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Exact WKB analysis of

confluent hypergeometric differential equations
with a large parameter

By

Takashi AOKI *
,

Toshinori TAKAHASHI *
,

* and Mika Tanda**

Abstract

Voros coefficients of the confluent hypergeometric differential equations (the Kummer

equation or the Whittaker equation) with a large parameter are defined and explicit forms of

them are obtained.

Introduction

The aim of this article is to define and to compute explicit forms of the Voros co‐

efficients of the Whittaker equation, or equivalently, the Kummer equation with a large

parameter. In [5], the first and the third authors have investigated the Stokes phenom‐
ena for WKB solutions with respect to parameters of the Gauss equation with a large

parameter. They have defined the Voros coefficients for the Gauss equation and given
the explicit forms of them as well as their Borel sums. We shall show that the same defi‐

nition works and a similar computation can be carried out for confluent hypergeometric

equations. In this article, we restrict our discussion to the Voros coefficients and we

do not mention the parametric Stokes phenomena for WKB solutions of the Whittaker

equation. Those will be discussed in our forthcoming paper with the investigation of

the case where the way of putting the large parameter to be more general.
The notion of the Voros coefficients was introduced by Voros [15] for the Weber

equation and for the quartic oscillator. It was effectively used for the analysis of the
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Stokes phenomena of WKB solutions with respect to parameters. In [15], Voros com‐

puted the explicit form of the Jost function for the Weber equation and obtained a

formal power series as its asymptotic expansion. Later, Delabaere, Dillinger and Pham

[7] discussed such formal series for general polynomial potentials where two simple turn‐

ing points are connected by a Stokes curve and called them (or, more precisely, their

exponentials) Voros coefficients. They introduced the notion of Voros coefficients as

a formal series independently of the Jost functions. Starting from this point of view,
Shen and Silverstone [12] and Takei [13] obtained the explicit form of the Voros co‐

efficient directly for the Weber equation. These results were extended by Koike and

Takei [10] to a special case of the Whittaker equation. They defined and computed
the Voros coefficient for the Whittaker equation in a degenerate case where a simple

turning point and the regular singular point at the origin merge. In this article, we are

interested in the Whittaker equation in more general case. We employ a similar idea

used in [10], [13] to obtain systems of difference equations for the Voros coefficients.

Since the number of parameters (besides the large parameter) is two, the same method

as in those article, namely, the division for the Borel transforms, cannot be applicable
to solve the systems. As in the case of the Gauss equation [5], the systems are solved

by using formal differential operators of infinite order. Our results can be obtained by
the procedure of confluence from some of the formulas obtained in [5]. This observation

is given in [1], where a part of the results of [10] has been recovered by considering

degeneration of parameters which induces the merging of a simple turning point and

the regular singularity at the origin.

§1. The Whittaker equation and the Kummer equation with a large

parameter.

Let  $\alpha$ and  $\gamma$ be complex constants. Let us consider the following Whittaker equation
with a large parameter  $\eta$ :

(1.1) (-\displaystyle \frac{d^{2}}{dx^{2}}+$\eta$^{2}Q) $\psi$=0,
where Q=Q_{0}+$\eta$^{-2}Q_{1} with

Q_{0}=\displaystyle \frac{x^{2}+2(2 $\alpha$- $\gamma$)x+$\gamma$^{2}}{4x^{2}}, Q_{1}=-\frac{1}{4x^{2}}.
Equation (1.1) has a regular singular point at b_{0}:=0 and an irregular singular point
at  b_{2}:=\infty . Here the lacking of the subscript index �1� in  b �s comes from the usual

procedure of confluence of regular singularities b_{1}=1 and  b_{2}=\infty in the Gauss equation

([1], [5]). Equation (1.1) is obtained from the following Kummer equation:

(1.2)  x\displaystyle \frac{d^{2}w}{dx^{2}}+( $\gamma$+$\eta$^{-1}-x) $\eta$\frac{dw}{dx}-$\eta$^{2}( $\alpha$+\frac{1}{2}$\eta$^{-1})w=0
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by introducing a new unknown function  $\psi$ :

(1.3)  w=x^{-\frac{1}{2}-\frac{ $\eta \gamma$}{2}}\displaystyle \exp(\frac{ $\eta$ x}{2}) $\psi$.
The parameters  $\alpha$ and  $\gamma$ correspond to those in the Gauss equation investigated in [2],
[5], [14]. The Whittaker equation is normally written as (cf. [11])

(1.4) \displaystyle \frac{d^{2}W}{dz^{2}}+(-\frac{1}{4}+\frac{ $\kappa$}{z}+\frac{\frac{1}{4}-$\mu$^{2}}{z^{2}})W=0.
If we set  $\mu$=\displaystyle \frac{1}{2} $\gamma \eta$,  $\kappa$= (\displaystyle \frac{1}{2} $\gamma$- $\alpha$) $\eta$ and  z= $\eta$ x in (1.4), then we have (1.1). Our potential

Q is invariant under the involution  $\iota$ on the space of parameters defined by

(1.5)  $\iota$:( $\alpha$,  $\gamma$)\mapsto( $\alpha$- $\gamma$, - $\gamma$) .

We assume the following condition:

(1.6)  $\alpha \gamma$( $\alpha$- $\gamma$)\neq 0.

This implies that there are two distinct simple turning points a_{0} and a_{1} , namely, simple
zeros of Qdx2 and that a_{0}, a_{1}\neq b_{0}, b_{2}.

Remark. If we consider the limit as  $\gamma$ tends to  0 in (1.1), we have a special case

of the Whittaker equation treated in [10]. See [1] for details.

§2. The Voros coefficients of the Whittaker equation

Let

(2.1) S=\displaystyle \sum_{j=-1}^{\infty}$\eta$^{-j}S_{j}
be a formal solution of the Riccati equation associated with (1.1)

(2.2) \displaystyle \frac{dS}{dx}+S^{2}=$\eta$^{2}Q
with the leading term S_{-1}=\sqrt{Q_{0}} . Here we fix a branch of \sqrt{Q_{0}} suitably by taking a

segment or an arc connecting a_{0} and a_{1} in \mathbb{C}-\{0\} as a branch cut. Then the higher‐
order terms S_{j}(j\geq 0) are uniquely determined. Let S_{\mathrm{o}\mathrm{d}\mathrm{d}} be the odd‐order part of S

with respect to  $\eta$ . Then

(2.3)  $\psi$_{\pm}=\displaystyle \frac{1}{\sqrt{S_{\mathrm{o}\mathrm{d}\mathrm{d}}}}\exp(\pm\int_{x_{0}}^{x}S_{\mathrm{o}\mathrm{d}\mathrm{d}}dx)
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are formal solutions to (1.1), which are called WKB solutions (see, for example, [9] and

the references cited therein). Here x_{0} is a fixed point in \mathbb{C}-\{0\} . When we choose

x_{0}=a_{j} (j=0 or 1) (see [9] for the meaning of the integration), the solutions are said

to be normalized at the turning point a_{j} . Let C_{j} denote a contour starting from b_{j},
going to a_{0} through the first sheet of the Riemann surface of \sqrt{Q_{0}} , stopping just before

arriving at a_{0} and turning once around a_{0} counterclockwise and finally going back to b_{j}
through the second sheet (j=0,2) . The branches of \sqrt{Q_{0}} on C_{j} are chosen so that at

the starting point b_{j} we have

(2.4) \displaystyle \sqrt{Q_{0}}\sim\frac{ $\gamma$}{2x} at x=b_{0},

(2.5) \displaystyle \sqrt{Q_{0}}\sim\frac{1}{2} at x=b_{2}.

Since b_{0}=0 is a regular singular point of (1.1), S_{\mathrm{o}\mathrm{d}\mathrm{d}}dx and Sdx have a simple pole
there and their residues at b_{0} are the same (Cf. [9]). On the other hand,  b_{2}=\infty is an

irregular singularity of rank 1 of (1.1). As in the case of regular singularities, we can

see that the principal part of  S_{\mathrm{o}\mathrm{d}\mathrm{d}}dx coincides with that of Sdx and that it is

- $\eta$(\displaystyle \frac{1}{2y^{2}}+\frac{2 $\alpha$- $\gamma$}{2y})dy
in the local coordinate y=1/x at the infinity. Hence (S_{\mathrm{o}\mathrm{d}\mathrm{d}}-S_{-1})dx is integrable on

C_{j} for j=0 ,
2.

Definition 2.1. Let V_{j}=V_{j}( $\alpha$,  $\gamma$,  $\eta$)(j=0,2) denote the formal power series

in $\eta$^{-1} defined by

(2.6) \displaystyle \frac{1}{2}\int_{C_{j}}(S_{\mathrm{o}\mathrm{d}\mathrm{d}}-S_{-1})d_{X}.
We call V_{j} the Voros coefficient of (1.1) or of (1.2) with respect to b_{j} for j=0 ,

2.

The explicit forms of V_{j}(j=0,2) are given by the following theorem which has

been announced in [1].

Theorem 2.2. The Vo ros coefficients V_{j}(j=0,2) have the following fo rms:

(2.7) V_{0}=\displaystyle \frac{1}{2}\sum_{n=2}^{\infty}\frac{B_{n}$\eta$^{1-n}}{n(n-1)}\{(1-2^{1-n})(\frac{1}{$\alpha$^{n-1}}+\frac{1}{( $\gamma$- $\alpha$)^{n-1}})+\frac{2}{$\gamma$^{n-1}}\},
(2.8) V_{2}=\displaystyle \frac{1}{2}\sum_{n=2}^{\infty}\frac{B_{n}$\eta$^{1-n}}{n(n-1)}(1-2^{1-n})(\frac{1}{$\alpha$^{n-1}}-\frac{1}{( $\gamma$- $\alpha$)^{n-1}})
Here B_{n} denote the Bernoulli numbers defined by

\displaystyle \frac{te^{t}}{e^{t}-1}=\sum_{n=0}^{\infty}\frac{B_{n}}{n!}t^{n}
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To prove the theorem, we first find systems of difference equations which character‐

ize V_{0} and V_{2} . As in the cases of the Weber equation ([13]), of the degenerate Whittaker

equation ([10]) and of the Gauss equation ([2], [5]), the ladder operators yield the sys‐

tems. Let S( $\alpha$,  $\gamma$) be the space of all formal solutions of (1.2). As is well known, the

operators

(2.9) H_{1}:=x\displaystyle \frac{d}{dx}+ $\eta \alpha$+\frac{1}{2}
and

(2.10)  H_{2} :=\displaystyle \frac{d}{d_{X}}- $\eta$
induce linear isomorphisms

(2.11)  H_{1}:S( $\alpha$,  $\gamma$)\rightarrow S( $\alpha$+$\eta$^{-1},  $\gamma$)

and

(2.12) H_{2}:S( $\alpha$,  $\gamma$)\rightarrow S( $\alpha$,  $\gamma$+$\eta$^{-1}) ,

respectively.

Lemma 2.3. The fo rmal solution S=S( $\alpha$,  $\gamma$;x,  $\eta$) of (2.2) satisfies the fo llow‐

ing relations:

(2.13) S( $\alpha$+$\eta$^{-1},  $\gamma$;x,  $\eta$)-S( $\alpha$,  $\gamma$;x,  $\eta$)

=\displaystyle \frac{d}{dx}\log(-\frac{ $\eta \gamma$+1}{2}+x(\frac{ $\eta$}{2}+S( $\alpha$,  $\gamma$;x,  $\eta$))+ $\eta \alpha$+\frac{1}{2}) ,

(2.14) S( $\alpha$,  $\gamma$+$\eta$^{-1};x,  $\eta$)-S( $\alpha$,  $\gamma$;x,  $\eta$)

=\displaystyle \frac{d}{d_{X}}\log(-\frac{ $\eta \gamma$+1}{2x}-\frac{ $\eta$}{2}+S( $\alpha$,  $\gamma$;x,  $\eta$))+\frac{1}{2x}.
Proof. Firstly we note that

\displaystyle \hat{w}:=H_{1}(x^{-\frac{1}{2}-\frac{ $\eta \gamma$}{2}}\exp(\frac{ $\eta$ x}{2})\exp(\int^{x}S( $\alpha$,  $\gamma$;x,  $\eta$)dx))
belongs to S( $\alpha$+$\eta$^{-1},  $\gamma$) . Let \hat{S} denote the logarithmic derivative of  x^{\frac{1}{2}+\frac{ $\eta \gamma$}{2}}\exp (- \displaystyle \frac{ $\eta$ x}{2})\hat{w}.
Then we can see that \hat{S} satisfies the equation obtained from (2.2) by replacing  $\alpha$ by

 $\alpha$+$\eta$^{-1} . Since the leading term of \hat{S} coincides with that of S( $\alpha$+$\eta$^{-1},  $\gamma$;x,  $\eta$) ,
we

conclude that

(2.15) \hat{S}=S( $\alpha$+$\eta$^{-1},  $\gamma$;x,  $\eta$) .

Hence we have (2.13). Similarly, (2.14) can be proved. \square 

Integrating the above relations with the difference of S_{-1} on the contours C_{j}(j=
0 , 2), we have
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Proposition 2.4. The Vo ros coefficients V_{j}(j=0,2) satisfies the following

systems of difference equations :

(2.16) V_{0}( $\alpha$+$\eta$^{-1},  $\gamma$,  $\eta$)-V_{0}( $\alpha$,  $\gamma$,  $\eta$)

=\displaystyle \frac{1}{2}\log\frac{ $\gamma$- $\alpha$-\frac{1}{2}$\eta$^{-1}}{ $\alpha$+\frac{1}{2} $\eta$-1}+\frac{1}{2} $\eta$(( $\alpha$+$\eta$^{-1})\log( $\alpha$+$\eta$^{-1})- $\alpha$\log $\alpha$)
+\displaystyle \frac{ $\eta$}{2}(( $\gamma$- $\alpha-\eta$^{-1})\log( $\gamma$- $\alpha-\eta$^{-1})-( $\gamma$- $\alpha$)\log( $\gamma$- $\alpha$)) ,

(2.17) V_{0}( $\alpha$,  $\gamma$+$\eta$^{-1},  $\eta$)-V_{0}( $\alpha$,  $\gamma$,  $\eta$)

=\displaystyle \frac{1}{2}\log\frac{ $\gamma$( $\gamma$+$\eta$^{-1})}{ $\gamma$- $\alpha$+\frac{1}{2} $\eta$-1}- $\eta$(( $\gamma$+$\eta$^{-1})\log( $\gamma$+$\eta$^{-1})- $\gamma$\log $\gamma$)+\frac{1}{2}(( $\gamma$+$\eta$^{-1})- $\gamma$))
+\displaystyle \frac{1}{2} $\eta$(( $\gamma$+$\eta$^{-1}- $\alpha$)\log( $\gamma$+$\eta$^{-1}- $\alpha$)-( $\gamma$- $\alpha$)\log( $\gamma$- $\alpha$)) ,

(2.18) V_{2}( $\alpha$+$\eta$^{-1},  $\gamma$,  $\eta$)-V_{2}( $\alpha$,  $\gamma$,  $\eta$)

=\displaystyle \frac{1}{2}\log(( $\alpha$+\frac{1}{2}$\eta$^{-1})( $\gamma$- $\alpha$-\frac{1}{2}$\eta$^{-1}))+ $\eta$(( $\alpha$+$\eta$^{-1})- $\alpha$)
+\displaystyle \frac{1}{2} $\eta$(( $\gamma$- $\alpha-\eta$^{-1})\log( $\gamma$- $\alpha-\eta$^{-1})-( $\gamma$- $\alpha$)\log( $\gamma$- $\alpha$))

-\displaystyle \frac{1}{2} $\eta$(( $\alpha$+$\eta$^{-1})\log( $\alpha$+$\eta$^{-1})- $\alpha$\log $\alpha$) ,

(2.19) V_{2}( $\alpha$,  $\gamma$+$\eta$^{-1},  $\eta$)-V_{2}( $\alpha$,  $\gamma$,  $\eta$)

=-\displaystyle \frac{1}{2}\log( $\gamma$- $\alpha$+\frac{1}{2}$\eta$^{-1})-\frac{1}{2} $\eta$(( $\gamma$+$\eta$^{-1})- $\gamma$)
+\displaystyle \frac{1}{2} $\eta$( $\gamma$+$\eta$^{-1}- $\alpha$)\log( $\gamma$+$\eta$^{-1}- $\alpha$))-( $\gamma$- $\alpha$)\log( $\gamma$- $\alpha$)) .

Moreover, V_{j} are characterized by those systems as the fo rmal power series solutions in

$\eta$^{-1} which are homogeneous of degree 0 in ( $\alpha$,  $\gamma,\ \eta$^{-1}) and which do not have constant

terms.

Proof. We only give the proof of (2.18), since the others can be shown similarly.
As is shown in [13], {\rm Res}_{x=a_{0}}S={\rm Res}_{x=a_{0}}S_{0}=-1/4 holds also in this case. Hence we

have

(2.20) \displaystyle \frac{1}{2}\int_{C_{2}}(S_{\mathrm{o}\mathrm{d}\mathrm{d}}-S_{-1})dx=\frac{1}{2}\int_{C_{2}}(S- $\eta$ S_{-1}-S_{0})dx.
Let x_{0} be a complex number and let C_{x_{0}} be a contour starting at x_{0} on the first sheet of

the Riemann surface of \sqrt{Q_{0}} , going to a_{0} along a straight line connecting x_{0} and a_{0} just
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before arriving at a_{0} , turning a_{0} once counterclockwise and going back to x_{0} . Modifying
the contour slightly if necessary, we may assume that C_{x_{0}} does not hit another turning

point. Let \hat{S} and \hat{S}_{-1} be formal series obtained by replacing  $\alpha$ by  $\alpha$+$\eta$^{-1} in S and

S_{-1} , respectively. To obtain V_{2}( $\alpha$+$\eta$^{-1},  $\gamma$,  $\eta$)-V_{2}( $\alpha$,  $\gamma$,  $\eta$) ,
it suffices to compute

x_{0\rightarrow\infty}\displaystyle \lim\frac{1}{2}(\int_{C_{x_{0}}}(\hat{S}-S)dx- $\eta$\int_{C_{x_{0}}}(\hat{S}_{-1}-S_{-1})dx)
Integrating (2. 13), we have

(2.21) \displaystyle \frac{1}{2}\int_{C_{x_{0}}}(\hat{S}-S)d_{X}=\frac{1}{2}\log\frac{-\frac{1}{2}( $\eta \gamma$+1)+ $\eta \alpha$+\frac{1}{2}+x_{0}(\frac{ $\eta$}{2}+S( $\alpha,\ \gamma$;\tilde{x}_{0}, $\eta$))}{-\frac{1}{2}( $\eta \gamma$+1)+ $\eta \alpha$+\frac{1}{2}+x_{0}(\frac{ $\eta$}{2}+S( $\alpha,\ \gamma$;x_{0}, $\eta$))},
where \tilde{x}_{0} denotes the point on the second sheet corresponding to x_{0} . It follows from

(2.2) and (2.5) that

(2.22) S( $\alpha$,  $\gamma$,\displaystyle \tilde{x}_{0},  $\eta$)=-\frac{ $\eta$}{2}- $\eta$\frac{2 $\alpha$- $\gamma$}{2x_{0}}+ $\eta$( $\alpha$- $\gamma$+\frac{$\eta$^{-1}}{2})( $\alpha$+\frac{$\eta$^{-1}}{2})\frac{1}{x_{0}^{2}}+O(\frac{1}{x_{0}^{3}})
and

(2.23) S( $\alpha$,  $\gamma$, x_{0},  $\eta$)=\displaystyle \frac{ $\eta$}{2}+ $\eta$\frac{2 $\alpha$- $\gamma$}{2x_{0}}+ $\eta$( $\alpha$- $\gamma$-\frac{$\eta$^{-1}}{2})( $\alpha$-\frac{$\eta$^{-1}}{2})\frac{1}{x_{0}^{2}}+O(\frac{1}{x_{0}^{3}})
hold. Thus (2.21) has the following leading terms:

(2.24) \displaystyle \frac{1}{2}\log(( $\gamma$- $\alpha$-\frac{$\eta$^{-1}}{2})( $\alpha$+\frac{$\eta$^{-1}}{2}))+\frac{ $\pi$ i}{2}-\log x_{0}+O(\frac{1}{x_{0}})
Here we use the convention of the argument  $\alpha$- $\gamma$=e^{ $\pi$ i}( $\gamma$- $\alpha$) ,

etc. On the other hand,

S_{-1} can be integrated easily and we have

(2.25) \displaystyle \frac{ $\eta$}{2}\int_{C_{x_{0}}}(\hat{S}_{-1}-S_{-1})d_{X}=-1-\log x_{0}+\frac{ $\eta$}{2}(( $\alpha$+$\eta$^{-1})\log( $\alpha$+$\eta$^{-1})- $\alpha$\log $\alpha$)
-\displaystyle \frac{ $\eta$}{2}(( $\gamma$- $\alpha-\eta$^{-1})\log( $\gamma$- $\alpha-\eta$^{-1})-( $\gamma$- $\alpha$)\log( $\gamma$- $\alpha$))+\frac{ $\pi$ i}{2}+O(\frac{1}{x_{0}})

Subtracting (2.25) from (2.24) and taking the limit x_{0} to the infinity, we obtain (2.18).
Uniqueness of the homogeneous formal solutions follows from a similar argument in the

proof of Proposition 2.8 in [5]. \square 

We can solve the systems (2.16)(2.19) in a similar manner as in [5] by using formal

differential operators of infinite order ([6])

(2.26) $\eta$^{-1}\displaystyle \partial_{ $\alpha$}(\exp($\eta$^{-1}\partial_{ $\alpha$})-1)^{-1}=\sum_{n=0}^{\infty}\frac{(-1)^{n}B_{n}}{n!}$\eta$^{-n}\partial_{ $\alpha$}^{n}



172 Takashi AOKI, Toshinori TAKAHASHI and Mika TANDA

and

(2.27) $\eta$^{-1}\displaystyle \partial_{ $\gamma$}(\exp($\eta$^{-1}\partial_{ $\gamma$})-1)^{-1}=\sum_{n=0}^{\infty}\frac{(-1)^{n}B_{n}}{n!}$\eta$^{-n}\partial_{ $\gamma$}^{n}.
Here \partial_{ $\alpha$} stands for \partial/\partial $\alpha$ ,

etc. We omit the computation of solving the systems because

it is almost the same as a part of the proof of Theorem 2.3 in [5].

§3. Borel sums of the Voros coefficients

To consider the Borel sums of  V_{j}(j=0,2) ,
we must specify the �Stokes regions�

for the parameters, where V_{j} �s are Borel summable. These regions are described by

using the following sets:

(3.1) $\omega$_{1}=\{( $\alpha$,  $\gamma$)\in \mathbb{C}^{2}|0<{\rm Re} $\alpha$<{\rm Re} $\gamma$\},

(3.2) $\omega$_{3}=\{( $\alpha$,  $\gamma$)\in \mathbb{C}^{2}|0<{\rm Re} $\gamma$<{\rm Re} $\alpha$\},

(3.3) $\omega$_{4}=\{( $\alpha$,  $\gamma$)\in \mathbb{C}^{2}|{\rm Re} $\alpha$<0<{\rm Re} $\gamma$\}.

Regarding the relation between these sets and configurations of the Stokes curves of

(1.1), we refer the readers to [1]. Those regions and the images of them by the involution

 $\iota$ (cf. (1.5)) cover almost all \mathbb{C}^{2} :

(3.4) \cup ($\omega$_{j}\cup $\iota$($\omega$_{j}))=\{( $\alpha$,  $\gamma$)\in \mathbb{C}^{2}|{\rm Re} $\alpha${\rm Re} $\gamma${\rm Re}( $\gamma$- $\alpha$)\neq 0\}.
j=1,3,4

If ( $\alpha$,  $\gamma$) belongs to the above set, there is no Stokes curves of (1.1) which connect

turning point(s).

Theorem 3.1. The Vo ros coefficients V_{j}(j=0,2) are Borel summable in $\omega$_{k}

and in  $\iota$($\omega$_{k}) fork=1 , 3, 4. Here  $\iota$ is the involution in the space of parameters defined
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by (1.5). The Borel sums  V_{j}^{k} of V_{j} in $\omega$_{k} have the following fo rms:

(3.5) V_{0}^{1}=\displaystyle \frac{1}{2}\log\frac{ $\Gamma$( $\gamma \eta$)^{2}$\alpha$^{ $\alpha \eta$}( $\gamma$- $\alpha$)^{( $\gamma$- $\alpha$) $\eta$}$\eta$^{1- $\gamma \eta$}}{ $\Gamma$(\frac{1}{2}+ $\alpha \eta$) $\Gamma$(\frac{1}{2}+( $\gamma$- $\alpha$) $\eta$)$\gamma$^{2 $\gamma \eta$-1}}+\frac{1}{2} $\gamma \eta$,
(3.6) V_{0}^{3}=\displaystyle \frac{1}{2}\log\frac{ $\Gamma$( $\gamma \eta$)^{2} $\Gamma$(\frac{1}{2}+( $\alpha$- $\gamma$) $\eta$)$\alpha$^{ $\alpha \eta$}$\eta$^{1- $\gamma \eta$}}{2 $\pi \Gamma$(\frac{1}{2}+ $\alpha \eta$)( $\alpha$- $\gamma$)^{( $\alpha$- $\gamma$) $\eta$}$\gamma$^{2 $\gamma \eta$-1}}+\frac{1}{2} $\gamma \eta$,
(3.7) V_{0}^{4}=\displaystyle \frac{1}{2}\log\frac{ $\Gamma$(\frac{1}{2}- $\alpha \eta$) $\Gamma$( $\gamma \eta$)^{2}( $\gamma$- $\alpha$)^{( $\gamma$- $\alpha$) $\eta$}$\eta$^{1- $\gamma \eta$}}{2 $\pi \Gamma$(\frac{1}{2}+( $\gamma$- $\alpha$) $\eta$)(- $\alpha$)^{- $\alpha \eta$}$\gamma$^{2 $\gamma \eta$-1}}+\frac{1}{2} $\gamma \eta$,
(3.8) V_{2}^{1}=\displaystyle \frac{1}{2}\log\frac{ $\Gamma$(\frac{1}{2}+( $\gamma$- $\alpha$) $\eta$)$\alpha$^{ $\alpha \eta$}$\eta$^{(2 $\alpha$- $\gamma$) $\eta$}}{ $\Gamma$(\frac{1}{2}+ $\alpha \eta$)( $\gamma$- $\alpha$)^{( $\gamma$- $\alpha$) $\eta$}}-\frac{1}{2}(2 $\alpha$- $\gamma$) $\eta$,
(3.9) V_{2}^{3}=\displaystyle \frac{1}{2}\log\frac{2 $\pi \alpha$^{ $\alpha \eta$}( $\alpha$- $\gamma$)^{( $\alpha$- $\gamma$) $\eta$}$\eta$^{(2 $\alpha$- $\gamma$) $\eta$}}{ $\Gamma$(\frac{1}{2}+ $\alpha \eta$) $\Gamma$(\frac{1}{2}+( $\alpha$- $\gamma$) $\eta$)}-\frac{1}{2}(2 $\alpha$- $\gamma$) $\eta$,
(3.10) V_{2}^{4}=\displaystyle \frac{1}{2}\log\frac{ $\Gamma$(\frac{1}{2}- $\alpha \eta$) $\Gamma$(\frac{1}{2}+( $\gamma$- $\alpha$) $\eta$)$\eta$^{(2 $\alpha$- $\gamma$) $\eta$}}{2 $\pi$(- $\alpha$)^{- $\alpha \eta$}( $\gamma$- $\alpha$)^{( $\gamma$- $\alpha$) $\eta$}}-\frac{1}{2}(2 $\alpha$- $\gamma$) $\eta$.

Remark. The Borel sum of V_{j} in  $\iota$($\omega$_{k}) coincides with V_{j}^{k} up to signature, which

comes from the choice of the branch of \sqrt{Q_{0}}.

Theorem 3.1 is proved by computing the Borel sums directly from the expressions

given in Theorem 2.2. We can use a method developed in [13], where the Borel sum of

the series

(3.11) \displaystyle \sum_{n=2}^{\infty}\frac{(1-2^{1-n})B_{n}}{n(n-1)}(iE $\eta$)^{1-n}
is given. Hence we do not repeat the computation here. See the proof of Theorem 3.1

in [5] also.
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