition 
to early subjective night. Furthermore, the uncoupling of 
cell cycle progression from circadian rhythms decreases the 
growth rate probably due to high oxidative stress, suggesting 
that the restriction of cell cycle progression during the night 
might be important to unicellular photosynthetic eukaryotes 
(Miyagishima et al. 2014). Given that the temporal circadian 

Fig. 1  The circadian clock in plants regulates various biological pro-
cesses throughout the life cycle. The circadian clock adjusts the tim-
ing of output responses, such as petal opening, photosynthesis, sto-

matal opening, leaf movement, flowering, cell cycle progression, and 
hypocotyl elongation to an appropriate time of day
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gating of cell division has been observed in a wide variety 
of eukaryotic lineages from unicellular organisms to mam-
mals (Johnson 2010), the cell cycle of eukaryotes is closely 
associated with the circadian clock during the course of evo-
lution. Although the circadian clock-coupled cell division is 
reported in many organisms, there is no solid evidence that 
the circadian clock in plants regulates cell cycle progres-
sion. However, a recent report demonstrated that the cell size 
of mesophyll cells in the leaf is altered in circadian clock 
mutants. The size of rve 4 6 8 triple and rve 3 4 5 6 8 quin-
tuple mutants is increased compared with that of the wild-
type plants at both seedling and adult stages of development. 
The average area of mesophyll cells in the leaves of rve4 6 
8 triple mutants is approximately 1.3-fold larger than that in 
the wild-type plants, suggesting that the increased size in the 
rve mutants is primarily due to the larger average cell size 
(Gray et al. 2017). Given that cell size is closely associated 
with the length of cell cycle (Jones et al. 2017), it is possible 
that the circadian clock in plants could regulate cell cycle 
progression as well as that in other species.

Another circadian regulation of cellular level processes is 
observed in stomatal opening and photosynthesis. In Arabi-
dopsis thaliana (Arabidopsis) and the bean Phaseolus vul-
garis, stomatal conductance is higher during the day than at 
night (Hennessey et al. 1993; Somers et al. 1998), whereas 
the stomata in some crassulacean acid metabolism plants 
Hoya are more open at night than during the day (Thimann 
et al. 1992). Additionally, photosynthesis is also regulated 
by the circadian clock (Dodd et al. 2014b). The expres-
sion of a large set of genes involved in the light-harvesting 
complex is regulated by the circadian clock (Harmer et al. 
2000; Schaffer et al. 2001). Consistent with the rhythmic 
expression of mRNA, the accumulation level of the chloro-
phyll a/b binding protein (CAB) and ribulose 1,5-bisphos-
phate carboxylase/oxygenase activase (RCA) proteins in the 
tomato Lycopersicon esculentum Mill is under the control 
of the circadian clock (Martinocatt and Ort 1992; Pilgrim 
and Mcclung 1993). Furthermore, phosphorylation of the 
D1 photosystem II reaction center protein in the duckweed 
Spirodela oligorrhiza and phosphoenolpyruvate carboxylase 
in crassulacean acid metabolism plants is also regulated by 
the circadian clock (Booij-James et al. 2002; Borland et al. 
1999; Hartwell et al. 1999; Nimmo 1998, 2000), indicat-
ing that photosynthesis is strictly regulated by the circadian 
clock at the transcriptional, post-transcriptional, and post-
translational levels. In addition to photosynthesis, photores-
piration, sugar metabolism, and starch degradation are also 
regulated by the circadian clock (Harmer et al. 2000; Lu 
et al. 2005; McClung et al. 2000). It has been suggested 
that circadian control of photosynthesis and physiology 
provides higher fitness for plants (Dodd et al. 2005). How-
ever, recent reports demonstrate that the circadian control of 
photosynthesis is not sufficient to explain the effects of the 

circadian clock on plant fitness. Instead, circadian control of 
starch degradation during the night appears to be important 
(Dodd et al. 2014a; Graf et al. 2010; Graf and Smith 2011), 
although how the circadian clock controls the rate of starch 
degradation during the night remains unknown.

The role of the circadian clock at the tissue/
organ level during plant development

The circadian clock in plants regulates various develop-
mental processes throughout the life cycle of plants. At 
the earliest stage of plant development, the circadian clock 
regulates seed germination. The photoperiodic control of 
seed germination has been reported in many plant species 
(Baskin and Baskin 1976; Black and Wareing 1954, 1955; 
Densmore 1997), suggesting the existence of functional cir-
cadian system in seeds at least in some plant species. Indeed, 
imbibition, but not release from stratification can reset the 
circadian clock and synchronize the clocks among popula-
tion of seedlings (Zhong et al. 1998). Furthermore, the cir-
cadian control of gas exchange is observed in free-running 
condition in dry onion seeds (Bryant 1972), suggesting that 
the functional circadian system is present even in quiescent 
seeds before germination. More recent reports demonstrated 
that the circadian clock controls seed germination probably 
through regulating a series of abscisic acid- and gibberellin-
related genes expression (Covington et al. 2008; Penfield 
and Hall 2009).

The circadian clock in plants affects many aspects of plant 
growth. Hypocotyl elongation is a well-characterized growth 
regulated by the circadian clock. The circadian regulation of 
rhythmic elongation is observed in constant light (Dowson-
Day and Millar 1999), although hypocotyl elongation is 
arrhythmic in constant dark (Nozue et al. 2007), suggesting 
that light signal is essential for the circadian regulation of 
hypocotyl elongation. This rhythmic growth is dependent 
on the function of two basic helix-loop-helix transcription 
factors, PHYTOCHROME-INTERACTING FACTOR 4 
(PIF4) and PIF5. PIF4 and PIF5 act as a signaling hub to 
integrate various external and internal cues, such as light, 
clock, temperature, phytohormone, and sucrose signaling 
(de Lucas et al. 2008; de Montaigu et al. 2010; Feng et al. 
2008; Leivar and Monte 2014; Stewart et al. 2011). It has 
been demonstrated that expression levels of PIF4 and PIF5 
are well correlated with hypocotyl growth rate (Nozue et al. 
2007). ELF3, ELF4 and LUX tripartite complex represses 
the expression of PIF4 and PIF5 in the early evening 
(Nusinow et al. 2011). In addition, ELF3 physically interacts 
with PIF4 to inhibit its transcriptional activity in the early 
night (Nieto et al. 2015). Furthermore, PIF4 and PIF5 are 
rapidly degraded through the interaction with light-activated 
PHYTOCHROME B (PHYB) upon the irradiation of light 
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(Lorrain et al. 2008). Thus, the activity of PIF4 and PIF5 
is restricted to the late night, resulting in the photoperiodic 
regulation of hypocotyl elongation before dawn under diur-
nal conditions (Niwa et al. 2009). A similar circadian regula-
tion of elongation has been reported in other plant species 
such as the tomato L. esculentum and the red goosefoot Che-
nopodium rubrum (Fernandez and Wagner 1994; Lecharny 
and Wagner 1984; Tukey and Ketellapper 1963). Another 
circadian regulation of growth is observed in diel leaf move-
ments. In legumes including Mimosa pudica, leaf move-
ments occurred by expansion and contraction of special-
ized cells at the base of the petiole called the pulvinus that 
allows for rapid reversible changes in leaf position (Uehlein 
and Kaldenhoff 2008; Whippo and Hangarter 2009). Plants 
without pulvini, however, also undergo circadian leaf move-
ments that at least partially depend on antiphasic differential 
growth of the abaxial and adaxial sides of the leaf blades and 
petioles (Polko et al. 2012; Rauf et al. 2013; Uehlein and 
Kaldenhoff 2008). Such circadian regulation of leaf move-
ments have been observed in several plant species, such 
as Arabidopsis, Brassica oleracea, B. rapa, tobacco, and 
potato (Engelmann et al. 1992; Lou et al. 2011; Salathia 
et al. 2007; Siefritz et al. 2004; Yanovsky et al. 2000). It has 
been recently reported that ELF3 is required to maintain 
the proper phase of leaf growth and movements, although 
PIF4 and PIF5 are not essential to sustain rhythmic leaf 
growth (Dornbusch et al. 2014). These findings suggest that 
molecular mechanisms underlying rhythmic hypocotyl and 
leaf growth are different from each other. In addition, the 
rate of circumnutations and shade avoidance response is 
also under the control of the circadian clock (Niinuma et al. 
2005; Salter et al. 2003; Stolarz 2009; Takase et al. 2013; 
Whippo and Hangarter 2009). Recently, heliotropism, solar 
tracking movements, in the sunflower Helianthus annuus 
is driven by antiphasic patterns of elongation on the east 
and west sides of the stem regulated through the coordinate 
action of light-signaling pathways and the circadian clock 
(Atamian et al. 2016).

Photoperiodic flowering is the most characterized 
developmental event regulated by the circadian clock 
(Endo et al. 2016; Shim et al. 2017). CONSTANS (CO), 
a key transcription factor for photoperiodic flowering, is 
strictly regulated by the circadian clock and light signaling 
pathways (Putterill et al. 1995; Samach et al. 2000; Suarez-
Lopez et al. 2001; Valverde et al. 2004). CYCLING DOF 
FACTORs (CDFs), whose expression pattern is under the 
control of the circadian clock repress CO transcription in 
the morning (Imaizumi et al. 2005). Only under long-day 
conditions, CDFs are degraded by a complex of GI and 
FLAVIN-BINDING KELCH REPEAT F-BOX 1 (FKF1). 
The peak times of GI and FKF expression differ under 
short-day conditions, whereas the peaks of both expres-
sions coincide in late afternoon under long-day conditions. 

Furthermore, blue-light activates FKF1 and stabilizes the 
GI-FKF1 complex by enhancing the interaction of GI with 
FKF1 before dusk. These internal and external coincidence 
allows the GI-FKF1 complex to target CDFs for protea-
somal degradation only in the late afternoon of long-days 
(Sawa et al. 2007), thereby derepressing CO (Song et al. 
2012). The stability of CO protein is regulated through 
light signaling pathways mediated by multiple photorecep-
tors. CO protein is degraded by a complex of CONSTI-
TUTIVE PHOTOMORPHOGENIC 1 (COP1) and SUP-
PRESSOR OF PHYA-105 1 (SPA1) during the dark (Jang 
et al. 2008; Laubinger et al. 2006). In addition, CO protein 
is destabilized by phyB through two distinct mechanisms 
mediated by HIGH EXPRESSION OF OSMOTICALLY 
RESPONSIVE GENE 1 (HOS1) and PHYTOCHROME-
DEPENDENT LATE-FLOWERING (PHL) in the morning 
(Endo et al. 2013; Lazaro et al. 2015), whereas phyA and 
CRYPTOCHROME 2 (CRY2) stabilize CO protein in the 
late afternoon probably by inhibiting the function of the 
COP1-SPA complex (Sheerin et al. 2015; Zuo et al. 2011). 
This coordinated action of the circadian clock and light 
signaling pathways allows for accumulation of CO pro-
tein in the late afternoon under long-day conditions, and 
then CO induces the transcription of a florigen-encoding 
FLOWERING LOCUS T (FT) for photoperiodic flower-
ing (Tiwari et al. 2010). Consistent with previous findings 
that phyA, CRY2, COP1, SPA1, and CO all function in 
the phloem companion cells for photoperiodic flowering 
(An et al. 2004; Endo et al. 2007; Jang et al. 2008; Kirch-
enbauer et al. 2016; Ranjan et al. 2011), recent reports 
demonstrated that the circadian clock in the phloem com-
panion cells, not in the mesophyll, epidermis, and shoot 
apex cells, is critical for photoperiodic flowering, suggest-
ing the significance of vasculature-specific clock function 
for photoperiodic flowering (Endo et al. 2014; Shimizu 
et al. 2015).

At the late stage of plant development after flowering, 
the circadian clock regulates flower opening for successful 
pollination. The circadian clock restricts the timing of petal 
opening to a part of the day when potential pollinators are 
most active. In Arabidopsis, flower opens in the morning and 
closes at midday (van Doorn and Kamdee 2014; van Doorn 
and van Meeteren 2003), whereas flower of night-blooming 
Cestrum nocturnum opens in the evening and closes at dawn 
(Overland 1960; van Doorn and Kamdee 2014). Further-
more, some volatile compounds and nectar for attraction of 
pollinators are also regulated by the circadian clock, and 
therefore they are emitted in the correct timing of potential 
pollinator activities during the day (Kolosova et al. 2001; 
Pesti 1976; Verdonk et al. 2003). The rhythms of these com-
pounds are likely generated through the circadian regulation 
of their biosynthetic genes expression (Fenske et al. 2015; 
Fenske and Imaizumi 2016).
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The role of the circadian clock for adaptation 
to local environments at the individual level

The circadian clock regulates various cellular or develop-
mental processes and provides higher fitness under diurnal 
conditions as described above. Many plant species includ-
ing Arabidopsis spread into different climatic and latitudi-
nal areas with a wide range of day-length changes through-
out the year. Several reports have suggested that mutations 
in the clock genes could contribute to adaptation to local 
environments. The period length of leaf movements in 150 
Arabidopsis accessions is positively correlated with the 
day length at the latitude of origin, implying the adaptive 
significance of the circadian clock (Michael et al. 2003). 
Quantitative trait loci (QTL) analysis revealed that mul-
tiple loci interact to determine the period length, phase, 
and amplitude of leaf movements. PRR7 was located at 
some of the QTL for circadian period, and mutants defec-
tive in PRR family genes exhibit altered circadian period, 
suggesting that polymorphism in the PRR genes is a can-
didate for adaptation to local environments. Positive cor-
relation between the period length of leaf movements and 
the day length at the latitude of origin is also reported in 
Mimulus guttatus and Glycine max (Greenham et al. 2017). 
Similarly, the period length of core clock gene expression 
in Capsella bursa-pastris ecotypes is strongly correlated 
with the latitudinal origin (Slotte et al. 2007). C. bursa-
pastris ecotypes derived from lower latitudes showed ear-
lier flowering, indicating that the phase advance in clock 
gene expression could contribute to early flowering. Poly-
morphism in ELF3 originated in Central Asia causes a 
short-period under light and severely dampened oscillation 
in the dark because of the defects in nuclear localization of 
ELF3, suggesting the contribution of mutations in ELF3 
to local adaptation (Anwer et al. 2014).

Perspectives

The circadian clock regulates various cellular and devel-
opmental processes throughout the life cycle of plants, 
and indeed other organisms. Although accumulating evi-
dence indicates the significance of the circadian clock for 
plant fitness, how the circadian system is able to regu-
late so many output processes and contribute to higher 
fitness is still largely unknown. However, recent advances 
of chromatin immunoprecipitation combined with mas-
sively parallel sequencing (ChIP-seq) achieved genome-
wide identification of the direct regulations of clock-output 
genes by some of the core clock components (Ezer et al. 
2017; Kamioka et al. 2016; Liu et al. 2016; Nagel et al. 

2015; Nakamichi et al. 2012). Furthermore, recent analy-
ses revealed that plants have decentralized oscillator net-
works consisting of multiple tissue-specific clocks, which 
show asymmetric couplings (Endo et al. 2014; Shimizu 
et al. 2015; Takahashi et al. 2015). Therefore, it is impor-
tant to know how oscillator networks integrate spatial and 
temporal information into the whole body to regulate vari-
ous responses.

As described above, polymorphism in the circadian clock 
genes may contribute to the adaptation to local environ-
ments. Indeed, many domesticated crops contain mutations 
in the core clock genes, resulting in the optimized flowering 
time (Nakamichi 2015). Since the day length for a given 
latitude is invariable in spite of the global climate changes, 
optimization of flowering time will continue to be needed 
for further crop domestication. Although modification of 
the circadian clock genes may enhance crop growth and 
in turn yields, circadian transcriptome data of crop species 
is still not readily available. Moreover, recent modeling of 
transcriptome data in field conditions versus in a growth 
chamber revealed that the progression of internal time in the 
morning and evening is different in the field and chamber 
probably due to the difference in increasing and decreas-
ing rate of light intensity and temperature (Matsuzaki et al. 
2015), suggesting the importance of integrating the param-
eters derived from controlled growth chamber into field 
conditions. Time-course sequences of transcriptome data of 
crop species in field conditions and mathematical modeling 
could help us to determine new targets for improving crop 
yields and provide new insights into the role of the circadian 
clock in fluctuating environments for local adaptation.
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