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We investigate the multi-body coupling effects on the neutron star matter equation of state (EOS). By
tuning the multi-body coupling constants in the relativistic mean field (RMF) models, microscopic
EOSs are well fitted, and smaller neutron star radii R ∼ 12 km are obtained. When the repulsive
potential for Λ at high density is assumed to have density dependence similar to that for nucleons, it
is possible to support 2M⊙ neutron stars by hyperonic EOSs, which do not contradict hypernuclear
data.
KEYWORDS: Hyperon puzzle, Three-baryon interaction, EOS, Relativistic mean field

1. Introduction

The hyperon puzzle is a serious problem in nuclear and hadron physics. Hypernuclear experi-
ments show that the Λ potential in nuclei is attractive and the Pauli blocking does not operate on
Λ in nuclear matter. Then the single particle energy of Λ at high densities can be smaller than
the nucleon Fermi energy. Thus it is natural to expect that Λ would appear in neutron stars. Ac-
tually many model calculations suggest that Λ emerges in neutron star matter at baryon density
ρB ≃ (2 − 4)ρ0 with ρ0 ≃ 0.16 fm−3 being the normal nuclear density. When hyperons appear in
neutron star matter, the equation of state (EOS) is softened and the maximum mass of neutron stars
is predicted to be Mmax = (1.3 − 1.6)M⊙, which is significantly smaller than that without hyperons,
Mmax = (1.5 − 2.7)M⊙, where M⊙ denotes the solar mass. The recent discovery of massive neutron
stars, M ∼ 2M⊙ [1], then implies that most of the EOSs including hyperons are ruled out. We need to
find the mechanisms to suppress hyperons at high densities or to stiffen the hyperonic matter EOS.

There are several mechanisms proposed so far to solve the hyperon puzzle [2,3]. Among the pro-
posed mechanisms, 3B interactions [3] need to be included also in the nucleonic EOS. Microscopic
(first principles) calculations have shown that 3B force is necessary to explain the binding energies
of light nuclei [4] and nucleonic matter EOS [5–7]. The three-nucleon (3N) interaction has been dis-
cussed in chiral effective field theory (chiral EFT) [8], and chiral EFT based EOS has been obtained
in microscopic calculations [9]. By comparison, 3B interactions including hyperons is not well deter-
mined. While hyperon-nucleon interactions are investigated in chiral EFT [10], we need much more
accurate data on elementary processes in order to constrain the coefficients relevant to 3B interactions
including hyperons in chiral EFT. In principle, lattice QCD can provide 3B interactions as demon-
strated for the 3N interaction [11], but it seems that calculations of 3B interactions at physical quark
masses require faster supercomputers and/or larger CPU time.

In the present proceedings, we try to combine the microscopic calculations of nucleonic matter
and the hypernuclear phenomenology; We fit the relativistic mean field (RMF) parameters to the
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microscopic EOSs [5–7], and introduce Λ in a phenomenological manner with the potential depth of
UΛ(ρ0) = −30 MeV. In order to take 3B interaction effects, we introduce multi-body coupling terms
in RMF. We find that 2M⊙ neutron stars can be supported within the model uncertainties.

2. RMF with multi-body couplings and neutron star matter EOS

We consider the following RMF Lagrangian with multi-body couplings for nucleonic matter,

L =ψ̄(iγµ∂µ − MN − Us − γµUµ)ψ +Lσωρ , (1)

Lσωρ =
1
2
∂µσ∂

µσ − 1
4
ωµνω

µν − 1
4

Rµν · Rµν −Vσωρ , (2)

Us = − gσσ
[
1 + rσσ(1 − σ/ fπ)

]
+ gσωµωµ

[
rωω + rσωω(1 − σ/ fπ)

]
, (3)

Uµ =gωωµ
[
1 − rσωσ/ fπ + rω3ω

νων/ f 2
π

]
+ gρτ · Rµ

[
1 − rσρσ/ fπ + rωρωνων/ f 2

π

]
, (4)

Vσωρ =
1
2

m2
σσ

2 − aσ flog(σ/ fπ) +
1
4

cσ4(σ4 − 4 fπσ3) − 1
2

m2
ωω

µωµ
[
1 − cσωσ/ fπ

] − 1
4

cω4(ωµωµ)2

− 1
2

m2
ρRµ · Rµ

[
1 − cσρσ/ fπ + cωρωµωµ/ f 2

π

]
− 1

4
cρ4(Rµ · Rµ)2 , (5)

where ωµν and Rµν denote the field tensors of ω and ρ mesons, respectively, and flog(x) = log(1− x)+
x + x2/2 [12]. This Lagrangian contains n = 3 and n = 4 terms where n = B/2 + M with B and M
being the number of baryon fields and non-NG bonson fields, respectively [13]. Terms with the index
n generate n-body interactions. By tuning the coefficients, we fit microscopic (first principles) EOSs,
FP [5], DBHF [6] and APR [7]. Similar analysis was performed in Ref. [14] for APR. We apply a
stochastic method to determine parameters, resulting in the standard deviation of (0.5 − 1.0) MeV
in the energy per nucleon. In Fig. 1, we show EOSs (left), the symmetry energy (middle), and the
neutron star matter EOSs (right). As shown in the left panel of Fig. 2, suppressed pressure at low
density compared with standard RMF models leads to smaller neutron star radii, R ≃ 12 km, which
is consistent with the X-ray burst analysis [15].
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Fig. 1. EOS of symmetric nuclear matter and pure neutron matter (left), symmetry energy as a function of
baryon density (middle), and neutron star matter EOS (right).

We introduce Λ hyperons in two schemes; In Scheme 1, we assume that the potential for Λ is
proportional to that for N, UΛ = αUN , where the potential is given as the sum of the scalar potential
and the temporal component of the vector potential. In Scheme 2, we assume that the potential for Λ
is given as UΛ = 2/3U(n=2)

N + βU(n≥3)
N , where the superscripts show n = 2 and n = 3 parts of UN .

Coefficients α and β are determined to reproduce UΛ(ρ0) = −30 MeV. In the right panel of Fig. 2,
we show the single particle energy of Λ at zero momentum, EΛ(p = 0) = MΛ + UΛ, as a function of
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density. We find that Scheme 1 gives more repulsive UΛ at high densities, and the maximum mass of
neutron stars in Scheme 1 becomes around 2M⊙.
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Fig. 2. Mass-radius relation of neutron stars (left) and Λ potential in nuclear matter (right).

3. Summary

We have investigated the role of multi-body couplings in the equation of state (EOS) of nuclear
and neutron star matter. In the relativistic mean field (RMF) models with multi-body coupling terms,
we can reproduce the suppression of the symmetry energy at high densities found in microscopic
EOSs [5–7]. As a result, smaller neutron star radii R ∼ 12 km are obtained. We have also found
that hyperonic EOSs constrained by the hypernuclear physics requirement UΛ(ρ0) ≃ −30 MeV can
support 2M⊙ neutron stars when the repulsive potential for Λ at high density has density dependence
similar to that for nucleons. This density dependence should be examined by studying the separation
energy of Λ in various finite hypernuclei.
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