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We propose a theoretical idea to use an ultracold Fermi gas as a quantum simulator for the study of the
low-density region of a neutron-star interior. Our idea is different from the standard quantum simulator that heads
for perfect replication of another system, such as the Hubbard model discussed in high-Tc cuprates. Instead, we use
the similarity between two systems and theoretically make up for the difference between them. That is, (1) we first
show that the strong-coupling theory developed by Nozières and Schmitt–Rink (NSR) can quantitatively explain
the recent experiment on the equation of state (EoS) in a 6Li superfluid Fermi gas in the BCS (Bardeen–Cooper–
Schrieffer) unitary limit far below the superfluid phase-transition temperature Tc. This region is considered to be
very similar to the low-density region (crust regime) of a neutron star (where a nearly unitary s-wave neutron
superfluid is expected). (2) We then theoretically compensate the difference that, while the effective range reff is
negligibly small in a superfluid 6Li Fermi gas, it cannot be ignored (reff = 2.7 fm) in a neutron star, by extending
the NSR theory to include effects of reff . The calculated EoS when reff = 2.7 fm is shown to agree well with
the previous neutron-star EoS in the low-density region predicted in nuclear physics. Our idea indicates that
an ultracold atomic gas may more flexibly be used as a quantum simulator for the study of other complicated
quantum many-body systems, when we use not only the experimental high tunability, but also the recent theoretical
development in this field. Since it is difficult to directly observe a neutron-star interior, our idea would provide a
useful approach to the exploration for this mysterious astronomical object.

DOI: 10.1103/PhysRevA.97.013601

I. INTRODUCTION

In cold-atom physics, the high-tunability of this sys-
tem [1,2] has realized various interesting quantum phenom-
ena. One example is the Bardeen–Cooper–Schrieffer Bose–
Einstein condensation (BCS-BEC) crossover phenomenon in
40K [3] and 6Li [4–6] Fermi gases, where the character of
a Fermi superfluid continuously changes from the weak-
coupling BCS-type to the BEC of tightly bound molecules
[7–14] upon increasing the strength of a pairing interaction
by adjusting the threshold energy of a Feshbach resonance
[2]. Another example is a 87Rb Bose gas loaded on an
optical lattice, where the superfluid-Mott insulator transition
has been realized by tuning the atomic hopping parame-
ter between lattice sites, by adjusting the height of lattice
potential [1,15,16].

The high tunability of ultracold atomic gases has also made
us expect the usage of this system as a “quantum simulator” for
the study of other complicated quantum many-body systems
[17]; however, this exciting attempt has not yet reached its
full potential. For example, although similarity between an
ultracold Fermi gas loaded on a two-dimensional optical lattice
and high-Tc cuprates [18] has been pointed out [19], the current
experimental achievement is still at the s-wave pairing state in
the case of a very shallow three-dimensional optical lattice
[20,21] (which cannot be described by the Hubbard model).
The recent extensive experimental efforts have enabled us
to precisely measure various physical quantities in ultracold

gases [22–31]. Thus, when an ultracold atomic gas works as
a quantum simulator for another system, the high tunability,
as well as these sophisticated experimental techniques, would
contribute to understanding this target system. This success
would also give feedback to cold-atom physics, to accelerate
the further development of this field.

In this paper, as a promising target of a quantum simulator
made of an ultracold Fermi gas, we theoretically investigate
the low-density crust regime of a neutron star. A neutron star
is much smaller than Earth (the radius R is about 10 km),
but the mass is comparable to the solar mass M�, so that
it is considered as the densest matter in our universe [32].
A few meters below the surface (mostly made of iron) of
this massive star, matter becomes so compressed that atoms
are fully ionized. As we go deeper into the star, neutrons
drip from nuclei, and the beta-equilibrium condition leads
to a large increase in neutron density. In this so-called crust
regime, although protons and electrons still exist, more than
90% of particles are expected to be neutrons, which are in the
superfluid phase [32–35]. This neutron superfluid has attracted
much attention because it is considered to be related to various
interesting problems, such as the glitch phenomenon in rotating
pulsars [36], as well as the cooling of neutron stars [34,37].

In addition to these topics, we note that the recent discovery
of the massive neutron star PSR J1614-2230 [with mass
M = (1.97 ± 0.04)M�] using the Shapiro delay [38], along
with the later discovery of PSR J0348 + 0342 [M = (2.01 ±
0.04)M�] [39], has spurred a heated debate about the internal
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structure of this mysterious star. This problem is sometimes
referred to as the “two-solar-mass” problem in the literature
[38,40–42] and is one of the hottest topics in neutron-star
physics.

To resolve this debate, a crucial key is the neutron-star
equation of state (EoS). This is because, once it is fixed,
together with the Tolman–Oppenheimer–Volkoff (TOV) equa-
tion [43,44], we can obtain the so-called M−R relation [45],
linking the neutron-star mass M and its radius R, which also
gives the upper limit of the neutron-star mass. However, the
determination of the EoS by astronomical observations is
difficult, because even the known nearest neutron star (RX
J1856.5-3754) is about 400 lightyears away from Earth [46].
Although neutron skins [47,48] and hallows [49,50] in neutron-
rich nuclei give information about neutron matter, it is still
not enough to construct the neutron-star EoS, including the
many-body effects associated with a strong neutron-neutron
interaction [33]. As a result, the current approach to the
neutron-star EoS has to strongly rely on theory [51–54]. Of
course, this approach is partially supported by experiment, be-
cause it employs a pseudopotential describing neutron-neutron
interactions which can reproduce few-body scattering data
obtained from terrestrial experiments [51–55]. However, since
the system in question is a strongly interacting many-body
system, many-body effects are expected to play important roles
in a neutron-star interior. In the current approach, inclusion of
these is a fully theoretical challenge. Thus, when cold-Fermi-
gas physics can help this to some extent, it would impact
neutron-star physics.

In this paper, to see to what extent an ultracold Fermi gas
works as a quantum simulator for the study of a neutron star, we
pick up the neutron-star EoS in the low-density-crust regime.
Regarding this, to explain our strategy, we recall the following
three key issues:

(i) The EoS has recently been measured with very high
precision in the BCS-unitary regime of a 6Li superfluid Fermi
gas far below the superfluid phase-transition temperature Tc

[30]. In this experiment, the scaled s-wave pairing interaction
(kFas)−1 is tuned by adjusting the s-wave scattering length
as by using a Feshbach resonance [2] (where kF is the Fermi
momentum).

(ii) In the low-density regime of a neutron-star interior,
neutron-rich nuclei are surrounded by drip neutrons and
electrons in the inner crust, and neutron matter with a small
fraction of protons and electrons makes the outer core. Thus,
the property of pure neutron matter is decisive in these regions.
In addition, in the low-density region where n <∼ ρ0 (which cor-
responds to the inner crust), the dominant interaction between
neutrons is of an attractive s-wave type [56], with the scattering
length as = −18.5 fm [57,58]. Although this value is fixed
in the neutron-star case, the scaled interaction (kFas)−1(<0)
varies to approach zero as one goes deeper into the star.
[Note that the Fermi momentum kF = (3π2n)1/3 becomes large
with increasing the density n]. The typical magnitude kF =
1 fm−1 in this regime gives (kFas)−1 = −0.054, indicating
that the system is close to the unitarity limit. Since the interior
temperature is considered to be much lower than the Fermi
temperature TF (except just after the birth of a neutron star),
neutrons are expected to be in the strongly interacting s-wave
superfluid state far below Tc [33].
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FIG. 1. Phase diagram of an ultracold Fermi gas in the BCS-BEC
crossover region. “A” is the region where we can use for the study of
neutron-star EoS in the low-density region. In this region, approaching
the unitarity limit in the case of an ultracold Fermi gas corresponds
to the increase of neutron density as one goes into a neutron-star
interior. In this phase diagram, the interaction strength is measured
in terms of the inverse s-wave scattering length a−1

s , normalized by
the Fermi momentum kF. The temperature is normalized by the Fermi
temperature TF.

(iii) In 6Li and 40K Fermi atomic gases, the effective range
reff [59] is negligibly small, so that the scaled interaction
(kFas)−1 is the only relevant interaction parameter. However,
this is not the case for interacting neutrons, where the effective
range reff = 2.7 fm [60] cannot be ignored, because it is
comparable to the typical value k−1

F ∼ 1 fm of the inverse
Fermi momentum even in the inner crust.

Among these keys, (i) and (ii) indicate that the recent
experimental achievement [30] in cold-Fermi-gas physics has
already provided very useful information about the low-density
region of a neutron-star interior (where the system properties
are dominated by s-wave superfluid neutrons). The density-
dependent (or radius-dependent) interaction strength (kFas)−1

in the latter can be simulated by the tunable interaction
associated with a Feshbach resonance in the former [2]. A
crucial difference between the two is the importance of the
effective range reff = 2.7 fm in the latter as mentioned in (iii).
In this regard, it is difficult to modify the observed EoS data in
a 6Li superfluid Fermi gas [30], so as to include the nonzero
effective range reff = 2.7 fm. Although there have been some
theoretical investigations of the effects of the effective range
on the physical properties of an ultracold Fermi gas, their
experimental realization has not been achieved yet [61,62].

To effectively use the similarity between (i) and (ii) to
overcome the difference (iii), we take the following strategy
in this paper: (1) We first deal with a superfluid Fermi gas in
the BCS-unitarity limit shown as “A” in Fig. 1 to theoretically
explain the observed EoS in a 6Li superfluid Fermi gas [30] in
a quantitative manner. For this purpose, we employ the strong-
coupling theory developed by Nozières and Schmitt–Rink
(NSR) [9]. (2) We then extend the NSR theory so that it can treat
the effective range reff to evaluate the EoS in the low-density
region of a neutron-star interior in region “A” in Fig. 1.
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The advantage of our approach is that one can experimen-
tally check theoretical calculations up to the inclusion of many-
body strong-coupling effects (within the vanishing effective
range). Thus, the ambiguity about the inclusion of many-body
effects due to approximate theoretical calculations would be
more suppressed than the previous approaches [51–54] (where
experimental support is only within few-body physics) [55].

Of course, besides this advantage, one should also keep
in mind the limitation of the quantum simulator made of an
ultracold Fermi gas for the study of neutron-star physics.
First, as mentioned previously, although neutrons are domi-
nant particles in the crust regime, protons and electrons also
exist there. In this sense, the current “Fermi-gas quantum
simulator” can only treat the neutron-fluid component among
them. Second, at this stage, this quantum simulator can only
examine many-body effects associated with the simplest two-
body s-wave interaction. Because of this limitation, it cannot
be applied to the deeper interior of the neutron-star than
the crust regime, where more complicated interactions than
the s-wave interaction, such as p-wave-pairing interactions
and three-body forces, become essentially important [63–65].
Thus, although this paper picks up the neutron-star EoS in the
crust regime to assess to what extent an ultracold superfluid
Fermi gas can simulate this regime, this approach cannot
construct the complete EoS of a neutron star, which is still
insufficient for the two-solar-mass problem. Regarding this,
we briefly note that, in cold-atom physics, a tunable p-wave
interaction associated with a p-wave Feshbach resonance has
been realized [66,67]. In addition, a three-body interaction
effect has also been discussed in, for example, the so-called
Bose nova phenomenon [68]. Thus, one might be able to use
these experimental techniques developed in cold-atom physics
for the study of the deeper region of the neutron-star interior
in the near future.

We note that the study of quantum simulator in cold-atom
physics has so far mainly aimed to experimentally replicate
another system by using the high-tunability of atomic gases
[17,19]. In this sense, our approach (which uses both theory
and experiment to describe a neutron-star interior) is somehow
different from this standard one. Regarding this, we point out
that a recent theoretical development in cold-Fermi-gas physics
has enabled us to quantitatively compare calculated results
with various experimental data in the BCS-BEC-crossover
region. Since even highly tunable cold atomic gases are still
difficult to replicate all other quantum systems, it would be
useful to also use this theoretical development, along with
the experimental high tunability. Indeed, we will demonstrate
that this combined approach gives the EoS being consis-
tent with the previous neutron-star EoS in the low-density
region.

This paper is organized as follows: In Sec. II, we extend
the strong-coupling NSR theory to the case with reff �= 0. In
Sec. III, setting reff = 0, we confirm that the NSR theory can
quantitatively explain the recent experiment on the internal
energy E in the unitary regime of a 6Li superfluid Fermi gas
[30]. We then proceed to the case with reff �= 0, to examine
how the EoS is affected by this quantity. Setting reff = 2.7 fm
[60], we calculate the neutron-star EoS in the low-density
region. Throughout this paper, we set h̄ = kB = 1, and the
system volume V is taken to be unity, for simplicity.

II. FORMULATION

We consider a two-component uniform Fermi system,
described by the Hamiltonian,

H =
∑
p,σ

ξ pc
†
p,σ c p,σ −

∑
p, p′,q

U ( p − p′)c†p+q/2,↑

× c
†
− p+q/2,↓c− p′+q/2,↓c p′+q/2,↑, (1)

where c p,σ is the annihilation operator of a Fermi particle
with spin σ =↑ , ↓. While these are real spin states in the
case of a neutron fluid, they represent pseudospins describing
two atomic hyperfine states in an ultracold Fermi gas. In
Eq. (1), ξ p = ε p − μ = p2/(2m) − μ is the kinetic energy
of a fermion, measured from the Fermi chemical potential μ,
where m is a particle mass. −U ( p − p′) (<0) is an attractive
interaction between fermions. We assume that the system is in
the s-wave superfluid state by this pairing interaction.

In this paper, we include fluctuations in the Cooper channel
within the framework of the strong-coupling theory developed
by Nozières and Schmitt–Rink (NSR) [9], extended to the
superfluid phase below Tc [10,69,70]. For this purpose, it is
convenient to divide the model Hamiltonian in Eq. (1) into the
sum H = HMF + HFL of the mean-field BCS part HMF and the
fluctuation part HFL. The former is written as

HMF =
∑

p

�̂†
p[ξ̃pτ3 − 	 pτ1]�̂ p +

∑
p

ξ̃p + 1

4
U (0)N2

MF

+
∑
p, p′

U ( p − p′)〈c†p,↑c
†
− p,↓〉〈c− p′,↓c p′,↑〉 (2)

in the two-component Nambu representation [71].
Here,

�̂ p =
(

c p,↑

c
†
− p,↓

)
(3)

is the Nambu field acting on particle-hole space, and
τj (j = 1,2,3) are Pauli matrices. The kinetic energy ξ̃ p =
ξ p − U (0)NMF/2 in Eq. (2) involves the Hartree energy
−U (0)NMF/2, where

NMF =
∑
p,σ

〈c†p,σ c p,σ 〉 =
∑

p

[
1 − ξ̃ p

E p
tanh

E p

2T

]
. (4)

The BCS superfluid order parameter,

	 p =
∑

p′
U ( p − p′)〈c†p,↑c

†
− p,↓〉

=
∑

p′
U ( p − p′)

	 p′

2E p′
tanh

E p′

2T
, (5)

is taken to be real and to be proportional to the τ1 com-
ponent in Eq. (2), without loss of generality, where E p =
(ξ̃ 2

p + 	2
p)1/2 describes the Bogoliubov single-particle exci-

tations. We briefly note that the statistical average 〈· · ·〉 in
Eqs. (4) and (5) is taken for the BCS Hamiltonian HMF in
Eq. (2) [69,70].

To describe the s-wave superfluid state, we formally decom-
posed the interaction potential U ( p − p′) into the partial-wave
components, expressing it as the sum of the s-wave chan-
nel [Us( p, p′)], p-wave channel [Up( p, p′)], d-wave channel
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[Ud ( p, p′)], and so on. Among these, only the s-wave channel
survives in the low-momentum limit, so that one finds U (0) =
Us(0,0). Assuming that the s-wave interaction is the strongest
in the low-density region which we are considering, we only
retain this contribution in the gap equation (5). Then, effects
of the effective range reff can be incorporated into the theory
by assuming the separable form [9,72],

Us( p, p′) = U (0)γ pγ p′ , (6)

where the basis function γ p has the s-wave pairing symmetry,
but has the following momentum dependence:

γ p = 1√
1 + (p/pc)2

. (7)

Although the choice of basis function γ p in Eq. (7) is not
unique, an advantage of this choice is that the effective range
theory becomes exact, when the cutoff momentum pc is taken
as

pc = 1

reff

[
1 +

√
1 − 2reff

as

]
. (8)

We explain the derivation of Eq. (8) in Appendix A. Here, as
usual, the s-wave scattering length as is related to U (0) as

4πas

m
= − U (0)

1 − U (0)
∑

p
γ 2

p

2ε p

. (9)

Only retaining the s-wave component in Eq. (6), we find that
the superfluid order parameter 	 p in Eq. (5) has the form 	 p =
γ p	, where 	 obeys

1 = U (0)
∑

p

γ 2
p

2E p
tanh

E p

2T

= −4πas

m

∑
p

γ 2
p

[
1

2E p
tanh

E p

2T
− 1

2ε p

]
. (10)

In the case of a superfluid Fermi gas, where the effective range
reff is negligibly small, one usually takes pc = ∞, or γ p = 1
in Eq. (10). In the neutron-star case, on the other hand, the
empirical parameter set (as,reff ) = (−18.5 fm,2.7 fm) gives
pc = 0.79 fm−1. This implies that effects of the nonvanishing
effective range become important when the density increases
to reach kF � pc ∼ 1 fm−1.

Using Eq. (6), we can write the BCS Hamiltonian in Eq. (2)
as

HMF =
∑

p

�̂†
p[ξ̃pτ3 − 	 pτ1]�̂ p +

∑
p

[
ξ̃p + 	2

p

U (0)

]

+ 1

4
U (0)N2

MF. (11)

The Hamiltonian HFL describing fluctuations in the Cooper
channel is given by [69,70,73]

HFL = −U (0)

2

∑
q

[
ρ1(q)ρ1(−q) + ρ2(q)ρ2(−q)

]
, (12)

ΩSF = + +...Us(p,p’)

τi τj
Πij

τi τj
τj

τj
τi

τi

τk τk

FIG. 2. Fluctuation correction �FL to the thermodynamic poten-
tial � in the NSR theory. The solid line and the dashed line describe
the 2 × 2 matrix single-particle BCS Green’s function in Eq. (17),
and the s-wave pairing interaction Us( p, p′) in Eq. (6), respectively.
�ij is the pair-correlation function in Eq. (16). The solid circle is a
Pauli matrix τj .

where

ρj (q) =
∑

p

γ p�̂
†
p+q/2τj �̂ p−q/2 (j = 1,2) (13)

are the generalized density operators [69,70]. Since we are
taking the superfluid order parameter 	 p as being parallel to
the τ1 component [see Eq. (2)], ρ1(q) and ρ2(q) physically
describe amplitude and phase fluctuations of the superfluid
order parameter, respectively.

We note that, in the cases of 40K and 6Li superfluid Fermi
gases [3–6], the s-wave pairing interaction is dominant, so
that Eq. (13) is enough to examine fluctuation corrections to
system properties in the BCS-BEC crossover region. In the
neutron-star case, on the other hand, non-s-wave interactions,
such as the p-wave one, gradually appear with increasing
neutron density [33], even in the low-density region where
neutrons are in the s-wave superfluid state. To describe this
situation, one may also add corresponding fluctuation terms
to HFL in Eq. (12) [72]. However, in the current stage of
cold-Fermi-gas physics, it is difficult to experimentally deal
with such a situation. As a result, one cannot experimentally
check the calculated EoS involving such non-s-wave strong-
coupling effects. Thus, leaving the inclusion of non-s-wave
fluctuation corrections to EoS as a future problem, we only
take into account s-wave superfluid fluctuations described by
Eq. (12) in this paper.

In the NSR theory [9], the thermodynamic potential � =
�MF + �FL consists of the ordinary mean-field BCS part,

�MF = −T ln [Tr[e−HMF/T ]]

= −2T
∑

p

{ln[1 + e−E p/T ] + ξ̃p − E p}

+ 	2

U (0)
+ 1

4
U (0)N2

MF, (14)

and the fluctuation term �FL which is diagrammatically given
in Fig. 2. Summing up these diagrams, we have

�FL = T

2

∑
q,iνn

Tr[ln[1 + U (0)�̂(q,iνn)] − U (0)�̂(q,iνn)],

(15)
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where νn is the boson Matsubara frequency. �̂ = {�ij } is the
2 × 2 matrix pair correlation function, where

�ij (q,iνn) = T
∑
p,iωn

γ 2
pTr[τiĜ( p + q,iωn

+ iνn)τj Ĝ( p,iωn)]. (16)

Here,

Ĝ( p,iωn) = 1

iωn − ξ̃ pτ3 + γ p	τ1
(17)

is the 2 × 2 matrix single-particle thermal Green’s function
in the mean-field BCS level [71]. In Eq. (16), �11(q,iνn)
and �22(q,iνn) physically describe amplitude and phase
fluctuations of the superfluid order parameter 	 p = γ p	.
�12(q,iνn) [= − �21(q,iνn)] represents coupling between the
two fluctuations [73].

In the NSR approach, the superfluid order parameter 	 p =
γ p	 and the Fermi chemical potentialμ are determined by self-
consistently solving the gap equation (10), together with the
equation for the total number N of fermions, which is obtained
from the thermodynamic identity

N = −
(

∂�

∂μ

)
T

= NMF + NFL. (18)

The mean-field contribution NMF = −(∂�MF/∂μ)T is given in
Eq. (4). For the fluctuation correction NFL = −(∂�FL/∂μ)T ,
noting that �FL depends on μ only through the effective
chemical potential μ∗ = μ + U (0)NMF/2 [74], we find

NFL = −α

(
∂�FL

∂μ∗

)
T

, (19)

where

α = 1

1 − 1
2U (0)

(
∂NMF
∂μ∗

)
T

(20)

is the Stoner factor for the density response function [75]. For
the derivation of Eq. (19), see Appendix B.

Once 	 and μ are determined from the combined gap
equation (10) with the number equation (18), the internal
energy E (or EoS) can be evaluated from � = �MF + �FL

by way of the thermodynamic relation

E = � − T

(
∂�

∂T

)
μ

− μ

(
∂�

∂μ

)
T

. (21)

When we conveniently divide the internal energy E = EMF +
EFL into the the mean-field part EMF and the fluctuations
contribution EFL, each component is given by

EMF =
∑

p

[E pf (E p) + ξ̃p − E p] + 	2

U (0)

+ 1

4
U (0)N2

MF + μNMF, (22)

EFL = �FL − T

(
∂�FL

∂T

)
μ

+ μNFL, (23)

where f (x) is the Fermi distribution function.

The ordinary NSR formalism discussed in cold-Fermi-gas
physics [70] is immediately recovered, when we set reff → 0
(which leads to pc → ∞ and γ p → 1). Indeed, this limiting
condition gives U (0) → 0 [see Eq. (9)], so that the Stoner
factor α in Eq. (20) is reduced to unity. In addition, the
Hartree term in ξ̃ p = ξ p − U (0)NMF/2, as well as the Hartree
correction U (0)N2

MF/4 in Eqs. (14) and (22) vanish. Although
the term 	2/U (0) appearing in these equations seems to di-
verge, this singularity is actually canceled out by the diverging
behavior of the term

∑
p[ξ p − E p] in these equations, because

∑
p

[ξ p − E p] + 	2

U (0)
=

∑
p

[
ξ p − E p − 	2

2ε p

]
+ m

4πas

	2,

(24)

where we have used Eq. (9) in the first expression.
Before ending this section, we comment on our numerical

calculations. Although we are interested in the EoS in the
ground state, we take T/TF = 0.01 (�1) for computational
simplicity. We briefly note that this value is much smaller than
Tc/TF ∼ 0.2 in the interesting unitary regime. We have also nu-
merically confirmed that almost the same results are obtained
in the region T/TF = [0.005,0.06]. In considering a superfluid
Fermi atomic gas, we set reff = 0, and the internal energy is
normalized by the ground-state energy EG = (3/5)NεF of a
free Fermi gas, where εF is the Fermi energy. In the neutron-star
case, we take (as,reff ) = (−18.5 fm,2.7 fm). In this case,
following the convention, we measure EoS in unit of MeV, by
using the neutron mass m = 936 MeV/c2 (where c the speed
of light).

III. EQUATION OF STATE OF A NEUTRON STAR IN
LOW-DENSITY REGION

As mentioned previously, our approach consists of two
steps, which we check one by one in this section.

A. Step 1: Assessment of Nozières and Schmitt–Rink
theory when reff = 0

Figure 3(a) shows the calculated EoS when reff = 0. While
the mean-field-based BCS-Leggett theory overestimates the
internal energy E, NSR theory well explains the recent exper-
iment on a 6Li superfluid Fermi gas far below Tc, as well as a
Monte Carlo simulation [76]. This indicates that, at least in the
absence of the effective range, the NSR theory can correctly
include strong-coupling corrections to the EoS, beyond the
mean-field level [77].

For completeness, we show in Figs. 3(b) and 3(c) the basic
data set (μ,	) that are used in evaluating the internal energy
E in Fig. 3(a). We again find that the NSR results agree well
with the recent experiments [30,31], as well as a Monte Carlo
simulation [76]. On the other hand, the BCS-Leggett theory
overestimates these quantities.

B. Step 2: Application to neutron-star equation
of state (reff = 2.7 fm)

Building on the result in Step 1, we now apply the same
NSR theory to the low-density region of a neutron-star interior
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FIG. 3. (a) Calculated internal energy E in the BCS-unitary
regime of a superfluid Fermi gas (reff = 0) at T/TF = 0.01 (“NSR”).
The dotted line shows the result in the BCS-Leggett strong-coupling
theory [8]. “DMC” and “AFMC” show results by diffusion Monte
Carlo and auxiliary field Monte Carlo simulations, respectively [76].
The experimental result on a 6Li superfluid Fermi gas [30] is shown
as “6Li.” EG = 2

3 εFN is the ground-state energy of a free Fermi gas.
Panels (b) and (c) show, respectively, self-consistent solutions for μ

and 	, which are used in evaluating E in panel (a). In panel (c),
“QMC” is the result by Monte Carlo simulation [76]. “6Li” shows the
experimental result by Bragg spectroscopy [31].

by setting reff = 2.7 fm. Figure 4(a) shows the result, where
the self-consistent solutions for 	 and μ in Figs. 5 and 6 are
used. We find that the NSR theory extended to the case with
nonzero effective range well reproduces the previous results
[51–54] in the low-density region, kF <∼ 1 fm. As mentioned
previously, although these previous calculations [51–54] have
used realistic neutron-neutron interactions, it has been difficult
to experimentally check to what extent many-body effects are
correctly taken into account in these results. In this regard,
together with the result in Step 1 [Fig. 3(a)], our result in
Fig. 4(a) gives an experimental support for this point, except
for effects of effective range.

53
54

52
51

0

0.5

1

P
[M

eV
/fm

 ]3

BCS-Leggett(reff =0)

NSR(reff =0)

NSR(reff =2.7fm)

E/
N

[M
eV

]

k F [fm ]-1

40

60

20

-20
0.5 1.50 1 2

0

5

15

25

10

20

δ(
k F

)
[d

eg
]

1S0

3P2

1S0 (effective range theory)

NSR(reff =2.7 fm)
NSR(reff =0)
BCS-Leggett(reff 
Free Fermi Gas

0 (a)

(b)

(c)

(kFas)-1
-1 -0.5 0-1.5-2

0

4

3

2

1

5

P/
P 0

(μ
)

NSR (reff = 0)
6Li [30]

FIG. 4. (a) Calculated equation of state (EoS) when reff = 2.7 fm
(solid line). For comparison, we also show the results in the NSR
theory with reff = 0 (dashed line) in the mean-field BCS-Leggett
theory with reff = 0 (dotted line), as well as in a free Fermi gas
(dashed-dotted line). The solid squares [51], circles [52], diamonds
[53], and triangles [54] show the previous results starting from various
model interactions developed in nuclear physics. (The name of the
interaction is written in parentheses.) (b) Pressure P . The inset
compares our result when reff = 0 with the recent experiment on a 6Li
Fermi gas [30]. P0(μ) = [2(2m)3/2/(15π 2)]μ5/2 is the ground-state
pressure of a free Fermi gas. (c) Phase shift δ(kF) in the present s-wave
effective-range model, where the separable interaction in Eq. (6) with
the basis function γ p in Eq. (7) is used. In this figure, we also plot the
phase shift of nucleon-nucleon scattering in the 1S0 channel, as well
as that in the 3P2 channel [33,78,79].

Figure 4(a) shows that our EoS gradually deviates from the
previous results when kF >∼ 1 fm−1. This is simply because the
effective-range theory which we are using is no longer valid for
such a high-density region. Indeed, as shown in Fig. 4(c), the
phase shift δ(kF) at the Fermi momentum in the effective-range
theory given by

cot δ(kF) = − 1

kFas

+ 1

2
kFreff (25)
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FIG. 5. (a) Self-consistent solution for the superfluid order pa-
rameter 	 p = γ p	 when reff = 2.7 fm. Egap is the threshold energy
of the Bogoliubov single-particle dispersion E p = (ξ̃ 2

p + 	2
p)1/2. The

dashed line and dotted line represent the superfluid order parameter
	 in the NSR theory with reff = 0 and that in the BCS-Leggett
theory with reff = 0, respectively. In this figure, we also compare
our result with the previous work by quantum Monte Carlo sim-
ulation (solid squares) [53], renormalization group (solid circles)
[80], deterministic quantum Monte Carlo simulation (solid triangles)
[81], and auxiliary field Monte Carlo simulation (solid diamonds)
[82]. (b) Self-consistent solution for the chemical potential μ. μ∗ =
μ + U (0)NMF/2 is the effective chemical potential. For comparison,
we also plot the NSR result with reff = 0 (dashed line), as well as the
result in the BCS-Leggett theory with reff = 0 (dotted line).

gradually deviates from the 1S0 phase shift data when
kF >∼ pc = 0.79 fm−1. In addition, higher-order interaction
channels [e.g., 3P2 shown in Fig. 4(b)], as well as three-body
interactions [51], become important in the high-density region.
While these realistic interactions are employed in the previous
work [51–54], it is difficult to experimentally realize all these
interactions in cold-atom physics, so that our approach only
deals with the already existing s-wave interaction.

Because of the same reason, the agreement between the
NSR result with reff = 0 and the previous work [51–54] up to
kF = 2 fm−1 seen in Fig. 4(a) is accidental.

We note that the difference between the internal energy
E(reff = 0) and E(reff = 2.7 fm) in Fig. 4(a) implies the
decrease of the pressure P by the effective range reff , because
P is related to the energy E as [83]

P = −
(

∂E

∂V

)
S,N

= kF

3V

(
∂E

∂kF

)
. (26)

We explicitly confirm this in Fig. 4(b). We also note that, when
reff = 0, the NSR theory can well explain the observed pressure
in a 6Li superfluid Fermi gas [see the inset in Fig. 4(b)].
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FIG. 6. Same plots as in Fig. 5(a), when 	 and Egap are normal-
ized by the Fermi energy εF = k2

F/(2m).

IV. DISCUSSIONS OF EFFECTIVE-RANGE EFFECTS
FROM THE VIEWPOINT OF pc AND U(0)

To understand how the effective range reff affects superfluid
properties in more detail, it is convenient to recall that the
nonvanishing reff = 2.7 fm gives a finite cutoff momentum
pc = 0.79 fm−1 in Eq. (8). As a result, the region where
the pairing interaction works in the gap equation (10) is
restricted to 0 � p <∼ pc. Since the region near the Fermi
surface is important in the Cooper-pair formation, the growth
of the superfluid order parameter 	 with increasing Fermi
momentum becomes unremarkable when kF >∼ pc, compared
with the case of reff = 0 (giving pc = ∞). We can confirm
this from the comparison of the case “NSR(reff = 2.7 fm)”
with “NSR(reff = 0 fm),” as well as “BCS-Leggett(reff = 0)”
in Fig. 5(a).

We note that the superfluid order parameter 	 p = γ p	 de-
pends on the momentum p so that the pairing gap Egap, which
is defined as the minimum excitations energy of Bogoliubov
single-particle dispersion E p = (ξ̃ 2

p + 	2
p)1/2 does not simply

equal 	, in contrast to the ordinary case with reff = 0. Indeed,
the evaluated Egap is smaller than 	 as shown in Fig. 5(a). This
figure also shows that our result is consistent with the previous
work [51,80–82] in the low-density region (kF <∼ 1 fm−1).

We also note that the reason why the superfluid order
parameter 	(reff = 2.7 fm) (as well as the gap size Egap) does
not become small in the region kF >∼ pc = 0.79 fm−1 is simply
due to the increase of the Fermi energy εF = k2

F/(2m) with
increasing kF. Indeed, as shown in Fig. 7, the scaled quantities
	(reff = 2.7 fm)/εF and Egap/εF actually become small when
kF >∼ pc, reflecting the weakening of the pairing interaction
around the Fermi level. In contrast, such suppression of the
pairing interaction does not occur when reff = 0. In this case,
because the scaled interaction strength (kFas)−1 approaches
the unitarity limit [(kFas)−1 = 0] with increasing kF, 	/εF

approaches the value in a unitary Fermi gas [see “NSR(reff =
0)” and “BCS-Leggett(reff = 0)” in Fig. 7].

The nonvanishing effective range (or finite pc) also affects
system properties through the nonzero interaction strength
U (0), which is related to the cutoff momentum pc as

U (0) = 4πas

m

1

1 − pcas

. (27)
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FIG. 7. Calculated (a) Stoner factor α in Eq. (20), (b) effective
chemical potential μ∗ = μ + U (0)NMF/2, and (c) internal energy E

as functions of the Fermi momentum kF and the effective range reff .
We take as = −18.5 fm. In each panel, the dotted line and the dashed
line show the result at reff = 2.7 fm and that at kF = pc = 0.79 fm−1,
respectively.

Figure 5(b) shows that the Fermi chemical potential is not so
sensitive to the effective range, when kF <∼ 1 fm−1. However,
the so-called Hartree shift U (0)NMF/2 enlarges the effective
Fermi surface size k∗

F ≡ √
2mμ∗ = √

2m[μ + U (0)NMF/2] in
this regime, which becomes comparable to the case of the BCS-
Leggett theory with reff = 0 [see Fig. 5(b)]. We briefly note that
the pairing gap Egap is obtained at the momentum which is very
close to k∗

F (although we do not explicitly show the result here).
We see in Fig. 4(a) that, while the condensation energy

within the mean-field BCS-Leggett level, as well as the strong-
coupling corrections within the NSR level (with reff = 0),
lower the internal energy E, the nonvanishing effective range
(reff = 2.7 fm) does not remarkably affect E in the low-density
region (kF <∼ 1 fm). At a glance, this seems to indicate
the irrelevance of reff in this regime. However, Fig. 5(a)
indicates that the effective range reff remarkably suppresses
the superfluid order parameter 	 p = γ p	, which should also
suppress the superfluid condensation energy.
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FIG. 8. Internal energy E + Ecorr , including both the NSR con-
tribution and the second-order correction (Ecorr) that are ignored in
the NSR scheme (see the inset). E is the internal energy in the NSR
theory (when reff = 2.7 fm).

The reason why we obtain E(reff = 2.7 fm) � E(reff =
0) in the low-density region in Fig. 4(a) is that the above-
mentioned decrease of the superfluid condensation energy is
approximately compensated by the Hartree energy,

EMF = − 1
2U (0)N2

MF, (28)

originating from the nonzero reff . (Note that the Hartree
energy vanishes when reff = 0.) This means that the mean-field
Hartree energy is important in quantitatively examining the
crust regime of a neutron star.

Before ending this section, we comment on two other effects
associated with the effective range reff . First, the nonzero U (0)
produces the Stoner factor α in Eq. (20), which enhances the
NSR fluctuation contribution NFL to the number equation in
Eq. (19). However, we see in Fig. 7 that the region where
the effective chemical potential μ∗, as well as the internal
energy E, are strongly influenced by the Stoner enhancement
is restricted to the high-density region kF >∼ 1 fm−1. Thus, as
long as we consider the low-density region (kF <∼ 1 fm−1), this
effective-range effect does not seem important.

Second, when reff = 0, the magnitude of each diagram in
Fig. 2 is not well defined, because U (0) = +0 and the pair
correlation function �ij in Eq. (16) exhibits the ultravio-
let divergence. Their infinite summation only gives a finite
fluctuation correction �FL to the thermodynamic potential
�. In contrast, when reff > 0, each diagram in Fig. 2, as
well as the other diagrams that are ignored in the NSR
theory, become nonzero because of U (0) > 0. In this case,
since the superfluid order is weakened by the effective range
[see Fig. 5(a)], it becomes unclear whether the NSR scheme
(where special diagrams describing superfluid fluctuations are
selectively summed up to the infinite order) is still superior
to the perturbative order-by-order calculation in terms of the
pairing interaction. Regarding this, explicitly evaluating all
the second-order diagrams contributing to the thermodynamic
potential that are not taken into account in the NSR theory, we
find that the correction (≡Ecorr) to the EoS is very small, as
shown in Fig. 8. (For the derivation of Ecorr, see Appendix C.)
This means that the inclusion of superfluid fluctuations de-
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scribed by the diagrammatic series in Fig. 2 is still effective in
considering the low-density region of a neutron-star interior.

V. SUMMARY

To summarize, we have discussed a possible application
of an ultracold Fermi atomic gas to the study of a neutron-star
equation of state (EoS) in the low-density regime. Although our
idea maximally uses the high tunability of this atomic system,
we do not attempt to experimentally replicate a neutron star by
using the high tunability of an ultracold Fermi gas but simply
use the already existing superfluid state. That is, noting that
the inner-crust regime of a neutron star is considered to be
in the nearly unitary s-wave superfluid state of neutrons far
below Tc, we first deal with the recent experiment on EoS in a
superfluid 6Li Fermi gas in the BCS-unitary regime [30]. We
then theoretically make up for the crucial difference between
the two systems about the magnitude of the effective range reff ,
because it cannot experimentally be tuned in the current stage
of cold-atom physics.

To demonstrate our idea, we first showed that the recent
EoS measurement on a 6Li superfluid Fermi gas can be quan-
titatively explained by the strong-coupling theory developed
by Nozières and Schmitt–Rink (NSR). We then extended the
NSR theory to include the nonvanishing effective range (reff =
2.7 fm), so as to be able to treat the low-density-crust regime
of a neutron star. The calculated EoS was found to agree
well with the previous theoretical work on the neutron-star
EoS in this regime. Although these previous calculations use
detailed neutron-neutron interactions which can reproduce the
experimental phase shift data, no experimental support has
existed about the inclusion of many-body effects associated
with strong pairing interactions near the unitarity limit. Our
combined strong-coupling theory with a cold-Fermi-gas ex-
periment gives confirmation about this, except for effects of
the nonzero effective range.

Since the present approach is only valid for the neutron-fluid
component in the low-density region (kF <∼ 1 fm−1) of a neutron
star, it is an exciting challenge to extend this to the deeper
core region, where the simple s-wave neutron superfluid is
no longer expected. In this regard, one possibility is to use
a p-wave superfluid Fermi gas. At present, while a tunable
p-wave pairing interaction associated with a p-wave Feshbach
resonance [84,85], as well as the formation of p-wave pairs
[66,86], have been realized, any p-wave superfluid state has
not been achieved yet, because of very short lifetime of p-
wave pairs [87] due to three-body loss [88,89], as well as
dipolar relaxation [90]. However, once a p-wave superfluid
Fermi atomic gas is realized, we would be able to use it as
a testing ground, to construct a strong-coupling theory which
can quantitatively describe a p-wave Fermi superfluid. Even
if the detailed p-wave pairing symmetry in the case of an
ultracold Fermi gas is different from that expected in the core
region of a neutron star, the strong-coupling theory which
is experimentally assessed in the former would be useful
for the study of the core region where a p-wave neutron
superfluid is expected [see Fig. 4(c)], by modifying the theory
to compensate the difference between the two systems (as we
have done in the s-wave case). Such an application would also
be a good motivation for the research toward the realization of

a p-wave superfluid Fermi gas. Since it is difficult to directly
measure the neutron-star interior, our idea would provide an
alternative route to this astronomical object, in addition to the
conventional approach being based on nuclear physics.
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APPENDIX A: EFFECTIVE-RANGE THEORY IN THE
CASE OF THE BASIS FUNCTION γ p IN EQ. (7)

We consider a two-particle system with the separable s-
wave interaction in Eq. (6). The two-particle scattering T

matrix �s( p, p′,ω+) obeys [72]

�s( p, p′; ω+) = −Us( p, p′) −
∑

k

Us( p,k)
1

ω+ − 2εk

×�s(k, p′; ω+), (A1)

where ω+ = ω + iδ, with δ being an infinitesimally small
positive number. Equation (A1) gives �s( p, p′; ω+) =
γ p�s(ω+)γ p′ , where

1

�s(ω+)
= − 1

U (0)
−

∑
p

γ 2
p

ω+ − 2ε p
. (A2)

The scattering T matrix �( p, p′; ω+) is related to the scattering
amplitude fs( p) as [59]

fs( p) = − m

4π
�s( p, p; 2ε p + iδ). (A3)

Using Eqs. (9) and (A2), one finds that the scattering amplitude
f ( p) in Eq. (A3) is written as

fs( p) = γ 2
p

− 1

as

− 4π

m

∑
p′

γ 2
p′

[
1

2ε p′ − (
2ε p + iδ

) − 1

2ε p′

] .

(A4)

When we take the basis function γ p in Eq. (7) [where the cutoff
momentum pc is given in Eq. (8)], Eq. (A4) gives the exact
expression in the effective-range theory [59],

fs( p) = 1

− 1

as

+ 1

2
reffp

2 − ip

. (A5)

We briefly note that higher-order terms (such as ∼p4) generally
appear in the denominator of Eq. (A5), when one chooses
another expression for γ p, e.g., γ p = 1/[1 + (p/pc)2].
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APPENDIX B: DERIVATION OF EQ. (19) AND HOW
TO EVALUATE EQ. (20)

Noting that �FL depends on μ only through μ∗ = μ +
U (0)NMF/2, one finds

NFL = −
(

∂�FL

∂μ

)
T

=
(

∂�FL

∂μ∗

)
T

(
∂μ∗

∂μ

)
T

, (B1)

where (
∂μ∗

∂μ

)
T

= 1 + 1

2
U (0)

(
∂NMF

∂μ∗

)
T

(
∂μ∗

∂μ

)
T

= 1

1 − 1
2U (0)

(
∂NMF
∂μ∗

)
T

, (B2)

which just equals the Stoner factor α in Eq. (20). In Eq. (B2),
we have used the fact that NMF depends on μ only through μ∗
[see Eqs. (4) and (10)].

To evaluate the factor (∂NMF/∂μ∗)T in Eq. (B2), we
conveniently abbreviate the right-hand side of Eq. (4) as
gN (μ∗,	(μ∗),T ), and that of Eq. (10) as g	(μ∗,	(μ∗),T ).
From Eq. (10), we find(

∂g	

∂μ∗

)
T

=
(

∂g	

∂μ∗

)
	,T

+
(

∂g	

∂	

)
μ∗,T

(
∂	

∂μ∗

)
T

= 0. (B3)

Taking the partial derivative of Eq. (4) with respect to μ∗, one
obtains(

∂NMF

∂μ∗

)
T

=
(

∂gN

∂μ∗

)
	,T

+
(

∂gN

∂	

)
μ∗,T

(
∂	

∂μ∗

)
T

=
(

∂gN

∂μ∗

)
	,T

−
(

∂gN

∂	

)
μ∗,T

×
(

∂g	

∂μ∗

)
	,T

(
∂g	

∂	

)−1

μ∗,T
. (B4)

APPENDIX C: SECOND-ORDER CORRECTION �corr TO
THERMODYNAMIC POTENTIAL

To evaluate all the second-order corrections to the thermo-
dynamic potential in a systematic manner, we conveniently

note that the interaction part HFL of the Hamiltonian in Eq. (12)
can be written in the the following two forms:

HFL = −U (0)
∑

p, p′,q

γ pγ p′ρ+( p,q)ρ−( p′, − q), (C1)

HFL = −U (0)
∑

p, p′,q

γ( p+ p′+q)/2γ( p+ p′−q)/2n+

× ( p,q)n−( p′, − q), (C2)

where

ρ±( p,q) = 1
2�

†
p+q/2[τ1 ± iτ2]� p−q/2, (C3)

n±( p,q) = 1
2�

†
p+q/2[τ3 ± τ0]� p−q/2, (C4)

with τ0 being the unit matrix. Physically, ρ±( p,q) and n±( p,q)
describe superfluid fluctuations and density fluctuations, re-
spectively.

The expression for the second-order correction �corr to the
thermodynamic potential in terms of HFL is obtained by using
the linked cluster theorem [91]:

�corr = −T

2

∫ 1/T

0
dτ

∫ 1/T

0
dτ ′〈HFL(τ )HFL

(
τ ′)〉c. (C5)

Here, HFL(τ ) = eHMFτHFLe−HMFτ , and 〈· · ·〉c only involves
contributions from connected diagrams. When one uses
Eq. (C1) for the two HFL in Eq. (C5), the result is the same as
that obtained from the second-order diagram in Fig. 2 (≡�

(2)
FL),

which has, of course, already been included in �FL in Eq. (15).
The second-order correction �

(2)
FL is also reproduced, when one

uses Eq. (C2) for the two HFL in Eq. (C5). This is because,
although the second-order diagram in Fig. 2 is treated as that
describing superfluid fluctuations in the NSR theory, it may
actually be regarded as a diagram describing fluctuations in
the density channel. As a result, we should also drop this
contribution to avoid double counting.

The second-order correction which is not involved in the
NSR theory is obtained when one uses Eq. (C1) for one of the
two HFL and Eq. (C2) for the other HFL in Eq. (C5), which
gives

�corr = −U (0)2T
∑

p, p′,q,νn

γ( p+ p′+q)/2γ( p+ p′−q)/2γ pγ p′

×[
�

ρn
++( p,q,iνn)�nρ

−−( p′, − q,iνn) + �
ρn
+−( p,q,iνn)�nρ

+−( p′, − q,iνn)
]

= −2U (0)2T
∑

p, p′,q,νn

γ( p+ p′+q)/2γ( p+ p′−q)/2γ pγ p′�
ρn
++( p,q,iνn)�ρn

++( p′,q,iνn), (C6)

where

�
ρn

ij ( p,q,iνn) = T
∑
νn

tr[τiĜ( p + q/2,iωn + iνn)nj Ĝ( p − q/2,iωn)], (C7)

�
nρ

ij ( p,q,iνn) = T
∑
νn

tr[niĜ( p + q/2,iωn + iνn)τj Ĝ( p − q/2,iωn)], (C8)

physically describe couplings between superfluid fluctuations and density fluctuations [73]. In obtaining the last expression in
Eq. (C6), we have used the symmetry properties, �

nρ
−−( p,−q,iνn) = �

ρn
+−( p,−q,iνn) = �

ρn
++( p,q,iνn), and �

nρ
+−( p,q,iνn) =

013601-10
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�
ρn
++( p,q,iνn). Summing up the Matsubara frequencies in �

ρn
++ in Eq. (C6), we have

�
ρn
++( p,q,iνn) = − 	 p+q/2

4E p+q/2

{(
1 + ξ̃ p−q/2

E p−q/2

)[
1 − f (E p+q/2) − f (E p−q/2)

iνn + E p+q/2 + E p−q/2
− f (E p+q/2) − f (E p−q/2)

iνn − E p+q/2 + E p−q/2

]

+
(

1 − ξ̃ p−q/2

E p−q/2

)[
1 − f (E p+q/2) − f (E p−q/2)

iνn − E p+q/2 − E p−q/2
− f (E p+q/2) − f (E p−q/2)

iνn + E p+q/2 − E p−q/2

]}
. (C9)

Substituting Eq. (C10) into Eq. (C6), which is followed by the νn summation, we obtain, in the low-temperature limit,

�corr = U (0)2

4

∑
p, p′,q

[
1 − ξ̃ p−q/2

E p−q/2

][
1 − ξ̃ p′−q/2

E p′−q/2

]
γ pγ p′γ( p+ p′+q)/2γ( p+ p′−q)/2	 p+q/2	 p′+q/2

E p+q/2E p′+q/2[E p+q/2 + E p−q/2 + E p′+q/2 + E p′−q/2]
. (C10)

To obtain Fig. 8, we numerically solved the gap equation (10), together with the modified number equation N = NMF + NFL +
Ncorr, where

Ncorr = −α

(
∂�corr

∂μ∗

)
T

. (C11)

The correction Ecorr to the internal energy is calculated from

Ecorr = �corr − T

(
∂�corr

∂T

)
μ

+ μNcorr. (C12)

[1] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[2] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys.
82, 1225 (2010).

[3] C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92,
040403 (2004).

[4] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A.
J. Kerman, and W. Ketterle, Phys. Rev. Lett. 92, 120403 (2004).

[5] J. Kinast, S. L. Hemmer, M. E. Gehm, A. Turlapov, and J. E.
Thomas, Phys. Rev. Lett. 92, 150402 (2004).

[6] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H.
Denschlag, and R. Grimm, Phys. Rev. Lett. 92, 203201 (2004).

[7] D. M. Eagles, Phys. Rev. 186, 456 (1969).
[8] A. J. Leggett, in Modern Trends in the Theory of Condensed

Matter, edited by A. Pekalski and J. Przystawa (Springer-Verlag,
Berlin, 1980), p. 14.

[9] P. Nozières and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195
(1985).

[10] C. A. R. Sá de Melo, M. Randeria, and J. R. Engelbrecht,
Phys. Rev. Lett. 71, 3202 (1993).

[11] A. Perali, P. Pieri, G. C. Strinati, and C. Castellani, Phys. Rev.
B 66, 024510 (2002).

[12] Y. Ohashi and A. Griffin, Phys. Rev. Lett. 89, 130402
(2002).

[13] Q. J. Chen, J. Stajic, S. N. Tan, and K. Levin, Phys. Rep. 412, 1
(2005).

[14] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys.
80, 1215 (2008).

[15] M. Greiner, O. Mandel, T. Esslinger, T. Hansch, and I. Bloch,
Nature (London) 415, 39 (2002).

[16] T. Stöferle, H. Moritz, C. Schori, M. Köhl, and T. Esslinger,
Phys. Rev. Lett. 92, 130403 (2004).

[17] I. Bloch, J. Dalibard, and S. Nascimbène, Nat. Phys. 8, 267
(2012).

[18] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

[19] W. Hofstetter, J. I. Cirac, P. Zoller, E. Demler, and M. D. Lukin,
Phys. Rev. Lett. 89, 220407 (2002).

[20] J. K. Chin, D. E. Miller, Y. Liu, C. Stan, W. Setiawan, C. Sanner,
K. Xu, and W. Ketterle, Nature (London) 443, 961 (2006).

[21] D. E. Miller, J. K. Chin, C. A. Stan, Y. Liu, W. Setiawan, C.
Sanner, and W. Ketterle, Phys. Rev. Lett. 99, 070402 (2007).

[22] J. T. Stewart, J. P. Gaebler, and D. S. Jin, Nature (London) 454,
744 (2008).

[23] J. P. Gaebler, J. T. Stewart, T. E. Drake, D. S. Jin, A. Perali, P.
Pieri, and G. C. Strinati, Nat. Phys. 6, 569 (2010).

[24] Y. Sagi, T. E. Drake, R. Paudel, and D. S. Jin, Phys. Rev. Lett.
109, 220402 (2012).

[25] Y. Sagi, T. E. Drake, R. Paudel, R. Chapurin, and D. S. Jin,
Phys. Rev. Lett. 114, 075301 (2015).

[26] N. Navon, S. Nascimbene, F. Chevy, and C. Salomon,
Science 328, 729 (2010).

[27] C. Sanner, E. J. Su, A. Keshet, W. Huang, J. Gillen, R. Gommers,
and W. Ketterle, Phys. Rev. Lett. 106, 010402 (2011).

[28] M. Feld, B. Fröhlich, E. Vogt, M. Koschorreck, and M. Köhl,
Nature (London) 480, 75 (2011).

[29] M. J. H. Ku, A. T. Sommer, L. W. Cheuk, and M. W. Zwierlein,
Science 335, 563 (2012).

[30] M. Horikoshi, M. Koashi, H. Tajima, Y. Ohashi, and M. Kuwata-
Gonokami, Phys. Rev. X 7, 041004 (2017).

[31] S. Hoinka, P. Dyke, M. G. Lingham, J. J. Kinnunen, G. Bruun,
and C. Vale, Nat. Phys. 13, 943 (2017).

[32] S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs
and Neutron Stars: The Physics of Compact Objects (Wiley-
VCH, 1983).

[33] D. J. Dean and M. Hjorth-Jensen, Rev. Mod. Phys. 75, 607
(2003).

[34] D. G. Yakovlev and C. J. Pethick, Annu. Rev. Astron. Astrophys.
42, 169 (2004).

[35] D. Page and S. Reddy, Annu. Rev. Nucl. Part. Sci. 56, 327 (2006).
[36] N. Chamel, Phys. Rev. Lett. 110, 011101 (2013).

013601-11

https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/PhysRevLett.92.040403
https://doi.org/10.1103/PhysRevLett.92.040403
https://doi.org/10.1103/PhysRevLett.92.040403
https://doi.org/10.1103/PhysRevLett.92.040403
https://doi.org/10.1103/PhysRevLett.92.120403
https://doi.org/10.1103/PhysRevLett.92.120403
https://doi.org/10.1103/PhysRevLett.92.120403
https://doi.org/10.1103/PhysRevLett.92.120403
https://doi.org/10.1103/PhysRevLett.92.150402
https://doi.org/10.1103/PhysRevLett.92.150402
https://doi.org/10.1103/PhysRevLett.92.150402
https://doi.org/10.1103/PhysRevLett.92.150402
https://doi.org/10.1103/PhysRevLett.92.203201
https://doi.org/10.1103/PhysRevLett.92.203201
https://doi.org/10.1103/PhysRevLett.92.203201
https://doi.org/10.1103/PhysRevLett.92.203201
https://doi.org/10.1103/PhysRev.186.456
https://doi.org/10.1103/PhysRev.186.456
https://doi.org/10.1103/PhysRev.186.456
https://doi.org/10.1103/PhysRev.186.456
https://doi.org/10.1007/BF00683774
https://doi.org/10.1007/BF00683774
https://doi.org/10.1007/BF00683774
https://doi.org/10.1007/BF00683774
https://doi.org/10.1103/PhysRevLett.71.3202
https://doi.org/10.1103/PhysRevLett.71.3202
https://doi.org/10.1103/PhysRevLett.71.3202
https://doi.org/10.1103/PhysRevLett.71.3202
https://doi.org/10.1103/PhysRevB.66.024510
https://doi.org/10.1103/PhysRevB.66.024510
https://doi.org/10.1103/PhysRevB.66.024510
https://doi.org/10.1103/PhysRevB.66.024510
https://doi.org/10.1103/PhysRevLett.89.130402
https://doi.org/10.1103/PhysRevLett.89.130402
https://doi.org/10.1103/PhysRevLett.89.130402
https://doi.org/10.1103/PhysRevLett.89.130402
https://doi.org/10.1016/j.physrep.2005.02.005
https://doi.org/10.1016/j.physrep.2005.02.005
https://doi.org/10.1016/j.physrep.2005.02.005
https://doi.org/10.1016/j.physrep.2005.02.005
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1103/PhysRevLett.92.130403
https://doi.org/10.1103/PhysRevLett.92.130403
https://doi.org/10.1103/PhysRevLett.92.130403
https://doi.org/10.1103/PhysRevLett.92.130403
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/PhysRevLett.89.220407
https://doi.org/10.1103/PhysRevLett.89.220407
https://doi.org/10.1103/PhysRevLett.89.220407
https://doi.org/10.1103/PhysRevLett.89.220407
https://doi.org/10.1038/nature05224
https://doi.org/10.1038/nature05224
https://doi.org/10.1038/nature05224
https://doi.org/10.1038/nature05224
https://doi.org/10.1103/PhysRevLett.99.070402
https://doi.org/10.1103/PhysRevLett.99.070402
https://doi.org/10.1103/PhysRevLett.99.070402
https://doi.org/10.1103/PhysRevLett.99.070402
https://doi.org/10.1038/nature07172
https://doi.org/10.1038/nature07172
https://doi.org/10.1038/nature07172
https://doi.org/10.1038/nature07172
https://doi.org/10.1038/nphys1709
https://doi.org/10.1038/nphys1709
https://doi.org/10.1038/nphys1709
https://doi.org/10.1038/nphys1709
https://doi.org/10.1103/PhysRevLett.109.220402
https://doi.org/10.1103/PhysRevLett.109.220402
https://doi.org/10.1103/PhysRevLett.109.220402
https://doi.org/10.1103/PhysRevLett.109.220402
https://doi.org/10.1103/PhysRevLett.114.075301
https://doi.org/10.1103/PhysRevLett.114.075301
https://doi.org/10.1103/PhysRevLett.114.075301
https://doi.org/10.1103/PhysRevLett.114.075301
https://doi.org/10.1126/science.1187582
https://doi.org/10.1126/science.1187582
https://doi.org/10.1126/science.1187582
https://doi.org/10.1126/science.1187582
https://doi.org/10.1103/PhysRevLett.106.010402
https://doi.org/10.1103/PhysRevLett.106.010402
https://doi.org/10.1103/PhysRevLett.106.010402
https://doi.org/10.1103/PhysRevLett.106.010402
https://doi.org/10.1038/nature10627
https://doi.org/10.1038/nature10627
https://doi.org/10.1038/nature10627
https://doi.org/10.1038/nature10627
https://doi.org/10.1126/science.1214987
https://doi.org/10.1126/science.1214987
https://doi.org/10.1126/science.1214987
https://doi.org/10.1126/science.1214987
https://doi.org/10.1103/PhysRevX.7.041004
https://doi.org/10.1103/PhysRevX.7.041004
https://doi.org/10.1103/PhysRevX.7.041004
https://doi.org/10.1103/PhysRevX.7.041004
https://doi.org/10.1038/nphys4187
https://doi.org/10.1038/nphys4187
https://doi.org/10.1038/nphys4187
https://doi.org/10.1038/nphys4187
https://doi.org/10.1103/RevModPhys.75.607
https://doi.org/10.1103/RevModPhys.75.607
https://doi.org/10.1103/RevModPhys.75.607
https://doi.org/10.1103/RevModPhys.75.607
https://doi.org/10.1146/annurev.astro.42.053102.134013
https://doi.org/10.1146/annurev.astro.42.053102.134013
https://doi.org/10.1146/annurev.astro.42.053102.134013
https://doi.org/10.1146/annurev.astro.42.053102.134013
https://doi.org/10.1146/annurev.nucl.56.080805.140600
https://doi.org/10.1146/annurev.nucl.56.080805.140600
https://doi.org/10.1146/annurev.nucl.56.080805.140600
https://doi.org/10.1146/annurev.nucl.56.080805.140600
https://doi.org/10.1103/PhysRevLett.110.011101
https://doi.org/10.1103/PhysRevLett.110.011101
https://doi.org/10.1103/PhysRevLett.110.011101
https://doi.org/10.1103/PhysRevLett.110.011101


VAN WYK, TAJIMA, INOTANI, OHNISHI, AND OHASHI PHYSICAL REVIEW A 97, 013601 (2018)

[37] D. Page, M. Prakash, J. M. Lattimer, and A. W. Steiner, Phys.
Rev. Lett. 106, 081101 (2011).

[38] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts,
and J. W. T. Hessels, Nature (London) 467, 1081 (2010).

[39] J. Antoniadis, P. C. C. Feire, N. Wex, T. M. Tauris, R. S. Lynch,
M. H. van Kerkwijk, M. Kramer, C. Bassa, V. S. Dhillon, T.
Driebe, J. W. T. Hessels, V. M. Kapsi, V. I. Kondratiev, N. Langer,
T. R. Marsh, M. A. McLaughlin, T. T. Pennucci, S. M. Ransom,
I. H. Stairs, J. van Leeuwen, J. P. W. Vierbiest, and D. G. Whelan,
Science 340, 1233232 (2013).

[40] J. M. Lattimer and M. Parkash, Astrophys. J. 550, 426 (2001).
[41] T. Takatsuka, Prog. Theor. Phys. Suppl. 156, 84 (2004).
[42] D. Lonardoni, A. Lovato, S. Gandolfi, and F. Pederiva,

Phys. Rev. Lett. 114, 092301 (2015).
[43] R. C. Tolman, Phys. Rev. 55, 364 (1939).
[44] J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374

(1939).
[45] R. R. Silbara and S. Reddyb, Am. J. Phys. 72, 892 (2004).
[46] N. Sartore, A. Tiengo, S. Mereghetti, A. De Luca, R. Turolla,

and F. Haberl, Astron. Astrophys. 541, A66 (2012).
[47] A. Tamii, I. Poltoratska, P. von Neumann-Cosel, Y. Fujita,

T. Adachi, C. A. Bertulani, J. Carter, M. Dozono, H. Fujita,
K. Fujita, K. Hatanaka, D. Ishikawa, M. Itoh, T. Kawabata,
Y. Kalmykov, A. M. Krumbholz, E. Litvinova, H. Matsub-
ara, K. Nakanishi, R. Neveling, H. Okamura, H. J. Ong, B.
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