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We investigate the Polyakov loop effects on the QCD phase diagram by using the strong-coupling (1=g2)
expansion of the lattice QCD (SC-LQCD) with one species of unrooted staggered quark, including
Oð1=g4Þ effects. We take account of the effects of Polyakov loop fluctuations in Weiss mean-field
approximation (MFA), and compare the results with those in the Haar-measure MFA (no fluctuation from
the mean-field). The Polyakov loops strongly suppress the chiral transition temperature in the second-
order/crossover region at small chemical potential (μ), while they give a minor modification of the first-
order phase boundary at larger μ. The Polyakov loops also account for a drastic increase of the interaction
measure near the chiral phase transition. The chiral and Polyakov loop susceptibilities ðχσ ; χlÞ have their
peaks close to each other in the second-order/crossover region. In particular in Weiss MFA, there is no
indication of the separated deconfinement transition boundary from the chiral phase boundary at any μ. We
discuss the interplay between the chiral and deconfinement dynamics via the bare quark mass dependence
of susceptibilities χσ;l.

DOI: 10.1103/PhysRevD.95.114505

I. INTRODUCTION

The phase diagram of quantum chromodynamics (QCD)
at finite temperature (T) and/or quark chemical potential (μ)
[1,2] provides a deep insight into the Universe. At the few
microseconds after the big-bang, a quark-gluon plasma
(QGP) is supposed to undergo the QCD phase transition/
crossover, which results in confinement of color degrees of
freedom and the dynamical mass generation of hadrons. In
fact, the first principle calculations based on lattice QCD
Monte Carlo simulations (LQCD-MC) indicates the cross-
over around Tc ¼ 145–195 ðMeVÞ [3]. In compact star
cores, a cold-dense system would appear, where various
interesting phases are expected [4–8].
The QCD phase transition can be investigated in the

laboratory experiments [9]: Circumstantial experimental
evidence at the Relativistic Heavy-Ion Collider (RHIC) in
Brookhaven National Laboratory together with theoretical
arguments implies that the QGP is created in heavy-ion
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, and recent experiments at
the Large Hadron Collider (LHC) in CERN give stronger
evidence. Probing the phase diagram at finite μ, in
particular the critical point (CP) [10], is a central topic
in the ongoing and future heavy-ion collision experiments
at the Facility for Antiproton and Ion Research (FAIR) at
GSI, the Nuclotron-based Ion Collider fAcility (NICA) at

JINR, and the beam energy scan program at RHIC [11].
Unfortunately, the first principle studies by LQCD-MC
loses the robustness at finite μ due to the notorious sign
problem [1,12–15]. Many interesting subjects, for example,
the location of CP, the equation of state (EOS) at high
density, are still under debate.
The QCD phase diagram may be characterized by two

underlying dynamics, the chiral and deconfinement tran-
sitions, which are associated with the spontaneous breaking
of the chiral symmetry in the chiral limit and the ZNc

center
symmetry of the color SUðNcÞ gauge group in the heavy
quark mass limit, respectively. The order parameter is the
chiral condensate (σ)/Polyakov loop (l) for the chiral/
deconfinement transition. Although the ZNc

symmetry is
explicitly broken by the quark sector (with a finite or
vanishing mass), the Polyakov loops are still important
degrees of freedom to be responsible for the thermal
excitation of quarks near the chiral phase transition. The
interplay between the σ and l is under active scrutiny; the
LQCD-MC reports that the chiral and Polyakov loop
susceptibilities show their peaks at almost the same temper-
atures for μ ¼ 0, and the separation of two dynamics is
proposed at finite μ in several models [2].
We investigate the QCD phase diagram by using the

strong-coupling expansion in the lattice QCD (SC-LQCD),
which provides a lattice-based and well-suited framework
for the chiral and deconfinement transitions without a
serious contamination by the sign problem. The SC-
LQCD has been successful since the beginning of the*kohtaroh.miura@cpt.univ‑mrs.fr; miura@kmi.nagoya-u.ac.jp
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lattice gauge theory [16–19], and revisited after the QGP
discovery at RHIC as an instructive guide to the QCD phase
diagram [20–33]. It is remarkable that a promising
phase diagram structure has been obtained even in the
strong-coupling limit (β ¼ 2Nc=g2 → ∞) with mean-field
approximation (MFA) [20,22,24], and exactly determined
based on the Monomer-Dimer-Polymer (MDP) formulation
[30] and the Auxiliary Field Monte Carlo simulation [33].
The MFA results are then shown to be capturing the
essential feature of the exact phase diagram.
In Fig. 1, we summarize the SC-LQCD studies on the

color SU(3) QCD phase diagram using MFA. Based on the
success in the strong-coupling limit (top in the second
column), we have investigated the phase diagram [25,27]
by taking account of the next-to-leading order (NLO,
Oð1=g2Þ, middle in the second column) and the next-to-
next-to-leading order (NNLO,Oð1=g4Þ, bottom in the
second column) of the strong-coupling expansion. The
chiral phase transition temperature Tc is strongly sup-
pressed by the NLO effects, and the phase diagram evolves
into the empirical shape with increasing lattice coupling
β ¼ 2Nc=g2, while the NNLO effects give much milder
corrections.
In the works mentioned above (listed in the second

column of Fig. 1), the main focus was put on the chiral
dynamics, rather than the ZNc

deconfinement dynamics,
which is another important dynamics described by
the Polyakov loops l of the pure-gluonic sector. The
SC-LQCD has been well-suited to include both dynamics
at the strong-coupling limit [34–36] (top in third and fourth
columns in Fig. 1); the strong-coupling limit for the quark
sector is combined with the leading-order effect of the
Polyakov loops in the pure-gluonic sector and the quark
determinant term provides the lattice-based derivation of
the σ–l coupling. It is intriguing to include the higher-order
of the strong-coupling expansion, which has been carried
out in our previous work [28] (middle and bottom lines in
third and last columns in Fig. 1); we have shown that the
Polyakov loop effects combined with finite lattice cou-
plings β further suppresses the chiral transition temperature
Tc, which reproduces the results of LQCD-MC simulations

[37–39] at μ ¼ 0 in the certain lattice coupling range β ∼ 4.
Thus, the long-standing problem of the SC-LQCD—too
large Tc—is greatly relaxed by the Polyakov loops.
Moreover, the Polyakov loop sector at the chiral phase
transition ∼Oð½1=g2�1=TcÞ is found to be comparable with
the quark sector with NLO [Oð1=g2Þ] and NNLO
[Oð1=g4Þ] at Tcðβ ∼ 4Þ ∼ 0.5–0.6 (in lattice units); the
Polyakov loop effects are necessary to evaluate Tc with
respect to the order counting of the strong-coupling
expansion.
In our previous paper [28], however, the analysis was

limited at vanishing chemical potential μ ¼ 0, while the
finite μ region receives a growing interest by the forth-
coming experiments focusing the CP and high density
phase. The purpose of the present paper is to extend our
previous work [28] to the finite μ region, and to investigate
the Polyakov loop effects on the whole region of the QCD
phase diagram as indicated by red-solid characters in Fig. 1.
We adopt two approximation schemes for the Polyakov
loops, a simple mean-field treatment (Haar-measure MFA)
and an improved treatment with fluctuation effects (Weiss
MFA). Through the various comparisons indicated by the
arrows in Fig. 1, we elucidate the effect of the Polyakov
loop itself, either the effects of the Polyakov loop fluctua-
tions, as well as the higher-order (NNLO) effects of the
strong-coupling expansion. In particular, we focus on
thermodynamic quantities, which is of great interest in
the study of the equation of state for quark matter but has
been challenging in SC-LQCD. Moreover, we discuss the
interplay between the chiral and deconfinement dynamics
at finite μ via the bare quark mass dependence of suscep-
tibilities χσ;l.
We employ one species (unrooted) of staggered fermion,

which has a Uχð1Þ chiral symmetry in the strong-coupling
region and becomes the four flavor QCD with degenerate
masses in the continuum limit. We investigate the Uχð1Þ
chiral phase transition/crossover at finite T and μ in color
SUðNc ¼ 3Þ gauge group in the 3þ 1 dimension (d ¼ 3).
Our focus is not necessarily put on quantitative prediction
of the realistic phase diagram, but we attempt to clarify

FIG. 1. The summary of the SC-LQCD studies on the QCD phase diagram for color SU(3) using MFA.
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which effects make the SC-LQCD phase diagram being
closer to realistic one. Such lattice based arguments would
be instructive to future LQCD-MC studies on the QCD
phase diagram, even though the flavor-chiral structure in
the present study is different from the real-life QCD with
2þ 1 flavors.
This paper is organized as follows: In Sec. II, we explain

the effective potential in strong-coupling lattice QCD with
Polyakov loop effects. In Sec. III, we investigate the phase
diagram and related quantities by using the effective
potential. In Sec. IV, we summarize our work and give a
future perspective. The Appendix is devoted to the review
of the effective potential derivation.

II. STRONG-COUPLING LATTICE QCD
WITH POLYAKOV LOOP EFFECTS

We explain the effective potential of the strong-coupling
lattice QCD including the Polyakov loop effects. The
derivation has been detailed in our previous work [28],
and recapitulated in the Appendix in this paper. Here we
explain the essential property of the effective potential.
We will work on lattice units a ¼ 1 in color SUðNc ¼ 3Þ
gauge and 3þ 1 dimension (d ¼ 3). The parameters in
the effective potential are the lattice coupling β ¼ 2Nc=g2,
lattice bare quark mass m0, lattice temperature T ¼ 1=Nt
(Nt ¼ temporal lattice extension), and quark chemical
potential μ.
The effective potential FH=W

eff involves the plaquette-
driven Polyakov loop sector FH=W

P and the quark sector
FH=W

Q ,

FH=W
eff ðΦ;l; l̄; β; m0; T; μÞ

¼ FH=W
P ðl; l̄; β; TÞ þ FH=W

Q ðΦ; β; m0; T; μÞ
þOð1=g6; 1=g2ðNtþ2Þ; 1=

ffiffiffi
d

p
Þ: ð1Þ

The FH=W
P is responsible for the Polyakov loop effects

Lp¼N−1
c

Y
τ

U0;τx; U0 ¼ temporal link variable; ð2Þ

which result from the integral over the spatial link variables
for the plaquettes wrapping around the temporal direction.
Such Polyakov loops are dubbed “plaquette-driven,” and
purely gluonic. The effects of Lp is investigated in two
MFA scheme: the Haar measure and Weiss MFA—as
indicated by the suffixes “H” and “W”. In the former,
the Polyakov loop Lp is simply replaced with its constant
mean-field l, while in the latter, the mean-field l is
introduced via the extended Hubbard-Stratonovich trans-
formation [25] and the fluctuations from the mean-field is
taken account in the integral over the U0. The Polyakov
loop effective potential of Haar measure MFA is well-
known since the 1980s [40],

FH
P ðl; l̄; β; TÞ ¼ −2TdN2

c

�
1

g2Nc

�
1=T

l̄l − T logRHaar;

ð3Þ

RHaar ≡ 1 − 6l̄l − 3ðl̄lÞ2 þ 4ðlNc þ l̄NcÞ; ð4Þ

where the Haar measure in the U0 path integral leads to the
Z3 symmetric term RHaar. Since the RHaar does not couple
to the dynamical quarks, the Z3 symmetry affects the phase
diagram separately from the chiral dynamics in Haar
measure MFA. In sharp contrast to this, there is no
counterpart in Weiss MFA [28],

FW
P ðl; l̄; β; TÞ ¼ 2TdN2

c

�
1

g2Nc

�
1=T

l̄l: ð5Þ

The Polyakov loop effects other than the quadratic term (5)
are entangled to the dynamical quarks in the quark
determinant as explained in the followings. Thus, the Z3

dynamics is totally spoiled by the dynamical quarks in
Weiss MFA.
In both Haar measure and Weiss MFA cases, the order

counting of the strong-coupling expansion reads,

FH=W
P ∼Oðð1=g2ÞNt¼1=TÞ; ð6Þ

and thus depends on the lattice temperature T ¼ 1=Nt,
which is subject to the integer value Nt. However in this
paper, we regard T as a continuous valued given number,
which naturally follows in the lattice Matsubara formalism
[41]. Around the chiral transition/crossover temperature Tc,
we will show that the FH=W

P becomes comparable to the
NLO or NNLO effects: Oð1=g2=TcÞ ∼Oð1=g2−4Þ.
The quark sector FH=W

Q in Eq. (1) is derived by
integrating out the staggered quarks with link/plaquette
variables in each order of the strong-coupling expansion. In
this paper, we consider the LO, NLO, and NNLO effects;

FH=W
Q ∋ Oð1=g0Þ;Oð1=g2Þ;Oð1=g4Þ: ð7Þ

The integral is evaluated by introducing several auxiliary
fields Φ, which includes the chiral condensate σ, the order
parameter of the Uχð1Þ chiral symmetry, as well as other
fields,

Φ ¼ fσ;ψτ; ψ̄ τ;ψ s; ψ̄ s;ψτs; ψ̄ τs;ψ ss; ψ̄ ss;ψττ; ψ̄ ττg; ð8Þ

whose physical meanings are summarized in Tables I and II
in the Appendix. The coefficients of the effective potential
terms are solely characterized by (β, Nc, d) and Oð1=g0−4Þ
(see Table III). The total quark sector FH=W

Q is then divided
into the auxiliary field part FX and the quark determinant
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partFH=W
det . As shown in Eq. (A17) in the Appendix, theFX

is composed of the quadratic terms of the auxiliary fieldsΦ.
The quark determinant term FH=W

det is responsible for the
dynamical quark effects, and includes the quark hoppings
with link variables U0 wrapping around the temporal
direction, which give rise to the “quark-driven” Polyakov
loops. In Haar measure MFA, the quark determinant part
becomes similar to that in the Polyakov-loop-extended
Nambu-Jona-Lasinio (PNJL) model [42–44] and the
Polyakov-loop-extended Quark-Meson (PQM) model [45]:

FH
det ¼ −NcEq − Nc log

ffiffiffiffiffiffiffiffiffiffiffiffi
ZþZ−

p
− TðlogRqðEq − ~μ;l; l̄Þ þ logRqðEq þ ~μ; l̄;lÞÞ;

ð9Þ

Rqðx; y; ȳÞ≡ 1þ Ncðye−x=T þ ȳe−2x=TÞ þ e−3x=T: ð10Þ

See Table IV for the quark excitation energy Eq, the shifted
quark chemical potential ~μ, and the wave function renorm-
alization factor

ffiffiffiffiffiffiffiffiffiffiffiffi
ZþZ−

p
. InWeissMFA, the plaquette-driven

and quark-driven Polyakov loops are combined in the quark
determinant, and the U0 path integral accounts for the
Polyakov loop fluctuations. Then we obtain the following
expression,

FW
det ¼ −Nc log

ffiffiffiffiffiffiffiffiffiffiffiffi
ZþZ−

p
− T log

�X
I

QIðΦÞPIðl; l̄Þ
�
;

ð11Þ

PIðl; l̄Þ ¼
X∞
n¼−∞

� ffiffiffiffiffiffiffiffi
l=l̄

q �
−NcnþNI

Q
PI

n

� ffiffiffiffiffiffi
ll̄

p �
; ð12Þ

where the thermal excitation of a quark and its compositeQI ,
the thermal excitation of Polyakov loops PI

n, and the quark
number index NI

Q are summarized in Table V in the
Appendix. In the heavy quark limit m0 → ∞, Eq. (11)
recovers the Z3 symmetry as shown in the Appendix.
The auxiliary fields fΦ;l; l̄g at equilibrium are deter-

mined as a function of (β, m0, T, μ) via the saddle point
search of the effective potential FH=W

eff . In particular, the
important quantities to probe the phase diagram are the
chiral condensate σ ∈ Φ, Polyakov loops (l, l̄), and their
(dimensionless) susceptibilities (χσ, χl). In the present
mean-field framework, the susceptibilities are evaluated
as follows: We consider the curvature matrix C of the
effective potential at equilibrium,

Cij ¼
1

T4

∂2FH=W
eff

∂ϕi∂ϕj

				
equilibrium

; ð13Þ

where the field ϕi represents the dimensionless auxiliary
fields normalized by T and Nc,

ϕi ∈



σ

T3Nc
;

ψτ

T3Nc
;

ψ̄ τ

T3Nc
;

ψ s

T6N2
c
;

ψ̄ s

T6N2
c
;

ψτs

T6N2
c
;
ψ̄ τs

T6N2
c
;

ψ ss

T12N4
c
;
ψ̄ ss

T6N2
c
;
ψττ

T3Nc
;
ψ̄ ττ

T3Nc
;l; l̄

�
:

ð14Þ

Then the chiral and Polyakov loop susceptibilities are
given by

χσ ¼ ðC−1Þij¼σσ; χl ¼ ðC−1Þij¼ll̄: ð15Þ

In addition, we investigate thermodynamic quantities, a
pressure p, quark number density ρq, and interaction
measure Δ,

p ¼ −ðFH=W
eff ðT; μÞ − FH=W

eff ð0; 0ÞÞ; ð16Þ

ρq ¼
∂p
∂μ ; ð17Þ

Δ ¼ ϵ − 3p
T4

; ð18Þ

where ϵ ¼ −pþ Tsþ μρq represents an internal energy
with s ¼ ∂p=∂T being an entropy.

III. RESULTS

We investigate the QCD phase diagram based on the
effective potential explained in the previous section. We
show the phase diagram and related quantities obtained in
Haar measure MFA at next-to-leading order (NLO) in
Subsec. III A, Weiss MFA at NLO in Subsec. III B for the
fixed lattice coupling β ¼ 4 in the chiral limit (m0 ¼ 0). We
extend our study to include the finite bare quark mass
m0 > 0 in Subsec. III C with a particular focus on the chiral
and Polyakov loop susceptibilities. Then, in Subsec. III D,
we show the phase diagram evolution for various β. Finally,
in Subsec. III E, we study the next-to-next-to-leading order
(NNLO) effects in the phase diagram. The quark mass m0,
temperature T, quark chemical potential μ, and other
quantities are all given in lattice units, unless explicitly
stated otherwise.

A. Haar measure MFA at NLO

We consider the NLO Haar measure MFA, where the
NNLOOð1=g4Þ terms in the coupling coefficients shown in
Table III and the Polyakov loop fluctuations are ignored. We
concentrate on the chiral limit case m0 ¼ 0. We take the
lattice coupling β ¼ 4.0 as a typical value, for which the
chiral transition temperature at vanishing quark chemical
potential Tc;μ¼0 [28] becomes close to the LQCD-MC result
[37] (For details on the comparison, see Refs. [28,31]).
The effects ignored or restricted here will be investigated in
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later subsections. The phase diagram in the Haar measure
MFA is partly studied in our previous work [26], and we
provide more complete analyses in the followings.
In the upper panel of Fig. 2, we show the chiral

condensates (σ=Nc) and Polyakov loops (l; l̄) at finite
quark chemical potential μ ¼ 0.4 as a function of temper-
ature T for ðβ; m0Þ ¼ ð4.0; 0.0Þ. In the low T region, the
chiral broken (σ ≠ 0) and confined ðl ∼ 0Þ phase appears.
As T increases, we observe the second-order chiral phase
transition ðσ → 0Þ at Tc ≃ 0.44 and the large increase of
the Polyakov loops (l → Oð1Þ). These results are similar to
the zero chemical potential case shown in the previous
study [28].
We find that the Polyakov loop is smaller than the anti-

Polyakov loop (l < l̄) in the chiral broken phase. This is
understood from a quark screening effect at high density: A
finite μ leads to a net quark number density at equilibrium,
where putting additional quarks into the system would give
a larger energy cost than antiquarks. Therefore the free
energy of the quark gets larger than that of the antiquark

Fq > Fq̄, which attributes to our observation l < l̄
through the relation ðl; l̄Þ ∝ ðe−Fq=T; e−Fq̄=TÞ.
In the lower panel of Fig. 2, we compare the temperature

dependence of the chiral and Polyakov loop susceptibilities
(χσ, χl) which are defined in Eq. (15) in the same condition
as the upper panel. The Polyakov loop susceptibility has
two peaks with a relatively wide width. We note that the
action in the present SC-LQCD (A2) has the Uχð1Þ chiral
symmetry, which governs the dynamics of the system.
Since the first peak is found in the vicinity of the chiral
phase transition, it should be associated with the chiral
dynamics. For example, the χl rapidly (but continuously)
decreases just after the peak, and its derivative with respect
to T is discontinuous. This property is associated by the
second-order chiral phase transition,

σðTÞ ∝
(�

Tc−T
Tc

�
βσ¼1=2 ðT < TcÞ;

0 ðT ≥ TcÞ;
ð19Þ

via the potential curvature matrix Eq. (13). In general,
fluctuation effects modifies the critical exponent βσ , but the
derivative is still discontinuous in the thermodynamic limit
at the second-order transition. The second peak (or bump)
is found in the chiral restored phase T ≃ 0.53 > Tc, and
interpreted as the remnant of the Z3 deconfinement
dynamics as discussed in the subsec. III C.
In the upper panel of Fig. 3, we show the chiral

condensates σ=Nc as a function of chemical potential μ
for three fixed temperatures T ¼ 0.15, 0.20, 0.25. At
T ¼ 0.25 (red-solid line), we find the second-order phase
transition. At lower T ∼ 0.20 (blue-dashed line), the chiral
symmetry is partially restored with the first-order phase
transition as μ increases, and gets completely restored with
the second-order phase transition at larger μ. As shown in
the previous study [25], the partial chiral restoration (PCR)
emerges due to the self-consistent evaluation of the finite β
effects for the chemical potential: The effective chemical
potential appears as an implicit function of σ, μ →
~μðσ; βÞ ¼ μ − δμðσ; βÞ (see, Table IV), which allows a
stable equilibrium satisfying σ ∼ ~μðσÞ, leading to the
PCR. Our finding in the present study is that the PCR is
not spoiled by the Polyakov loop effects, but still exists. As
T decreases, the PCR disappears and the first-order chiral
transition dominates as indicated by the T ¼ 0.15 case
(dashed-dotted black line).
In the lower panel of Fig. 3, we pick up the T ¼ 0.25

case from the upper panel and show the μ dependence of
σ=Nc in a wider range. The Polyakov loops (l; l̄) and the
quark number density [ρq=Nc defined by Eq. (17)] are also
displayed. The Polyakov loops increase in the chiral broken
phase μ < μc ≃ 0.59, and the increasing rate stays quite
small compared with the finite T transition case. In
contrast, the quark number density rapidly increases in
the vicinity of the chiral phase transition. After the

 0
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Haar Meas. MFA.
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χσ/1000
χ

FIG. 2. Upper: The chiral condensates σ, Polyakov loops
ðl; l̄Þ, in NLO Haar measure MFA as a function of T at
ðβ; m0; μÞ ¼ ð4.0; 0.0; 0.4Þ in lattice units. Lower: The chiral
and Polyakov loop susceptibilities (χσ and χl) in the same
condition as the upper panel in lattice units. For a comparison,
the χσ is multiplied by 1=1000.

POLYAKOV LOOP EFFECTS ON THE PHASE DIAGRAM IN … PHYSICAL REVIEW D 95, 114505 (2017)

114505-5



transition (μ ≥ μc), we observe a high density system
(ρq ∼ Nc) with a little quark excitation (l ≪ 1). This
property as well as the possibility of two sequential
transitions associated with the PCR would be reminiscent
of the original idea of the quarkyonic phase [5].
In the symmetric phase, the Polyakov loops (l, l̄) start

decreasing with the relation l̄ < l as μ increases. This
would be a saturation artifact on the lattice: As we
explained above, the chiral symmetry restoration leads to
a high density system ρq > Nc=2 so that more than half of
the lattice sites are filled by quarks. Then the holes—sites
without quarks—behave like antiquarks, and the system
with the quark number density ρq > Nc=2 would be
identical to the system with the antiquark number density
ρq̄ ¼ ðNc − ρqÞ < Nc=2. Therefore, the excitation property
of quarks and antiquarks becomes opposite (Fq < Fq̄) as
illustrated in Fig. 4, and thus l̄ < l holds. As μ becomes
larger after the half-filling, the number of holes decreases
and the degrees of freedom get frozen. Hence the excita-
tions of both quarks and antiquarks are suppressed at larger

μ, which results in the decreasing trend of (l, l̄) as
functions of μ.
We show the phase diagram of NLO Haar measure MFA

in the upper panel of Fig. 5 with ðβ; m0Þ ¼ ð4.0; 0.0Þ. The
first-order chiral phase boundary (red-solid line) emerges in
the low T region and ends up with the tricritical point (TCP,
filled black circle) at ðμTCP; TTCPÞ≃ ð0.577; 0.205Þ, from
which the second-order chiral phase boundary (blue-dashed
line) sets in with increasing temperature (The PCR emerges
just below the TCP, and invisible in the resolution of Fig. 5.
The PCR becomes visible at larger β as seen in Fig. 12).
The lower-green (upper-yellow) band corresponds to the
width of the Polyakov loop susceptibility χl at 90% of its

FIG. 4. The half-filled and saturation. 0
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first (second) peak height. The first peak band depends on μ
similarly to the chiral phase boundary: As mentioned
above, the peak seems to be associated with the chiral
phase transition. The peak strength becomes weaker with
increasing μ, and disappears at μ≃ 0.53 before reaching
TCP. The second peak is almost independent of μ, and
starts appearing in μ ≳ 0.17 separately from the first peak.
The phase diagram in the Haar measure MFA is similar

to that in PQM [45]: When the μ dependence is absent in
the Polyakov loop potential in PQM, the derivative of the
Polyakov mean-field in terms of T at finite μ has double
peaks, which is analogous to our result shown in the lower
panel of Fig. 2 as well as in our previous study [26]. We
will revisit this subject in Weiss MFA case in the next
subsection.
The lower panel of Fig. 5 shows the difference of the

Polyakov loop and anti-Polyakov loop (l − l̄) in the T − μ
plane. The relation l < l̄ holds in the whole T, μ > 0
region in the chiral broken phase as shown by the blue
color. The saturation effect l > l̄ is observed as a general
tendency at large μ region in the chiral restored phase as
indicated by the red color.
As shown in Eq. (6), the plaquette-driven Polyakov loop

action includes theOð1=g2=TÞ correction. At the chiral phase
boundary, this effect gives Oð1=g2=TcÞ≲Oð1=g4Þ. For the
consistency of the strong coupling expansion, we have to
take account of the NNLO 1=g4 effects for the quark sector,
which will be discussed in the later subsection.

B. Weiss MFA at NLO

We investigate the phase diagram of NLO Weiss MFA,
where the Polyakov loop fluctuations from the mean fields
ðl; l̄Þ are considered, while the NNLO effects Oð1=g4Þ in
the coupling coefficients shown in Table III are ignored. We
compare the Weiss MFA results with the Haar measure
MFA to clarify the effects of the Polyakov loop fluctuations
to the phase diagram. We choose the same parameter set as
the Haar measure MFA case, ðβ; m0Þ ¼ ð4.0; 0.0Þ.
As shown in Fig. 6, T or μ dependence of ðσ;l; l̄; ρqÞ is

qualitatively the same as the Haar measure MFA results. In
the following, we concentrate on the results which are
characteristic of the Weiss MFA.
In Fig. 7, we show the chiral and Polyakov loop

susceptibilities (χσ , χl) at finite chemical potential μ ¼
0.4 as a function of temperature T. Two peaks are almost
degenerated, and the width of χl is sharper than the Haar
measure MFA case. We do not see the second (Z3

associated) peak in the chiral symmetric phase in sharp
contrast to the Haar measure MFA case.
In Fig. 8, we show the phase diagram of NLO Weiss

MFA with ðβ; m0Þ ¼ ð4.0; 0.0Þ. We find two qualitative
differences between the NLO Weiss MFA and NLO Haar
measure MFA results: First, the peak of χl (green-band
showing the width of χl at 90% of the peak height) is more
strongly locked to the chiral phase boundary in Weiss MFA
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than the Haar measure MFA case. Second, the remnant of
the Z3 dynamics such as the yellow band in Fig. 5 does not
appear at any μ in the Weiss MFA case. As explained after
Eq. (5) in the previous section, the plaquette-driven
Polyakov loops are combined into the quark determinant
and coupled to the dynamical quark effects via the U0 path
integral. Then, the Weiss MFA does not admit the remnant
of the Z3 symmetry in sharp contrast to the Haar measure
MFA and many other chiral effective models [42,43,45]. It
is sometimes argued that the chiral and deconfinement
dynamics might be separated at finite μ [2], but the Weiss
MFA does not support the isolated deconfinement dynam-
ics from the chiral phase boundary.
Here, we comment on the recent phase diagram study by

the PQM model [45]. In this model, a μ dependence was
assumed in the Polyakov loop effective potential based on
the phenomenological insights to describe the backreaction
of the quark-matter to the Polyakov loops at finite density.
This prescription led to a stronger locking between the peak
of dl=dT and the chiral crossover line, and the double peak
structure of dl=dT disappeared. These phenomena would
be analogous to our findings in the Weiss MFA. We stress
that the Weiss MFA effective potential directly results from
the path integral in the lattice QCD without additional
assumptions. This would be the advantage of the SC-
LQCD based effective potential.
We shall consider the formal limit ðl; l̄Þ → 0 in the

effective potential of Weiss MFA FW
eff : In the second line of

Eq. (11), the thermal excitations (see Table V) carrying a
quark number 0 (I ¼ MMM, MQQ̄) and �3 (I ¼ B, B̄)
remains and the FW

eff reduces into the effective potential
which has been derived in our previous study [25]. We
express the reduced effective potential as FNLO

eff , and the
results obtained by using FNLO

eff will be referred to as NLO
without Polyakov loops in the later discussions. See
Eq. (A24) for the expression of FNLO

eff . Needless to say,
the FNLO

eff does not implement the Polyakov loop dynamics.

By comparing the Weiss NLO MFA and the NLO without
Polyakov loops, the Polyakov loop effects become more
transparent.
In Fig. 8, we compare the chiral phase boundary of the

NLOWeissMFA and the NLOwithout Polyakov loops. The
second-order phase boundary of the NLOWeissMFA (blue-
dashed line) is found in lower T region than that of NLO
without Polyakov loop (magenta-dotted line). As μ becomes
larger, two phase boundaries get closer to each other and
degenerate in the vicinity of the TCP. The first-order phase
boundary is almost independent of the Polyakov loop effects.
This is understood as follows. As explained in the previous
section, the plaquette-driven Polyakov loops gives the
contribution of Oð½1=g2�1=TcðμÞÞ. At larger μ, this factor
decreases because the TcðμÞ does, and thus the Polyakov
loop effects becomes higher order effects of the strong-
coupling expansion, and thereby suppressed.
Compared with the Haar measure MFA, the transition

temperature TcðμÞ in the Weiss MFA becomes somewhat
larger. Then, the effect of the plaquette-driven Polyakov
loops for β ¼ 4.0 is maximally Oð½1=g2�1=Tcðμ¼0ÞÞ ¼
Oð1=g3.3Þ, which is larger than the NNLO effects 1=g4.
Thus, the present NLO approximation for the quark sector is
consistent with respect to the order counting of the strong
coupling expansion, at least for β ≲ 4.0.
Next, we investigate the thermodynamic quantities in the

Weiss MFA. In the upper panel of Fig. 9, we show the
normalized pressure p=T4 as a function of T at chemical
potential μ ¼ 0.4, the same condition as Fig. 7. In NLO
Weiss MFA, the p=T4 (red-solid line) becomes signifi-
cantly larger at T ≳ Tc ≃ 0.507 and closer to the Stefan-
Boltzmann result

psb

T4
¼ NfNc

6

�
7π2

30
þ μ2

T2
þ 1

2π2
μ4

T4

�
þ ðN2

c − 1Þπ2
45

: ð20Þ

We do not see such a large enhance of p=T4 in the case of
NLO without Polyakov loops (blue-dashed line). Thus, the
Polyakov loop plays an essential role to realize the pressure
enhancement which is expected in the QGP phase at high
T. More specifically, the pressure enhancement is attributed
to the increase of Polyakov loop thermal excitations
PI

nð
ffiffiffiffiffiffi
ll̄

p
Þ (see Table V) included in the Weiss MFA

effective potential (11)–(12). This result should be com-
pared with that in the PQM model, where the pressure is
rather suppressed by Polyakov loops [45]. The different
role of Polyakov loops is understood as follows. First, we
recall that a usual NJL (QM) does not implement a
confinement dynamics since quarks are introduced without
gauge interactions. When Polyakov loop effects are intro-
duced, giving PNJL (PQM), the Boltzmann factors for
quark thermal excitations in the effective potential [43,45]
are multiplied by the Polyakov loop mean-field l, which
acts as a suppression factor of the quark thermal excitations
at low T. In this sense, the role of the Polyakov loop is to

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

T

μ

peak of χ
1st. Order

2nd. Order
2nd. Order w.o. ( , −)

TCP.

FIG. 8. The phase diagram at ðβ; m0Þ ¼ ð4.0; 0.0Þ in NLO with
Weiss MFA in lattice units. See texts for details.

MIURA, KAWAMOTO, NAKANO, and OHNISHI PHYSICAL REVIEW D 95, 114505 (2017)

114505-8



confine quarks at low T in PNJL and PQM, and therefore,
suppresses the pressure. By comparison in SC-LQCD, the
link integrals admit only color-singlet hadronic states
contributing to the effective potential. As a result, the

thermal excitations carrying the quark number NI
Q ¼ �1

(quark and antiquark excitations) and�2 (diquark and anti-
diquark excitations) in Table V can emerge only when the
Polyakov loop mean-fields are taken account. In this sense,
the role of the Polyakov loop is to deconfine quarks at high
T in SC-LQCD, and enhances the pressure. Thus, Polyakov
loops play different roles in the SC-LQCD and PNLO
(PQM).
In the middle panel of Fig. 9, we show the interaction

measure Δ ¼ ðϵ − 3pÞ=T4 as a function of T at chemical
potential μ ¼ 0.4. In NLO Weiss MFA, the Δ has a large
peak in the vicinity of the chiral phase transition T ∼ Tc as
expected with regards to the increasing scale asymmetry in
the strongly interacting quark-gluon plasma (sQGP). This
should be compared with the result obtained in NLO
without Polyakov loops (dashed-blue line) staying small
and showing just a tiny bump structure at T ∼ Tc. In the
lower panel of Fig. 9, we compare our results on the
interaction measure at vanishing of chemical potential with
those obtained in the Monte Carlo simulations (four flavor,
the chiral limit is taken) [39]. The Monte Carlo results
(green boxes) show the drastic increase in the vicinity of the
chiral phase transition. This feature is qualitatively repro-
duced by the NLO Weiss result (red-solid line), but not in
the NLO without Polyakov loops (blue-dashed line).
Around T ¼ Tc, a singular behavior in the derivative of
ðϵ − 3pÞ=T4 with respect to T is seen only in the chiral
limit. This behavior is associated with the second-order
chiral phase transition as mentioned in Sec. III A.

C. Quark mass dependence

In the previous subsections, we have studied the phase
diagram in the chiral limit m0 ¼ 0. In this subsection, we
investigate the m0 dependence of the chiral and Polyakov
loop susceptibilities. We choose the same parameter set of
β ¼ 4.0 and μ ¼ 0.4 as previous subsections.
In the upper panel of Fig. 10, we show the chiral

susceptibility χσ of the NLO Haar measure MFA as a
function of T for various bare quark mass m0 at
ðβ; μÞ ¼ ð4.0; 0.4Þ. The peak position defines the chiral
crossover temperature at finite m0. The chiral dynamics
becomes weaker as indicated by the attenuating peak with
increasing m0. In the lower panel of Fig. 10, we show the
Polyakov loop susceptibility χl in the same condition as the
upper panel. The double peak structure which we have
shown in the chiral limit in Subsec. III A evolves into a
single peak with increasing m0. The single peak grows up
in the heavy mass region m0 ¼ 0.9, and comes to be
responsible for the Z3 crossover. Consistently, the chiral
susceptibility does not show any signal there as shown in
the upper panel.
We notice that the Z3 peak of χl at m0 ¼ 0.9 locates at

the almost same temperature as the second peak appearing
in the small mass region m0 ≲ 0.01. This implies that the
second peak originates from the remnant of the Z3
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dynamics. In fact, the approximate Z3 symmetry remains
even in the chiral limit in the effective potential of the Haar
measure MFA: The Z3 symmetric (Haar measure) term
RHaar in Eq. (4) has a large contribution and does not
couple to the dynamical fermion effectsRq in Eq. (A18), so
that the former effect is not horribly spoiled by the latter.
The result is consistent with our previous work [26].
This should be compared with NLOWeiss MFA results,

Fig. 11. The chiral susceptibility χσ (upper panel) is
qualitatively the same as the Haar measure result, while
the Polyakov loop susceptibility χl (lower panel) differs:
The Weiss MFA does not lead to the double-peak structure
in χl for any m0. Thus, the scenario with the double-peak,
or equivalently, the deconfinement separated from the
chiral phase boundary at high density would be less
supported within the present approximation. To extract a
definite conclusion on the relation between two suscep-
tibilities χσ;l, we need to investigate the higher-order effects
on the Polyakov loops.
It is worth mentioning that the Polyakov loop effective

potential in the Haar measure MFA, Eq. (3) is similar to one
of the popular choices of the potential in the PNJL model

[42,43] or PQM models. They could in principle contain
the remnant of Z3 dynamics as the Haar measure MFA
does. As explained in the previous subsection, the recent
work based on PQM assumed a certain μ dependence to the
coefficients in the Polyakov loop effective potential [45].
This gives a phenomenological implementation of a back
reaction from dynamical quark effects. The Weiss MFA
effective potential [especially Eq. (11)] proposes the lattice
QCD based solution for the quark back reaction to the
Polyakov loops, and opens a possibility to upgrade
the PNJL and PQM models so that they account for the
Polyakov loop and quark degrees of freedom more sys-
tematically. To invent such a model based on the Weiss
MFA should be one of the future works.

D. Phase diagram evolution with increasing β

So far, we have studied the phase diagram at a fixed
coupling, β ¼ 4.0. In this subsection, we investigate the
phase diagram for various lattice coupling ranging
0.0 ≤ β ≤ 6.0, while we keep the vanishing bare quark
mass m0 ¼ 0. For the chiral phase transition temperature
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at vanishing chemical potential Tc;μ¼0, the lattice MC
data with one species of staggered fermion are avail-
able [30,37–39] and are compared with Tc;μ¼0 evaluated
in the strong-coupling expansion [25,27,28]. We extend our
analyses up to β ¼ 6.0, for which the physical scale of
ðTc; μcÞ can be extracted by utilizing the lattice spacing
result in Ref. [46].
In the upper panel of Fig. 12, we show the phase diagram

evolution with increasing β in the case of NLO Haar
measure MFA. In the whole range of 0.0 ≤ β ≤ 6.0, the
chiral phase transition is a first-order in the low temperature
region, and it evolves into the second-order at higher T
via TCP. The transition temperature at μ ¼ 0 (Tc;μ¼0)
acquires much larger modification with increasing β than

the transition chemical potential at T ¼ 0 (μc;T¼0).
Resultantly, the ratio R ¼ μc;T¼0=Tc;μ¼0 which characterize
the shape of the chiral phase boundary is greatly enhanced.
For β ≥ 4, the first-order transition line goes inside of the
second-order transition line near the TCP, and the PCR
explained in the previous subsection emerges between
two lines.
In the lower panel of Fig. 12, we show the phase diagram

evolution of the NLO Weiss MFA in the chiral limit
m0 ¼ 0.0. The results are qualitatively same as the Haar
Measure MFA case.
We compare the ratio R ¼ μc;T¼0=Tc;μ¼0 of NLO Weiss

MFA to that obtained in the “NLO without Polyakov
loops”. At β ¼ 4.0ð6.0Þ, the former (red-solid line) in
Fig. 13 becomes 1.38 (1.46) times larger than the latter
(blue-dashed line). Thus the ratio R becomes larger by the
Polyakov loop effects. Next, we compare our R with those
obtained by the Monomer-Dimer-Polymer (MDP) simu-
lation [31]. The MDP (green triangles in Fig. 13) gives a
somewhat larger R than our MFA result in the strong-
coupling limit, and becomes closer to the NLOWeiss MFA
at finite β. The increasing R at larger β is a common trend in
both MFA and MDP, and preferable to be consistent with a
realistic QCD phase diagram.
In both Haar measure MFA and Weiss MFAs, the TCP

tends to go into low T region with increasing β, and the
second-order chiral phase boundary becomes dominant.
However, the TCP and PCR evolution at large β in Fig. 12
may be modified by a number of effects which are missing
in the present mean-field framework at NLO; (1) fluctuation
degrees of freedom from mean-fields, (2) effects of higher-
order of the strong-coupling expansion, and (3) chiral
anomaly effects. In the following, we discuss these cor-
rections in relation to the continuum limit.
The fluctuation effects become important in critical

phenomena and may give a non-negligible correction to
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the TCP and PCR obtained in MFA even at a fixed order of
the strong-coupling expansion. This is the ambiguity (1).
However, at least for the strong-coupling region β ≤ 1.5,
the basic property of the TCP shown in this work would be
stable against the fluctuations; our results show that the
TCP exists and it is almost independent of β, which is
shown to remain intact even including the fluctuation
effects [32,33]. For the evolution of TCP/PCR at larger
β, only mean-field results (the present and previous works
[25,27]) are available, and it is desirable to investigate the
fluctuation effects in the near future.
If we assume that the (T)CP (and thereby, the first-order

chiral phase transition) remains in the phase diagram in the
continuum limit, the SC-LQCD including the fluctuation
effects may have a contact to the critical phenomena
expected in the continuum limit. This relies on the
following reasoning. The SC-LQCD with one species of
the staggered fermion has Oð2Þ symmetry at finite lattice
coupling, while the massless two-flavor QCD in the
continuum has Oð4Þ. Since the sign of the relevant critical
exponent in Oð2Þ is the same as that in Oð4Þ, the ratio
of various cumulants for the net baryon number

(χðnÞμ ∝ ∂n logZ=∂ðNcμÞ, Z ¼ partition function) would
be similar to each other. The cumulant ratio has been
investigated only in the strong-coupling limit [47]. The
finite coupling extension is, in principle, possible by
combining the present study with the auxiliary-field
Monte Carlo formulation [33].
Let us move on to the ambiguity (2), effects of higher-

order of the strong-coupling expansion. We first comment
on the remarkable properties at NLO; the first-order phase
boundary diminishes with increasing β as shown in Fig. 12,
and this trend becomes rather significant at finite quark
mass. For example in the Haar measure MFA, we found
that the CP associated angle arctanðTCP=μCPÞ at β ¼ 4.0 is
0.34 at m0 ¼ 0.0 and down to 0.31 at m0 ¼ 0.05. Thus,
both of the increasing β and nonzero m0 disfavor the first-
order transition at NLO. The question is a fate of the above
properties with higher-orders. To shed light on this, we
quote the LQCD-MC results on the chiral critical surface
[48] in the μ-extended Columbia plot, where the surface
evolution at finite μ implies the absence of the CP at
physical point mass. Thus, the properties at NLO explained
above seems to be compatible to the LQCD-MC results
including all order of β. This implies that the qualitative
feature of the (T)CP at NLO would not be horribly changed
by higher order effects. Of course, this naive expectation
should be confirmed by investigating the higher-orders in
future works. We note that the absence of CP at physical
point mass does not necessarily means the absence of
critical phenomena, and the above discussion of the
cumulant ratio for the ambiguity (1) can be compatible
to the discussion here.
According to the effective model [49], the chiral phase

transition in the Nf ¼ 4 > 2 system is predicted to be the

first-order due to the chiral anomaly in the chiral limit. In
the SC-LQCD with staggered fermions, however, the chiral
anomaly is cancelled out among the species doublers and
therefore missing in the present study. This is the ambiguity
(3), and the anomaly effect may modify the properties of
the TCP/PCR presented in this work. To shed light on this
issue, we need to develop the SC-LQCD formulation with
overlap fermions. We find some pioneering works [50]; it
was argued that a massive flavor-singlet pseudoscaler
meson could appear in SC-LQCD from a Jacobin term
associated with a chirally-covariant transformation of the
path-integral measure over quark fields. This was inter-
preted as a solution to the U(1) problem in the SC-LQCD
context [50]. Thus, the Jacobian term seems to play an
essential role to remedy the anomaly problem in SC-LQCD
but has not been investigated in the literature of finite T
and/or μ (cf., [51]). This should also be the subject studied
in future.
Finally, we estimate the ðTc; μcÞ in physical units by

quoting the lattice spacing scale a−1ðβ ¼ 0Þ ¼ 440 ðMeVÞ
and a−1ðβ ¼ 6Þ ¼ 524 ðMeVÞ from the zero temperature
strong-coupling expansion [46]. In Haar measure MFA, we
find ðTc;μ¼0; μc;T¼0Þ≃ ð550; 242Þ ðMeVÞ in the strong-
coupling limit, and ðTc;μ¼0; μc;T¼0Þ≃ ð200; 321Þ ðMeVÞ
at β ¼ 6. In Weiss MFA, we find ðTc;μ¼0; μc;T¼0Þ≃
ð733; 242Þ ðMeVÞ in the strong-coupling limit, and
ðTc;μ¼0; μc;T¼0Þ≃ ð229; 321Þ ðMeVÞ at β ¼ 6.0. Although
the flavor-chiral structure of the present system differs from
the real-life QCD, it is still interesting that the transition
temperature of SC-LQCD gets closer to the realistic one
TMC
c ¼ 145–195 MeV [3].

E. Haar measure MFA at NNLO

We investigate the phase diagram in the NNLO Haar
measure MFA, where the Oð1=g4Þ terms in the coupling
coefficients (Table III) are considered. We adopt the same
parameter set ðβ; m0Þ ¼ ð4.0; 0.05Þ as that adopted in the
previous work [28]. We investigate the property of the
chiral condensates and the Polyakov loops at intermediate
and high density region: μ ¼ 0.4 and 0.7. We compare the
NNLO phase diagram with the NLO one, and studies the
impact of the NNLO corrections.
In Fig. 14, we show the chiral condensate and Polyakov

loop as a function of T for the lattice coupling β ¼ 4.0. First,
we consider the μ ¼ 0.4 cases. At lowT, the chiral symmetry
is spontaneously broken (σ=Nc ≫ m0 ¼ 0.05, red-solid
line), and the quarks are confined (l ≪ Oð1Þ, blue-solid
line). At high T, the chiral symmetry gets restored up to the
finite bare mass effect (σ=Nc → Oðm0Þ ∼ 0.05), and the
quarks becomes deconfined (l ∼Oð1Þ). The chiral con-
densate rapidly but smoothly decreases with increasing T,
which indicates the chiral crossover rather than the phase
transition. At larger chemical potential μ ¼ 0.7, the chiral
condensate (red-dashed line) is small and comparable to the
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bare quarkmassm0 ¼ 0.05 in allT region, and thus the chiral
crossover is absent.
In Fig. 14, we find the clear difference in the Polyakov

loop l at μ ¼ 0.7 and 0.4; the former (blue-dashed line)
starts increasing even at a tiny (nonzero) temperature where
the latter (blue-solid line) still remains small. This can be
understood in terms of the presence/absence of the sponta-
neous breaking of the chiral symmetry; at μ ¼ 0.4, the
broken chiral symmetry leads to the dynamical quark mass
and suppresses the thermal excitation of the quarks, while
at 0.7, there is no suppression due to the symmetry
restoration. Thus, the relatively large l at low temperature
can be a characteristic feature at high density phase. At
higher T, l at μ ¼ 0.7 becomes comparable with that at
μ ¼ 0.4.
In Fig. 15, we show the chiral susceptibility χσ at β ¼ 4.0

as a function of temperature T for various chemical
potential μ. The peak position of the χσ locates a chiral

crossover and a critical endpoint (CEP). As μ increases
from zero, the peak becomes gradually larger and moves to
the smaller T direction. When the μ reaches around 0.6, the
susceptibility shows a drastic enhancement, which indi-
cates a critical phenomena associated with the CEP. At
larger μ, say 0.7, the system is in the high-density phase
where a peak is not seen for any T.
In Fig. 16, we show the temperature derivative of the

chiral condensate and Polyakov loop as a function of
temperature at μ ¼ 0.4 and 0.7. The lattice coupling β is
fixed at 4.0. At μ ¼ 0.4 (solid lines), the chiral and
deconfinement crossovers almost simultaneously take
place as indicated by their peak positions. This property
has been observed at μ ¼ 0 [28]. Our finding here is that the
locking of the chiral and deconfinement crossovers remains
intact at finite μ as long as the spontaneous symmetry
breaking exists. At μ ¼ 0.7, dðσ=NcÞ=dT (red-dashed line)
shows no signal at any T due to the absence of the chiral
crossover, and the dl=dT (blue-dashed line) tends to lose
peaklike structure.
In our previous studies [28], we have shown that the

NNLO effects to the chiral phase transition/crossover at
μ ¼ 0 are very small. We shall now investigate the impact
of the NNLO effects to the phase diagram including finite
μ. In the left panel of Fig. 17, we show the phase diagram
evolution as a function of β in NNLO Haar measure MFA.
The black points represent the CEP which separates the
chiral crossover region (higher T, blue-solid lines) and the
first-order transition region (lower T, red-solid lines). Due
to the finite coupling effects, the crossover line and the
critical point move in the lower T direction. For compari-
son, we show the counterpart at NLOwithm0 ¼ 0.05 in the
right panel. It is seen that the NNLO phase diagram (left) is
very close to the NLO one (right).
In the end of the subsec. III A, we have mentioned that

the NNLO effects for the quark sector should be included,
particularly in the Haar measure MFA, to be consistent with
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the plaquette-driven Polyakov loop sector with respect to
the order counting of the strong-coupling expansion.
However, the results in this subsection indicate that the
NNLO corrections are tiny in whole region of the phase
diagram. Thus, the NLO results shown in the previous
subsections would be reliable.

IV. SUMMARY

We have investigated the QCD phase diagram in color
SUðNc ¼ 3Þ gauge group at finite temperature T and quark
chemical potential μ by using the strong-coupling expan-
sion of the lattice QCD (SC-LQCD) with one species of
staggered fermion. Our effective potential [28] includes the
LO [Oð1=g0Þ], NLO [Oð1=g2Þ], and NNLO [Oð1=g4Þ]
effects of the strong-coupling expansion in the quark sector,
and the LO effects of Polyakov loop Oð½1=g2�1=TÞ in the
pure gluonic sector. The Polyakov loops are evaluated in
two approximation schemes; a simple mean-field treatment
[Haar measure mean-field approximation (MFA)] and an
improved treatment with fluctuation effects (Weiss MFA).
In this setup, we have investigated the whole structure of
the SC-LQCD phase diagram with a special emphasis on
the Polyakov loops effects.
In both Haar measure and Weiss MFA schemes, the first-

order chiral phase boundary emerges in the low T region
and ends up with the tricritical point (TCP), from which the
second-order chiral phase boundary evolves to the smaller
μ direction with increasing T in the chiral limit (m0 ¼ 0).
The Polyakov loop together with finite β effects strongly
suppresses the critical temperature Tc in the second-order/
crossover region at small μ, while it gives a minor
modification of the first-order phase boundary at larger

μ. As a result, the chiral phase boundary becomes much
closer to the expected one in the real-life QCD as sum-
marized in Fig. 12 (NLO case) and Fig. 17 (left: NNLO,
right NLO). It is also remarkable that the NNLO effects are
subdominant in whole region of the phase diagram.
In both Haar measure MFA and Weiss MFAs, the critical

point (CP) tends to go into low T region with increasing β,
and the second-order chiral phase boundary becomes
dominant. This trend is also reported in the MDP simu-
lations [31,32] and supports the recent MC results based on
the critical surface analysis [48]. However, the trend is
opposite to the anomaly based expectation for Nf ¼ 4 > 2

[49]. The anomaly effects in the staggered fermion for-
malism should be further investigated in the future.
We have investigated thermodynamic quantities, which

is of great interest in the study of EOS of quark matter,
which has however been challenging in SC-LQCD. Our
findings are that a pressure and an interaction measure are
drastically enhanced by Polyakov loop thermal excitations.
We have found some characteristic features of Polyakov

loops at finite μ. At finite μ in the broken phase, the anti-
Polyakov loop l̄ becomes larger than l, which is interpreted
as a screening effect of quarks at equilibrium with net quark
number density. In the chirally symmetric high density
phase, the Polyakov loop becomes relatively large even at
a small temperature, which can be understood from the
absenceof thedynamical quarkmass in the symmetricphase.
We have shown that the chiral and Polyakov loop

susceptibilities ðχσ; χlÞ have their peaks near to each other
in the second-order transition or crossover region. In the
vicinity of the critical point, the peak of the χl rapidly
diminishes. We have found two qualitative differences
between the Weiss and Haar measure MFA on the
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Polyakov loop susceptibilities: First, the peak of χl is more
strongly locked to the chiral phase boundary in Weiss MFA
than the Haar measure MFA case. Second, the Z3 decon-
finement dynamics artificially remains in the Haar measure
MFA and disappears by taking account of the Polyakov
loop fluctuations in Weiss MFA. Our findings are summa-
rized in Fig. 5 (upper, Haar measure MFA result) and Fig. 8
(Weiss MFA result). The above difference results from the
fact that the effective potential of Weiss MFA does not
admit any remnant of the Z3 symmetric structure in sharp
contrast to the Haar measure MFA and many other chiral
effective models [42,43,45]. Thus, the Weiss MFA does not
support the isolated deconfinement transition/crossover
from the chiral phase boundary at large μ.
There are several future directions to be investigated.

First, it is important to evaluate the higher order terms of the
strong-coupling expansion, and/or to invent a resummation
technique to account for the higher orders. From this
viewpoint, we find recent developments for the Polyakov
loop effective potential [52]. Second, it is desirable to
establish the exact evaluation of each order of the strong-
coupling expansion beyond the mean-field approximation
and 1=d expansion. This will be achieved by extending the
MDP works [31,32] to include the higher-order of expan-
sions as well as the Polyakov loop effects. Another method
to go beyond MFA is the Monte-Carlo simulations for the
auxiliary field integrals at each order of the expansion [33].
Third, it is interesting to evaluate the complex phase effect
of Polyakov loops; The susceptibilities associated with the
phase may give a new probe of the QCD phase transition
[53]. And finally, the Weiss MFA results, especially the
quark and Polyakov loop thermal excitations summarized
in Table V, may open a possibility to invent an upgraded
version of the PNJL-type model which more reasonably
describes the interplay between the chiral and deconfine-
ment dynamics.
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APPENDIX: EFFECTIVE POTENTIAL IN
STRONG-COUPLING LATTICE QCD

We briefly review the derivation of the effective potential
Eq. (1) based on our previous papers [27,28]. We start from
the lattice QCD action with one species of staggered
fermion (χ) with a current quark mass (m0) and chemical
potential (μ),

ZLQCD ¼
Z

D½χ; χ̄; Uν�e−SLQCD½χ;χ̄;Uν�; ðA1Þ

SLQCD ¼ SF þ SG þm0

X
x

χ̄xχx; ðA2Þ

where,

SF ¼ 1

2

X
ν;x

½ην;xχ̄xUν;xχxþν̂ − η−1ν;xðH:c:Þ�; ðA3Þ

ην;x ¼ expðμδν0Þð−1Þx0þ���þxν−1 ; ðA4Þ

SG ¼ β
X
P

h
1 −

1

2Nc

h
UP þU†

P

ii
: ðA5Þ

We have employed lattice units a ¼ 1. The Uν;x ∈ SUðNcÞ
and UP¼μν;x ¼ trc½Uμ;xUν;xþμ̂U

†
μ;xþν̂U

†
ν;x� represent the

link- and plaquette-variable, respectively. In the chiral limit
(m0 → 0), the action has the Uχð1Þ chiral symmetry, which
is enhanced to SUðNf ¼ 4Þ in the continuum limit.
There are four main steps to derive the effective potential

from the lattice QCD action (A1) [28]: First, we carry out
the strong-coupling expansion, and integrate out the spatial
link variables in each order. The effective action is obtained
as a function of various hadronic composites. For the
composites including the staggered quarks (χ, χ̄), we take
account of the terms up to Oð1=g6Þ, and extract from them
the leading order terms of the 1=d expansionOð1=d0Þ [54].
For the pure gluonic composites, we take account
of the leading order contributions to the Polyakov-loop
[Oð1=g2NτÞ, Nτ: lattice temporal extension]. The hadronic
composites are summarized in Table I, and the effective
action is expressed by using these composites,

Seff ¼ SNNLOeff þ SPoleff ; ðA6Þ

TABLE I. The hadronic composites which appears after the
spatial link integrals.

Symbol Composites

Mx χ̄xχx
ðVþ

x ; V−
x Þ ðχ̄xeμU0;xχxþ0̂; χ̄xþ0̂e

−μU†
0;xχxÞ

ðWþ
x ;W−

x Þ ðχ̄xe2μU0;xU0;xþ0̂χxþ20̂; χ̄xþ20̂e
−2μU†

0;xþ0̂
U†

0;xχxÞ
Lp;x trc½

Q
τU0;xτ�=Nc
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with

SPoleff ¼ −N2
c

�
1

g2Nc

�
Nτ¼1=TX

j;x

½L̄p;xLp;xþĵ þ H:c:�; ðA7Þ

and

SNNLOeff ¼
X
x

1

2
ðVþ

x −V−
x Þ þ

X
x;j>0

�
−
bσ
2d

½MM�j;x

þ βτ
4d

½VþV− þV−Vþ�j;x −
X

k>0;k≠j

βs½MMMM�jk;x
2dðd− 1Þ

−
βττ
2d

½WþW− þW−Wþ�j;x

þ
X
jkj≠j

� X
jkj;jlj>0;

jlj≠j;jlj≠jkj

−βss½MMMM�jk;x½MM�j;xþl̂

4dðd− 1Þðd− 2Þ

þ βτs½VþV− þV−Vþ�j;x
8dðd− 1Þ

× ð½MM�j;xþk̂ þ ½MM�j;xþk̂þ0̂Þ
��

: ðA8Þ

We have introduced a short-hand notation

½AB�j;x ¼ AxBxþĵ; ðA9Þ

½ABCD�jk;x ¼ AxBxþĵCxþĵþk̂Dxþk̂; ðA10Þ

and the couplings β��� in Eq. (A8) are summarized in
Table III.
Second, we introduce the auxiliary fields for the had-

ronic composites to bosonize the effective action SNNLOeff ,
and perform the static mean-field and saddle-point approx-
imations. The auxiliary fields are summarized in Table II,
and the SNNLOeff reduces into

SNNLOeff ≃ SFeff þ SXeff ; ðA11Þ

where

SFeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ZþZ−

p X
xy

χ̄xG−1
xy ð ~mq; ~μÞχy; ðA12Þ

G−1
xy ð ~mq; ~μÞ ¼ ~mqδxy þ

δxy
2

½e~μU0;xδxþ0̂;y − e− ~μU†
0;xδx−0̂;y�;

ðA13Þ

SXeff ¼ NτNd
s

h
b0σσ2 þ

1

2
β0τψ̄ τψτ þ

1

2
β0sψ̄ sψ s

þ βττψ̄ ττψττ þ βssψ̄ ssψ ss þ
1

2
βτsψ̄ τsψτs

i
: ðA14Þ

Here, the dynamical quark mass ~mq, the shifted quark
chemical potential ~μ, and the wave function renormaliza-
tion factor

ffiffiffiffiffiffiffiffiffiffiffiffi
ZþZ−

p
are summarized in Table IV, and the

NtðsÞ represents the temporal (spatial) lattice extension.
Third, we carry out the Gaussian integral over the

staggered quarks ðχ; χ̄Þ in Eq. (A12) in the antiperiodic
boundary condition. The resultant quark determinant at
finite T is then calculated by using the Matsubara method in
the Polyakov gauge for temporal link variables [41],

TABLE II. The auxiliary field Φ and ðl; l̄Þ See also Table I.

Symbol Mean Fields Contents

σ −hMi
ðψ̄ ττ;ψττÞ ðhWþi; hW−iÞ
ðψ̄ ss;ψssÞ ðhMMi; hMMMMiÞ
ðψ̄ τs;ψτsÞ ð−hVþV−i; 2hMMiÞ
ðψ̄ τ;ψτÞ ð−hVþi; hV−iÞ
ðψ̄ s;ψ sÞ ðhMMi; hMMiÞ
ðl; l̄Þ ðhLpi; hL̄piÞ

TABLE III. The coupling coefficients appearing in the effective
action/potential. Here, g, Nc ¼ 3, and d ¼ 3 represents the gauge
coupling, number of color, and spatial dimension, respectively.
See Table II for the auxiliary fields ðψ ���; ψ̄ ���Þ.
Symbol Definition

bσ d=ð2NcÞ
βt ðd=ðN2

cg2ÞÞ · ð1þ 1=ð2g2ÞÞ
βs ðdðd − 1Þ=ð8N4

cg2ÞÞ · ð1þ 1=ð2g2ÞÞ
b0σ bσ þ 2½βssψ ss þ βτsψ̄ τs þ β0sðψ s þ ψ̄sÞ�
β0t βt þ βτsψτs

β0s βs þ 2βssψ̄ ss

βττ d=ð2N3
cg4Þ

βss dðd − 1Þðd − 2Þ=ð16N7
cg4Þ

βτs dðd − 1Þ=ð2N5
cg4Þ

TABLE IV. Quantities which govern the property of the
effective potential. See Table III for the couplings ðb0σ ; β0τ; βττÞ
and Table II for the auxiliary fields ðσ;ψτ; ψ̄ τ;ψττ; ψ̄ ττÞ.
Symbol Definition Meanings

~mq m0
q=

ffiffiffiffiffiffiffiffiffiffiffiffi
ZþZ−

p
Dynamical quark mass

m0
q ¼ b0σσ þm0

−βττðψ̄ ττ þ ψττÞffiffiffiffiffiffiffiffiffiffiffiffi
ZþZ−

p
Zþ ¼ 1þ β0τψ̄ τ Wave function
þ 4βττm0

qψ̄ ττ Renormalization factor
Z− ¼ 1þ β0τψτ

þ 4βττm0
qψττ

Eq sinh−1 ~mq Quark excitation energy
~μ μ − log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zþ=Z−

p
Shifted chemical potential
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Z
D½χ; χ̄�e−SFeff ¼

Y
x

½eNcðlog
ffiffiffiffiffiffiffiffiffi
ZþZ−

p
þEqÞ=T

× detc½ð1þ NcLp;xe−ðEq− ~μÞ=TÞ
× ð1þ NcL̄p;xe−ðEqþ~μÞ=TÞ��; ðA15Þ

with Eq ¼ sinh−1 ~mq. Temperature T is now considered as a
continuous valued number (see the Appendix in Ref. [24] for
details). The Polyakov loop Lp;x has appeared in the deter-
minant via the quark hopping wrapping around the temporal
direction in addition to the Plaquette effects Eq. (A7).
Finally, we evaluate the Lp;x effects in the path integral

over the temporal link variable U0 in two approximation
schemes: Haar measure and Weiss MFA. In the former, we
replace the Polyakov loop Lp;x contained in Eq. (A7)
and (A15) as well as the Haar measure of the U0 path
integral with a constantmean-field ðl; l̄Þ instead of perform-
ing the U0 path integral. In the latter, we introduce a mean-
field ðl; l̄Þ via the extended Hubbard-Stratonovich trans-
formation [25] in Eq. (A7), and exactly carry out theU0 path
integral to include the fluctuation effects from ðl; l̄Þ [28].
As a result, we obtain the effective potential

FH=W
eff ðΦ;l; l̄; β; m0; T; μÞ
¼ FXðΦ; βÞ þ FH=W

det ðΦ; β; m0; T; μÞ
þ FH=W

P ðl; l̄; β; TÞ þOð1=g6; 1=
ffiffiffi
d

p
Þ: ðA16Þ

The auxiliary field term is given by Eq. (A14) and is
common in both Haar measure MFA and Weiss MFA,

FXðΦ; βÞ ¼ SXeff=ðNtN3
sÞ: ðA17Þ

The quark determinant and the Polyakov loop effects are
given as

FH
det ¼ −NcEq − Nc log

ffiffiffiffiffiffiffiffiffiffiffiffi
ZþZ−

p
− TðlogRqðEq − ~μ;l; l̄Þ þ logRqðEq þ ~μ; l̄;lÞÞ;

ðA18Þ
Rqðx; y; ȳÞ≡ 1þ Ncðye−x=T þ ȳe−2x=TÞ þ e−3x=T

FH
P ¼ −2TdN2

c

�
1

g2Nc

�
1=T

l̄l − T logRHaarðl; l̄Þ;

ðA19Þ
RHaarðl; l̄Þ≡ 1 − 6l̄l − 3ðl̄lÞ2 þ 4ðlNc þ l̄NcÞ; ðA20Þ
in Haar measure MFA case, and

FW
P þ FW

det ¼ 2TdN2
c

�
1

g2Nc

�
1=T

l̄l

− T log

�X
I

QIðΦÞPIðl; l̄Þ
�
; ðA21Þ

PIðl; l̄Þ ¼
X∞
n¼−∞

� ffiffiffiffiffiffiffiffi
l=l̄

q �
−NcnþNI

Q
PI

n

� ffiffiffiffiffiffi
ll̄

p �
; ðA22Þ

in Weiss MFA case. In Eqs. (A21) and (A22), the index I
labels a pattern of thermal excitations of the quark
composites, and the fermionic thermal excitation effects
QI , the Polyakov loop thermal excitation effects PI

n, and
the quark number index NI

Q are summarized in Table V.
As indicated in Eq. (A19) and (A21), the Z3 symmetric

term remains in the Haar measure MFA, but not in the
Weiss MFA up to the first l̄l term. In the latter, the path
integral over the temporal link variable U0 which accounts
for the summation over the Polyakov loop fluctuations
spoils the Z3 symmetry in the presence of the dynamical
quarks. In heavy quark mass limit m0 → ∞, the Z3

symmetry recovers in the Weiss MFA as follows: In
the effective potential of Weiss MFA, the factor

ð
ffiffiffiffiffiffiffiffi
l=l̄

p
Þ−NcnþNI

Q in Eq. (A22) gives a unique source of
the explicit Z3 symmetry breaking (ðl; l̄Þ → ðΩl;Ω−1l̄Þ,
Ω ∈ Z3). For m0 → ∞ or equivalently Eq ≫ T, μ, the three
mesonic thermal excitation QI¼MMM in Table V becomes
dominant, and it does not carry the quark number
NI¼MMM

Q ¼ 0. Therefore, the Eq. (11) reduces to

FW
P þ FW

det ¼ 2TdN2
c

�
1

g2Nc

�
1=T

l̄l − T log

�
QI¼MMMðΦÞ

×
X∞
n¼−∞

� ffiffiffiffiffiffiffiffi
l=l̄

q �
−Ncn

PI¼MMM
n

� ffiffiffiffiffiffi
ll̄

p ��
:

ðA23Þ

This expression is invariant under the Z3 transformation,
ðl;l̄Þ→ðΩl;Ω−1l̄Þwith the propertyΩNcn ¼ 1 forNc ¼ 3.
Finally, we consider the confinement limit (l; l̄ → 0) in

the Weiss MFA. The quark determinant effect (A21)
includes the Polyakov loop thermal excitation PI

n, which
are solely characterized by the nth-order modified Bessel
functions as shown in Table V. In the limit (l, l̄ → 0), the
0th-order modified Bessel function remains finite
(I0ðx→0Þ¼1) while the others vanish (In≠0ðx→0Þ¼0).
Consequently, the only thermal excitations which carry the
quark number 0 and �3 survives in Table V, and the
effective potential reduces into the one which we have
derived in our previous work [25],

FW
effðΦ;l; l̄; β; m0; T; μÞjl;l̄¼0

→ FNLO
eff ðΦ; β; m0; T; μÞ ¼ FXðΦ; βÞ

− T log

��
2 cosh

Eq

T

�
Nc

− 4 cosh
Eq

T
þ 2 cosh

Nc ~μ

T

�
:

ðA24Þ
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