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We discuss two problems in complexified auxiliary fields in fermionic effective models, the auxiliary 
sign problem associated with the repulsive vector-field and the choice of the cut for the scalar field 
appearing from the logarithmic function. In the fermionic effective models with attractive scalar and 
repulsive vector-type interaction, the auxiliary scalar and vector fields appear in the path integral after 
the bosonization of fermion bilinears. When we make the path integral well-defined by the Wick rotation 
of the vector field, the oscillating Boltzmann weight appears in the partition function. This “auxiliary” sign 
problem can be solved by using the Lefschetz-thimble path-integral method, where the integration path 
is constructed in the complex plane. Another serious obstacle in the numerical construction of Lefschetz 
thimbles is caused by singular points and cuts induced by multivalued functions of the complexified 
scalar field in the momentum integration. We propose a new prescription which fixes gradient flow 
trajectories on the same Riemann sheet in the flow evolution by performing the momentum integration 
in the complex domain.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The sign problem appearing in the path integral is a serious ob-
stacle to perform precise nonperturbative computations in various 
quantum systems: The Boltzmann weight in the partition function 
oscillates and then it induces the serious cancellation to the nu-
merical integration process. Particularly, the sign problem attracts 
much more attention recently in the lattice simulation of Quan-
tum Chromodynamics (QCD) at finite density. It is caused by the 
combination of the gluon field (Aμ) and the real quark chemical 
potential (μ) in the fermion determinant of the Boltzmann weight; 
see Ref. [1] for a review.

Several methods have been proposed to circumvent the sign 
problem such as the multi-parameter reweighting method [2,3], 
Taylor expansion method [4–6], the imaginary chemical potential 
approach [7–9], the canonical approach [10–13] and so on. These 
methods can be applied to nonzero μ, but we can not obtain reli-
able results in the large μ region.

Recently, two approaches for the lattice simulation have been 
attracting much more attention; the complex Langevin method and 
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the Lefschetz-thimble path-integral method. The complex Langevin 
method is based on the stochastic quantization [14–17], it does 
not use the standard Monte-Carlo sampling, and thus it seems to 
be free from the sign problem. However, this method sometimes 
provides a wrong answer when there are singularities of the drift 
term in the Langevin-time evolution [16,18]. By comparison, the 
Lefschetz-thimble path-integral method [19–21] is based on the 
Picard–Lefschetz theory for the complexified space in variables of 
integral [22] and thus it is still in the framework of the usual path-
integral formulation. With this method, we modify the integration 
path from the original one to new one on which the complex 
phase is constant and thus the cancellation is suppressed. Thus, 
we can soften the difficulty of the sign problem.

In effective models of the fundamental theory, one can some-
times avoid the sign problem because of the simplification of 
the Boltzmann weight. For example, in the standard Nambu–Jona-
Lasinio (NJL) model, one of the low-energy effective models of 
QCD, one can avoid the sign problem at finite μ due to the sim-
plified fermion determinant. The Dirac operator of the NJL model 
has the Cγ5 hermiticity and its determinant is real, det{DNJL(μ)} =
[det{DNJL(μ)}]∗ , where C is the charge conjugation matrix. How-
ever, the sign problem comes back, when the repulsive vector-
current interaction is included in the NJL model and the auxiliary 
vector field is Wick rotated to make the path integral well-defined. 

https://doi.org/10.1016/j.physletb.2018.04.018
0370-2693/© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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This type of the sign problem which we call the auxiliary sign prob-
lem in this paper has not been discussed in the four-dimensional 
space-time, previously. Understanding the auxiliary sign problem 
is very important because it appears not only in the NJL model 
but also in several calculations which include repulsive interactions 
between fermions: For example, the relativistic mean-field (RMF) 
models with vector-meson (ω) field in nuclear physics are suc-
cessful with the prescription that takes the saddle point value for 
the temporal component of the vector field, while they encounter 
the same auxiliary sign problem as the NJL model when fluctu-
ations are considered. The shell model Monte-Carlo method also 
has the problem; the Hubbard–Stratonovich transformation of re-
pulsive two-body interactions leads to the auxiliary sign problem, 
then an analytic continuation from the attractive region is needed. 
See Ref. [23] for a review.

In this paper, we try to apply the Lefschetz-thimble method to 
the auxiliary sign problem of fermionic models. To solve or assuage 
the auxiliary sign problem, it is natural to apply the Lefschetz-
thimble path-integral method as in the lattice calculation. Very 
few attempts of the Lefschetz-thimble path-integral method for 
the auxiliary sign problem have been done [24–26] in the Thirring 
model [27]. We show how this method resolve the auxiliary sign 
problem and how it makes the path integral well-defined. In ad-
dition, we discuss the difficulty induced by singular points and 
cuts in the complex plane of variables of integration. To show 
the solving procedure explicitly, we employ the NJL model with 
the vector-current interaction which is transformed into the repul-
sive vector-field after the bosonization of fermion bilinears. The 
NJL model is widely used not only in hadron physics but also 
in the physics beyond the standard model [28,29] and the dark 
matter phenomenology [30,31]. To obtain the analytic form of the 
effective potential, we use the homogeneous auxiliary-field ansatz 
which can be acceptable if the inhomogeneous phases [32,33] do 
not appear.

Specifically, we demonstrate that we can define the action in 
the complex plane of the auxiliary field as an analytic continuation 
along the Lefschetz thimbles. It should be noted that singulari-
ties may introduce a problem in lattice QCD simulations with the 
Lefschetz-thimble path-integral method. For example, the lattice 
QCD action with fermions should have cuts and singularities from 
the logarithm of the fermion determinant, since the fermion de-
terminant can be zero at finite chemical potentials. Therefore, the 
prescription developed here will be useful to deal with the prob-
lem induced by singularities.

This paper is organized as follows. Section 2 shows details of 
the Lefschetz thimble method. In Sec. 3, we explain the formalism 
of the NJL model. In Secs. 4 and 5, we discuss singularities in-
duced by multiple-valued functions in the momentum integration 
and show the prescription for it in systems which have only the 
auxiliary scalar or vector fields, respectively. Section 6 is devoted 
to summary.

2. Gradient flows and Lefschetz thimbles

In this study, we use the Lefschetz-thimble path-integral
method to attack the sign problem and thus we briefly explain 
the method in this section.

The Lefschetz-thimble path-integral method is based on the 
complexification of variables of integration, xi ∈ R → zi ∈ C where 
xi is the original variables of integration with i = 1, · · · , N for the 
N dimensional integration. Then, the dimension of the integration 
becomes 2N and thus we must reduce the dimension to the orig-
inal N . In the Lefschetz-thimble path-integral method, such reduc-
tion is performed by using the trajectory of gradient flow equations 

and then the trajectory can describe the new integral path. The 
most convenient form of the flow equations is given as

dzi

dt
=

(∂�[z]
∂zi

)
,

dzi

dt
= −

(∂�[z]
∂zi

)
, (1)

where t ∈ R is the fictitious time. The fixed point of gradient flows 
are obtained from

∂�[z]
∂zi

= 0. (2)

The first and second gradient flows in Eq. (1) provides the 
downward and upward flows respecting the Morse function, h =
−Re(�[z]), since the trajectory of the first flow equation satisfies

d

dt
Im(�[z]) = 0,

d

dt
Re(�[z]) > 0, (3)

and the second one does

d

dt
Im(�[z]) = 0,

d

dt
Re(�[z]) < 0. (4)

Downward flows starting from fixed points describe new inte-
gration paths (J ) which are so called the Lefschetz thimbles if 
corresponding upward-flow trajectories (K) go across the original 
integration path. Because of the reduction procedure, the thimbles 
becomes the N-dimensional manifold.

The Lefschetz thimbles have the property (3) and thus the sign 
problem seems to be resolved because Im(�[z]) is constant on the 
Lefschetz thimble and thus oscillation vanishes. However, there are 
remnants of the original sign problem. One is the global sign prob-
lem which arises when multi-thimbles become relevant to the in-
tegral. The grand-canonical partition function can be decomposed 
into the summation in terms of Lefschetz thimbles as

Z =
∫

CR

dnx e−�[x] =
∑
τ

nτ

∫
Jτ

dnz e−�[z], (5)

where nτ is the crossing number of the upward flow with the orig-
inal integration-path and τ characterizes each Lefschetz thimble, 
Jτ . Thus, there may be the cancellation in the numerical inte-
gration if each relevant thimble has a different constant value of 
Im(�[z]). At present, there is no way to exactly solve the global 
sign problem in lattice simulations, but it does not matter in 
the following discussions and thus we leave it as a future work. 
A promising approach to avoid the global sign problem has been 
proposed in Ref. [26,34] by modifying the original integration-path 
contour by using the gradient flow. The other is the residual sign 
problem which comes from the Jacobian of the new integration-
path contour. The residual sign problem seems to be controlled by 
the phase reweighting method at present; see Ref. [21].

3. Effective potential in the NJL model

The Euclidean action of the two-flavor three-color NJL model is 
expressed as

�NJL =
∫

d4xE

[
q̄(−iγμ∂μ + m0 − μγ0)q − G[(q̄q)2 + (q̄iγ5 �τq)2]

+Gv(q̄γ0q)2 − Gv(q̄γiq)2
]
, (6)

where q denotes the quark field, m0 is the current quark mass, and 
μ = 1, · · · , 4 with x4 = τ = it and γ4 = iγ0. We consider the case 
where G > 0 and Gv > 0. The last two terms are nothing but the 
vector-current interaction which leads to the repulsive vector-field 
after the bosonization of the effective action. Coupling constants G
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and Gv are related with each other via the Fierz transformation of 
the one-gluon exchange interaction; see appendix of Ref. [35] as 
an example.

The auxiliary sign problem appears as a consequence of defin-
ing the path integral of the auxiliary vector field by using the Wick 
rotation. The grand canonical partition function after the bosoniza-
tion of quark bilinears by using the Hubbard–Stratonovich trans-
formation is formally written as

Z =
∫

DqDq̄ e−�NJL[q,q̄] =
∫

CR

DσD �πDωμ e−�[σ , �π,ωμ], (7)

� = − log det D +
∫

d4xE

[
G(σ 2(x) + �π2(x)) + Gvω

2
μ(x)

]
, (8)

D = −iγμ∂μ + M − γ0μ
′ − 2iGγ5 �π · �τ + 2Gvγiωi , (9)

where M(x) = m0 + 2Gσ(x), μ′ = μ − 2iGvω4(x), CR means the 
integration path in the real variables. The variables of integration, 
σ , �π and ωμ with μ = 1, · · · , 4, are the scalar, pseudo-scalar and 
vector mesonic fields after using the Wick rotation for the ω0 field, 
respectively.

In the homogeneous auxiliary-field ansatz, we can simplify �
as � = βVV where V corresponds to the effective potential. In the 
concrete calculation, we should consider three different-type vari-
ables of integration, X = (σ , �π, ωμ), but we here only consider the 
limited set, X ′ = (σ , ω4), which provide the minimal set to discuss 
the auxiliary sign problem: Auxiliary fields ωi (i = x, y, z) and �π
cannot have homogeneous expectation values because of symme-
try arguments, and we expect that fluctuations of these fields do 
not change the qualitative features of thimbles.

The analytic form of V becomes

V = −2NfNc

∫
d3 p

(2π)3

[
E p + T (ln f − + ln f +)

]

+ Gσ 2 + G vω
2
4, (10)

where Nf = 2, Nc = 3 and f ∓ = 1 + e−β(E p∓μ′) with E p =√
p2 + M2. The constituent quark mass (M) and the effective 

real chemical potential (μ′) becomes M = m0 + 2Gσ and μ′ =
μ − 2iGvω4. The expectation values of σ and ω4 are 〈σ 〉 = 〈q̄q〉
and 〈ω4〉 = −i〈ω0〉 = −i〈q†q〉. With the Wick rotation for the ω0
field, μ′ takes complex values and then the effective action be-
comes complex. This is nothing but the auxiliary sign problem. Of 
course, the present ansatz cannot be used in the system with inho-
mogeneous condensates such as the dual chiral density wave [32]
and the real kink crystal [36,37] in dense QCD. We may extend 
our analysis to include inhomogeneous condensates by using the 
finite-mode approach where the condensates are represented by 
the finite number of modes [38], but such an extension is out of 
the scope of the present study.

Necessity of the Wick rotation of the ω0 field in the usual NJL 
model formulation can be seen from the detailed procedure of the 
bosonization. The auxiliary field, ωμ , is introduced by inserting 1
to the partition function via the Gauss integral to eliminate the 
four-fermi interactions;

1 =
∫

CR

Dω0 exp

[
Gv

∫
d4xE

(
ω0(x) − V 0(x)

)2
]

, (11)

where V 0(x) = q̄(x)γ0q(x). This identity is not valid since the sign 
of the ω2

0 term is not negative and the integral is not well-defined. 
Thus, the identity should be modified as

1 =
∫

CR

Dω0 exp

[
−Gv

∫
d4xE (ω4(x) + iV 0(x))2

]
. (12)

Since the sign of the ω2
4 term becomes negative, the identity is 

manifested. This is the reason why we need the Wick rotation in 
the usual NJL model formulation with the repulsive vector-current 
interaction. It should be noted that usual NJL model formulation 
can be acceptable if we adapt the constraint condition that ω0 is 
just identified as the quark number density. In this case, we solve 
the gap equation for ω0 and do not (and cannot) perform the path 
integral about ω0.

It should be noted that 2iGvω4 term in μ′ should be 2G vωo

before the Wick rotation and then the auxiliary sign problem is 
absent, but the path integral is not well defined because the Boltz-
mann weight, e−� , on the integration path of ω0 is not stable with 
fixed σ ;

lim
ω0→±∞V = −∞, lim

ω0→±∞(−�) = +∞. (13)

Therefore, the path integral is not well-defined without the Wick 
rotation of the ω0 field.

Throughout this paper, we use the parameter set obtained in 
Ref. [39], m0 = 5.5 MeV, G = 5.498 GeV−2, Gv = 0.25G and a 
three dimensional momentum cutoff, 
 = 631.5 MeV, which re-
produce empirical values of the pion mass and decay constant. In 
this setup, we obtain Lefschetz thimbles by solving the flow equa-
tions,

dσ

dt
= ±βV

(
∂V
∂σ

)
,

dω4

dt
= ±βV

(
∂V
∂ω4

)
(14)

starting from the fixed points.

4. Singularities and prescription

We can understand some properties of the new integration-
path contour and stability of the path integral without performing 
numerical calculations. Therefore, we firstly summarize the prop-
erties here;

�[x] ∈R, lim
ω0→±∞(−�[z]) = +∞,

⏐⏐�Wick rotation

�[x] ∈C, lim
ω4→±∞(−�[z]) = −∞,

⏐⏐�On Lefschetz thimbles

�[z] ∈R, lim
ω4→±∞(−�[z]) = −∞, (15)

where σ is fixed in the first and second lines. The first line means 
the path integral on CR . The second line is the path integral after 
the Wick rotation (correct bosonization) for the ω0 field and the 
third one means the path integral on J with ω4. In the flowchart 
(15), we assume that the Lefschetz thimbles do not end at singular 
points in the estimation of � in Eqs. (15). However, the stability 
of the integration still holds by Eq. (3) even if J ends at singular 
points. It should be noted that the present NJL model has the three 
dimensional momentum cutoff and thus we should stop the evo-
lution of the flow equations at certain energy scale ∼ 
. Of course, 
equation (15) is valid for the model and theory without the cutoff.

In Eq. (10), there are a square root and logarithmic functions 
in the momentum integration. On the original path CR , such term 
does not induce difficulties, but these cause a problem in the com-
plexified system. Since these are multivalued functions, we should 
care the singular points and cuts to obtain correct results. Actually, 
gradient flows starting from fixed points sometimes show numeri-
cally singular behavior and then we can not continuously draw the 
flow trajectories.
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Fig. 1. The z integration path when the start and end points (zs and ze) appear 
in the different quadrants. Closed circles represent singular points. The solid and 
dashed lines mean the integration path with and without our prescription, respec-
tively.

In order to discuss the problem coming from the singularities 
and cuts, we first consider only the σ field, and ω4 is fixed to 0. 
The thermal part of the effective potential for the particle contri-
bution (�T) becomes

�T = Nc N f

3π2


∫
0

dp
[ p4√

p2 + M2

1

1 + e(
√

p2+M2−μ)/T

]

− Nc N f

3π2

3T log(1 + e

√

2+M2−μ

T ) (16)

where we use the integration by parts to remove the logarithm. 
We can easily find singular points and cuts induced by σ and 
p-integration as

z = i(2k + 1)π T , (17)

where z = √
p2 + M2 − μ and k ∈ Z.

The integral path is on the real axis of z when σ is real. By 
comparison, the naïve integral path (dashed line in Fig. 1) can eas-
ily go across the singular points of the integrand when σ evolves 
from a real value to a complex value. We require that the action 
is obtained by the analytic continuation from that on the real axis. 
This requirement is fulfilled by the procedure explained below.

It is natural that gradient flows run on the same Riemann sheet 
and thus we extend p → p̃ ∈ C to take care of singularities; the 
p̃ integration-path should not go across singular points and cuts 
with varying M . The following flowchart shows the prescription of 
the p̃-modification. For the convenience of explanations, we use 
the complex z instead of p̃.

1. Start the calculation with the condition that the start and end 
points of the z-integration, zs and ze, exist in the different 
quadrant.

2. Set the integration path as shown in Fig. 1 to go across the 
origin.

3. Store the positions of zs and ze.
4. Evaluate next zs and ze with the t-evolution of gradient flows 

in Eq. (1).
5. Repeat the procedure 2 as long as zs and ze exist in different 

quadrants. If zs and ze appear in the same quadrant, the inte-
gration path should be taken as Fig. 2 to go through the same 
slit between singular points where zs or ze go through before.

6. Go back to the procedure 3 until the enough length of the 
Lefschetz thimble is obtained.

This prescription is imposed to fix the flow trajectories on the 
same Riemann sheet in the gradient-flow evolution since the value 
of the p̃-integration depends on the slit through which the path 

Fig. 2. The z integration path when zs and ze appear in the same quadrant. The 
arrow means the moving direction of the start position from Fig. 1 to present figure 
with the t-evolution of the gradient flow. Other symbols and lines are same with 
those in Fig. 1.

Fig. 3. Structure of singular points and cuts in the complex σ plane.

goes. It should be noted that the integral is independent of the 
path as long as the start point, the end point and the slit are the 
same, then the details of the path in each quadrant do not matter. 
The paths shown in Figs. 1 and 2 are examples, which are chosen 
to keep away from singular points of the integrand and to numer-
ically obtain the action precisely. In the naive Lefschetz thimble 
method without the prescription, the integration path in the com-
plex z plane becomes the dashed line in Fig. 1 and it provides 
wrong results.

Fig. 3 shows the structure of singular points and cuts in the 
complex σ plane where we only treat σ as the dynamical variable. 
It should be noted that we can set directions of cuts to a certain 
degree and thus present directions are just an example. The NJL 
model is the cutoff theory and thus the |M| > 
 region does not 
matter, but some cuts exist inside the relevant region for the inte-
gration. This problem should be important in all μ region.

We show the thimbles in the complex plane of σ in Fig. 4. We 
show the results around the first order phase transition bound-
ary, T = 10 MeV and μ = 348.5 MeV. We have used the first flow 
equation in Eq. (14) to obtain the thimbles, where the momentum 
integration path shown above is adopted to obtain the action and 
ω4 is kept to be zero. We also show the fixed points on the real 
axis. By solving the flow equation starting from these fixed points, 
it is confirmed that the real axis agrees with the sum of relevant 
thimbles. Then it is not necessary to search for other fixed points.

There are two comments in order. First, the present NJL model 
used in the numerical calculation of Fig. 4 does not have the repul-
sive vector-current interaction and thus it does not have the auxil-
iary sign problem. We just use this model as an laboratory to check 
the singularity and cut effects for gradient flows. Actually, Lef-
schetz thimbles and the original integration-path become exactly 
the same in this case. Of course, the relevant thimbles will deviate 
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Fig. 4. Lefschetz thimbles in the complex σ plane where we only treat σ as the 
dynamical variable. Open circles mean maximum and minima of the effective ac-
tion, corresponding to τ = 1, 3, 2 respectively from the left. Solid and dashed lines 
represent J and K for each thimble, respectively. In the present case, J1,2 and 
K3 form same lines and thus we do no show K3 in the figure. Singular points are 
expressed by closed circles. Cuts are drawn by dot-dashed lines, but we here only 
draw nearest-neighbor cuts of J2.

from the real axis if we introduce the vector-current interaction. 
Next, it should be noted that we observe the Stokes phenomenon, 
where some of the fixed points are connected by one Lefschetz 
thimble in the present case. Usually, such phenomenon should be 
resolved by introducing the infinitely small complex quantity such 
as the small imaginary part of the chemical potential to deform 
the thimbles [19]. However, the present results are used just to 
show the cut and singularities and thus we do not introduce the 
modification.

In the present analysis, we analytically sum over the Matsub-
ara frequencies and thus we encounter the difficulty of singular 
points and cuts. However, it is also true that we will encounter 
the same difficulty even in the case that Matsubara frequencies are 
not summed over analytically in the coordinate-space representa-
tion because both path-integral formulations in the momentum-
and coordinate-space representations are equivalent. In the lattice 
simulation, it is impossible to take the exact thermodynamic limit 
without the extrapolation and thus the present singularity issue 
may be weaken, but it exists in principle. Therefore, numerical 
calculations are safe if configurations are localized far from the 
singularities, but not if configurations appear around the singu-
larities. This problem should also appear in the complex Langevin 
method since the method also use the flow evaluation for perform-
ing the integration process. The difficulty from the singularities 
becomes more serious when the dimension of the space-time be-
comes larger and larger. Therefore, our analysis becomes important 
if we apply the Lefschetz-thimble path-integral method and the 
complex Langevin method to the four dimensional and also higher 
dimensional fermionic models.

5. Lefschetz thimble of Wick rotated vector field

We shall now discuss the Lefschetz thimble of the Wick ro-
tated vector field. In the previous section, we have found that the 
thimble of the auxiliary scalar field is the same as the original in-
tegration path when the vector field is fixed to be zero. Then we 
do not have a sign problem. In the case where the vector field is 
switched on, the auxiliary sign problem may arise as discussed in 
the Introduction. We adopt the same prescription as in the scalar 
field case; the gradient flow trajectory is required to evolve on the 
same Riemann sheet.

In Fig. 5, we show the Lefschetz thimble for the Wick rotated 
auxiliary vector field, ω, at T = 10 MeV and μ = 348.5 MeV. We 
have used the second flow equation in Eq. (14). The scalar field, σ , 

Fig. 5. Lefschetz thimble in the complex ω4 plane. The solid and dashed lines show 
the downward and upward thimbles, J and K, respectively, and the open circle 
shows the fixed point.

is small at this (T , μ) and is assumed to be zero. We have found 
the fixed point shown in Fig. 5 by using the mean field method. 
The standard mean field method corresponds to searching for the 
fixed point with an ansatz ω4 = −iω0, where ω0 ∈ R, and there is 
only one solution in the mean field approximation. Then ω4 takes 
the pure imaginary value at the fixed point, ω4 = −iω0 � −i〈q†q〉, 
and the relevant thimble runs approximately in parallel to the orig-
inal integration path, the real axis. Since there are no singular 
points between this thimble and the real axis as long as we have 
searched, the integral on this thimble agrees with that on the real 
axis. Thus, by constructing the integration path of the Wick rotated 
vector field in the complex plane, the auxiliary sign problem can 
be removed.

6. Summary

In this study, we have investigated the auxiliary sign problem 
which arises when the fermionic theory has the repulsive vector-
field in variables of integration after the bosonization procedure: 
The Boltzmann weight in the partition function should oscillate by 
the repulsive vector-field when we make the path-integral well-de-
fined. If fermionic effective models do not have the sign problem 
and those path-integral are ill-defined after the simple bosoniza-
tion procedure, the Wick rotation of the repulsive vector-field cures 
the illness. Necessity of this Wick rotation has been discussed in 
the detailed procedure of the bosonization. However, the Wick ro-
tation induces the auxiliary sign problem. To explicitly discuss the 
auxiliary sign problem, we have used the two-flavor Nambu–Jona-
Lasinio (NJL) model as an example. This model with the vector-
current interaction does not have the original sign problem, but 
its path-integral is ill-defined. The Wick rotation for the ω0 field 
which is induced from the repulsive vector-current interaction af-
ter the bosonization can make the path integral well-defined. How-
ever, the ω4 field induces the oscillating Boltzmann weight in the 
NJL partition function via the effective complex chemical poten-
tial. This auxiliary sign problem can be resolved by the Lefschetz-
thimble path-integral method and then the effective action satis-
fies following relations;

�[z] ∈R, lim
ω4→±∞(−�[z]) = −∞. (18)

Therefore, the path integral on the Lefschetz thimbles with the 
Wick rotation is well-defined and then the auxiliary sign problem 
vanishes.

However, after using the Wick rotation and the Lefschetz thim-
ble method, we found that there are singular points and cuts 
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induced by the square root and the logarithmic function in the mo-
mentum integration plane. These singularities sometimes induce 
the numerical instability for the gradient-flow evolution and we 
can not draw the Lefschetz thimble continuously. To analyze this 
problem, we consider the system which has either auxiliary scalar 
or vector fields. Then, we have proposed the new prescription for 
it by using the momentum integration in the complex domain to 
fix the gradient flow trajectories on the same Riemann sheet. In 
the prescription, choice of the integration path in the complexified 
momentum space is crucial.

This study is related with the sign problem and also the 
robustly defined path-integral formulation when the repulsive 
vector-field exists in variables of integration. The vector field is not 
a special concept in the path integral and thus present formulation 
should have wide application range in several quantum systems. It 
is also interesting to apply the path optimization method [40,41]
to systems with the vector field.
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