

Title	High-resolution suborganellar localization of Ca2+-binding protein CAS, a novel regulator of CO2-concentrating mechanism
Author(s)	Yamano, Takashi; Toyokawa, Chihana; Fukuzawa, Hideya
Citation	Protoplasma (2018), 255(4): 1015-1022
Issue Date	2018-07
URL	http://hdl.handle.net/2433/231982
Right	This is a post-peer-review, pre-copyedit version of an article published in 'Protoplasma'. The final authenticated version is available online at: https://doi.org/10.1007/s00709-018-1208-2.; The full-text file will be made open to the public on 25 January 2019 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
Туре	Journal Article
Textversion	author

E-mail: fukuzawa@lif.kyoto-u.ac.jp

1234567890112345678901121111111111111111111111111111111111	1 2 3 4 5 6 7 8 9 10 11 12 13

64 65

Title: High-resolution suborganellar localization of Ca²⁺-binding protein CAS, a novel 1 2 regulator of CO₂-concentrating mechanism 3 Authors: Takashi Yamano, Chihana Toyokawa, and Hideya Fukuzawa 4 5 Affiliation: Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan 6 7 8 **Corresponding author:** Hideya Fukuzawa 9 10 Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan Phone: +81-75-753-4298 11 12 FAX: +81-75-753-9228

	_
	1
	2
	_
	3
	4
	5
	6
	7
	/
	8
	-
	9
1	0
	_
1	1
1	2
1	3
_	J
1	3 4
	_
1	5
1	
1	6
1	7
_	,
1	8
-	_
L	9
^	0
4	U
2	1
_	1
2	2
2	_
2	3
_	4
2	4
2	5
_)
2	6
_	U
2	7
_	_
2	8
_	_
4	8
2	0
3	1
3	2
3	2
3 3	2 3 4
3 3	2
3 3 3	2 3 4 5
3 3 3 3	2 3 4 5 6
3 3 3 3	2 3 4 5 6
3 3 3 3 3	2 3 4 5 6 7
3 3 3 3 3 3	2 3 4 5 6 7
3 3 3 3 3 3	2 3 4 5 6 7
3 3 3 3 3 3 3	2 3 4 5 6 7 8 9
3 3 3 3 3 3 3	2 3 4 5 6 7 8 9
3 3 3 3 3 4	2 3 4 5 6 7 8 9
3 3 3 3 3 3 3	2 3 4 5 6 7 8 9
3 3 3 3 3 4 4	2 3 4 5 6 7 8 9 0 1
3 3 3 3 3 4	2 3 4 5 6 7 8 9
3 3 3 3 3 3 4 4 4	2 3 4 5 6 7 8 9 0 1 2
3 3 3 3 3 3 4 4 4 4	2 3 4 5 6 7 8 9 0 1 2 3
3 3 3 3 3 3 4 4 4 4	2 3 4 5 6 7 8 9 0 1 2 3
3 3 3 3 3 3 4 4 4 4	2 3 4 5 6 7 8 9 0 1 2 3 4
3 3 3 3 3 3 4 4 4 4	2 3 4 5 6 7 8 9 0 1 2 3
333333444444	23456789012345
3333334444444	2 3 4 5 6 7 8 9 0 1 2 3 4
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4	234567890123456
333333444444	23456789012345
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2345678901234567
333333444444444444444444444444444444444	23456789012345678
333333444444444444444444444444444444444	23456789012345678
333333444444444444444444444444444444444	234567890123456789
333333444444444444444444444444444444444	234567890123456789
3 3 3 3 3 3 4 4 4 4 4 4 5	2345678901234567890
333333444444555	23456789012345678901
333333444444555	23456789012345678901
3333334444445555	234567890123456789012
3333334444445555	234567890123456789012
33333344444455555	2345678901234567890123
3333333444444555555	23456789012345678901234
3333333444444555555	23456789012345678901234
3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5	234567890123456789012345
3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5	234567890123456789012345
33333344444445555555	2345678901234567890123456
33333344444445555555	2345678901234567890123456
3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5	23456789012345678901234567
3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 5	234567890123456789012345678
3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 5	234567890123456789012345678
3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 5	2345678901234567890123456789
3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 5	2345678901234567890123456789
3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 5	234567890123456789012345678
3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 5	23456789012345678901234567890
3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 5	234567890123456789012345678901
3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 5	234567890123456789012345678901
3333334444445555555556666	2345678901234567890123456789012
3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 5	2345678901234567890123456789012
3333334444445555555556666	2345678901234567890123456789012

32

33 34

Abstract 14 Many aquatic algae induce a CO₂-concentrating mechanism (CCM) associated with active 15 16 inorganic carbon transport to maintain high photosynthetic affinity using dissolved inorganic 17 carbon even in low-CO₂ (LC) conditions. In the green alga Chlamydomonas reinhardtii, a Ca²⁺-binding protein CAS was identified as a novel factor regulating the expression of CCM-18 19 related proteins including bicarbonate transporters. Although previous studies revealed that CAS associates with the thylakoid membrane and changes its localization in response to CO₂ 20 21 and light availability, its detailed localization in the chloroplast has not been examined in 22 vivo. In this study, high-resolution fluorescence images of CAS fused with a 23 Chlamydomonas-adapted fluorescence protein, Clover, were obtained by using a sensitive 24 hybrid detector and an image deconvolution method. In high-CO₂ (5% v/v) conditions, the 25 fluorescence signals of Clover displayed a mesh-like structure in the chloroplast and part of 26 the signals discontinuously overlapped with chlorophyll autofluorescence. The fluorescence signals gathered inside the pyrenoid as a distinct wheel-like structure at 2 h after transfer to 27 LC-light condition, and then localized to the center of the pyrenoid at 12 h. These results 28 29 suggest that CAS could move in the chloroplast along the thylakoid membrane in response to lowering CO₂ and gather inside the pyrenoid during the operation of the CCM. 30 31

concentrating mechanism, Pyrenoid

Key words: Bicarbonate transporter, Ca²⁺-binding protein, *Chlamydomonas*, CO₂-

Introduction

Photosynthetic organisms can sense and respond to changes of several environmental factors, such as light, CO₂, temperature, and various nutrient availabilities, to optimize and/or maintain their photosynthetic activity. Among these stresses, the shortage of CO₂ supply impacts many physiological aspects of plants, especially photosynthetic efficiency due to the low affinity of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) against CO₂. In aquatic environments, CO₂-limiting stress is caused not only by the low catalytic activity of Rubisco but also by the 10,000-fold slower diffusion rate of CO₂ in aquatic conditions than that in atmospheric conditions (Jones 1992). To acclimate to this stress, many aquatic organisms possess a CO₂-concentrating mechanism (CCM), which involves the active transport of inorganic carbon (Ci; CO₂ and HCO₃⁻) and enzymatic conversion between CO₂ and HCO₃⁻ to maintain the Ci pool and concentrate CO₂ in the vicinity of Rubisco (Fukuzawa et al. 2012; Wang et al. 2015).

Molecular aspects of the eukaryotic CCM have been mainly studied using the eukaryotic green alga *Chlamydomonas reinhardtii* as a model. So far, it was reported that high-light activated 3 (HLA3) and low-CO₂ (LC)-inducible protein A (LCIA) are associated with the HCO₃⁻ transport system, which facilitate HCO₃⁻ uptake from outside of cells to the chloroplast stroma across physiological barriers such as the plasma membrane and chloroplast envelope (Gao et al. 2015; Yamano et al. 2015). HLA3 belongs to a multidrug-resistance-related protein subfamily of the ATP-binding cassette transporter superfamily (Im and Grossman 2001) and localizes to the plasma membrane (Yamano et al. 2015). LCIA belongs to a formate-nitrite transporter family (Mariscal et al. 2006), in which proteins form a pentameric aquaporin-like channel rather than an active transporter (Wang et al. 2009), and localizes to the chloroplast envelope (Wang and Spalding 2014; Yamano et al. 2015).

Because simultaneous knockdown or knockout of *HLA3* and *LCIA* causes a dramatic decrease in photosynthetic Ci uptake, and simultaneous overexpression of these genes raised photosynthetic Ci affinity and internal Ci accumulation, HLA3 and LCIA are cooperatively associated with HCO₃⁻ transport to increase the Ci pool in the chloroplast stroma (Duanmu et al. 2009; Wang and Spalding 2014; Gao et al. 2015; Yamano et al. 2015). These LC-inducible proteins are regulated by zinc-containing regulatory protein CCM1/CIA5 (Fukuzawa et al. 2001; Xiang et al. 2001; Miura et al. 2004). Recently, we isolated a novel high-CO₂ (HC)-requiring mutant H82 (Wang et al. 2014) and revealed that a Ca²⁺-binding protein, CAS, is also essential for the operation of the CCM by regulating the expression of *HLA3* and *LCIA* (Wang et al. 2016). CAS was initially identified in *Arabidopsis thaliana*

 (Han et al. 2003) and was detected in the thylakoid membrane fraction (Nomura et al. 2008). By proteomic analysis and indirect immunofluorescence assays, *Chlamydomonas* CAS was also localized to the thylakoid membrane and especially inside the pyrenoid, which is a prominent structure in the chloroplast of the cells cultured in LC conditions (Wang et al. 2016). In many algae, the pyrenoid develops as a spherical proteinaceous structure surrounded with starch sheathes in the chloroplast. Some of the thylakoid membrane penetrates into the pyrenoid, termed pyrenoid tubules (Ohad et al. 1967), and multiple parallel minitubules are bundled within the pyrenoid tubule (Engel et al. 2015). Recently, Chlamydomonas CAS was also detected in the protein fraction of purified eyespot (Trippens et al. 2017). Considering that Arabidopsis CAS regulates nuclear-encoded genes related to plant immune responses (Nomura et al. 2012) and that Chlamydomonas CAS also regulates nuclear-encoded genes related to the CCM such as HLA3 and LCIA (Wang et al. 2016), CASmediated retrograde signaling systems from the chloroplast to the nucleus appear to be conserved during the evolution of the plant lineage. However, the actual function of CAS and its detailed subcellular localization in vivo remain to be determined.

In this study, by combination of sensitive hybrid detector system, optimization of imaging parameters, and image deconvolution technique, we revealed distinct localization patterns of CAS in HC and LC conditions at high resolution. This result could help in understanding the function of CAS associated with the retrograde signal regulating stress-responsive genes.

Materials and Methods

Cell culture and growth conditions

- 92 Chlamydomonas reinhardtii strain C-9 (photosynthetically WT strain originally provided by
- 93 the IAM Culture Collection held at Tokyo University, and available from the
- *Chlamydomonas* Resource Center as strain CC-5098), and transgenic lines were cultured in
- 95 Tris-acetate-phosphate (TAP) medium for maintenance. For physiological and biochemical
- 96 experiments, a 5 mL volume of cells were grown in liquid TAP medium for pre-cultivation,
- 97 and diluted with modified high-salt medium supplemented with 20 mM 3-(N-
- 98 Morpholino)propanesulfonic acid (HSM) to an OD₇₃₀ of ~0.05. Then, the cells were grown
- 99 under HC (5% v/v) conditions at 120 μ mol photons m⁻² s⁻¹ until midlog phase with OD₇₃₀ of
- 100 0.3 to 0.5. For LC induction, HC-acclimated cells were centrifuged at $600 \times g$, and pellets
- were resuspended in 50 mL of fresh HSM medium, and cultured in LC (0.04% v/v)
- 102 conditions at 120 μ mol photons m⁻² s⁻¹ for indicated time periods.

	103	Plasmid construction and transformation	
1	104	The genomic sequence of <i>CAS</i> was amplified by PCR with PrimeSTAR GXL (Takara Bio)	
3	105	using genomic DNA extracted from strain C-9 as a template with forward primer TP-clover-	-F
5 6	106	(5'-TTTGCAGGATGCATATGCAGCTTGCTAACGCTCCT-3') and reverse primer gCAS	, –
7	107	clover-R (5'-CGATGACGTCAGATCTCGAGCGGGGGGGGGGCAG-3'). The PCR	
9	108	products were purified and cloned into pOptimized Clover vector (Lauersen et al. 2015)	
10 11	109	digesting with NdeI and BglII using a SLiCE cloning method (Motohashi 2015). For the	
12 13	110	introduction of a flexible amino acid linker between CAS and Clover, two synthetic oligo	
14 15	111	nucleotides, gCAS_clover_linker-F (5'-	
16 17	112	$CCCCGCTCGAGATCT\underline{GGCGGCGCGGGCCGGGGC}\underline{AGATCTGACGTCATCG-3'}) \ and \ an$	ıd
18	113	gCAS_clover_linker-R (5'-	
20	114	CGATGACGTCAGATCTGCCCGCGGCCGCCGCCAGATCTCGAGCGGGGG-3')	
	115	was annealed and then cloned into the above plasmid digesting with BglII using a SLiCE	
23 24	116	cloning method (18-bp nucleotide sequences encoding flexible linker are shown by	
25 26	117	underlines). This expression plasmid of CAS-Clover was transformed into the H82 mutant	
27 28	118	(Wang et al. 2014) by electroporation using a NEPA-21 electroporator (NEPAGENE), as	
29	119	described previously (Yamano et al. 2013). The transformants were incubated at 25°C for 24	1
	120	h with gentle shaking and illumination of less than 1.5 μ mol photons m ⁻² s ⁻¹ and spread over	r
32 33	121	TAP plates containing 30 μg mL ⁻¹ hygromycin.	
34 35	122		
36 37	123	Immunoblotting analyses	
	124	Extracted total proteins suspended in SDS loading buffer containing 50 mM Tris HCl (pH	
40	125	8.0), 25% (vol/vol) glycerol, 2% (wt/vol) SDS, and 0.1 M DTT were incubated at 37°C for	
	126	30 min and subsequently centrifuged at $13,000 \times g$ for 5 min. The supernatant was loaded	
43 44	127	onto an SDS-polyacrylamide gel electrophoresis (SDS/PAGE) gel for the separation of	
45 46	128	proteins. Next, proteins were transferred to polyvinylidene fluoride (Pall Life Science)	
47 48	129	membranes using a semidry blotting system. Membranes were blocked with 5% (wt/vol)	
49	130	skim milk powder (Wako) in phosphate-buffered saline (PBS). Blocked membranes were	
51	131	washed with PBS containing 0.1% (vol/vol) Tween 20 (PBS-T) and treated with anti-CAS	
52 53	132	(1:5,000 dilution) or anti-Histone H3 (1:20,000 dilution) antibodies. To recognize the	
54 55	133	primary antibody, a horseradish peroxidase-conjugated goat anti-rabbit IgG antibody (Life	
56 57	134	Technologies) was used as a secondary antibody in a dilution of 1:10,000. After washing	
58 59	135	with PBS-T, immunoreactive signals were detected using Luminata Crescendo Western HRI	P
60			
61 62			
63 64			5
65			

substrate (Merck Millipore) and images were obtained using ImageQuant LAS-4010 (GE Healthcare). 6 Photosynthetic oxygen evolution For evaluating the affinity for Ci, the rate of dissolved Ci-dependent photosynthetic O₂ evolution was measured. Cells harvested after growth in HC and LC conditions were suspended in Ci-depleted Hepes-NaOH buffer (pH 7.8) at 10 µg mL⁻¹ chlorophyll. Photosynthetic O₂ evolution was measured by applying a Clark-type O₂ electrode (Hansatech Instruments), as described preciously (Yamano et al. 2008). ¹⁸ **146** Capture of high-resolution fluorescence images 20 147 To reduce Chlamydomonas cell movement, 2.5 µL cells were placed between a coverslip and a thin agarose pad (Skinner et al. 2013), and then 16-bit digital fluorescence images were 22 148 acquired with oil immersion objective lens (HC PL APO 63×/1.40; Leica) using an inverted laser-scanning confocal fluorescence microscope TCS SP8 (Leica) equipped with a sensitive hybrid detector (HyD). CAS-Clover was excited at 488 nm and emission was detected at 500–520 nm. Image scanning was performed with pinhole size of 0.6 Airy units, with z-stack distance of the scan at 150 nm, at a pixel size of 25 nm, and with a line scan speed of 200 Hz. **153 154** Huygens Essential software (Scientific Volume Imaging B.V.) was used for data processing. Deconvolution of confocal datasets was performed using the point-spread function (PSF) theoretically calculated from the microscopic parameters attached to the data and classic maximum likelihood estimation (CMLE) algorithm (settings: maximum iterations: 100; 40 158 signal-to-noise: 20; quality criterion: 0.05). **159** 44 160 Results **Isolation of transgenic lines expressing CAS-Clover** To examine the subcellular localization of CAS in vivo, we generated transgenic lines expressing CAS fused with Clover (CAS-Clover), a Chlamydomonas-adapted modified green fluorescence protein (Lauersen et al. 2015). We modified the expression plasmid of CAS-**164** Clover used previously (Wang et al. 2016) by introducing a flexible amino acid linker (Gly-**165** Gly-Ala-Ala-Ala-Gly) between CAS and Clover to minimize interference by the protein ₅₅ **166** fusion (Fig. 1a). This plasmid was used to transform the H82 mutant, from which 960 transformants showing paromomycin resistance were obtained, and nine transformants designated as CL-1–CL-9 showing fluorescence signals derived from CAS-Clover inside the

60 203

 pyrenoid were screened. By immunoblotting analysis using an anti-CAS antibody, a band of approximately 63 kDa corresponding to the predicted size of the CAS-Clover fusion protein was detected (Fig. 1b). Among these transformants, strain CL-2 showed the strongest fluorescence signal and was selected for further analyses. The values of maximum O_2 -evolving activity (V_{max}) and $K_{0.5}$ (Ci), the Ci concentration required for half V_{max} , of CL-2 were similar to those of wild-type (WT) cells (Fig. 1c), indicating that decreased photosynthetic Ci-affinity of H82 was complemented by expressing the CAS-Clover.

High-resolution suborganellar localization of CAS-Clover in vivo

High-resolution fluorescence images of the CL-2 cells expressing CAS-Clover were obtained using the combination of a sensitive hybrid detector and an image deconvolution technique. In HC conditions, the fluorescence signals were distributed across the entire chloroplast and several punctuate spots were also observed (Fig. 2a). By defocusing of confocal images, fluorescence signals displayed a mesh-like structure, and part of the signals discontinuously overlapped with chlorophyll autofluorescence (Fig. 2b). Considering that CAS was detected in the fraction enriched with the thylakoid membrane (Wang et al. 2016), CAS could be not uniformly but discontinuously distributed on the thylakoid membrane in HC conditions.

Next, when the cells were shifted from HC to LC conditions, the fluorescence signals were detected inside the pyrenoid as a distinct wheel-like structure at 2 h (Fig. 3a-c). When we shifted the focus along the z-axis direction, a strong fluorescent spot was also observed in the lateral region of the chloroplast, which overlapped with the region of eyespot observed in a differential interference contrast image (Fig. 3a). Although the autofluorescence signals of the eyespot were detected in the WT cells, their signal intensities were significantly weaker than that of CL-2 cells with the same microscopic conditions (Fig. 3b), indicating that the fluorescence signals of the eyespot region in CL-2 cells were mostly derived from CAS-Clover. By defocusing of confocal images in the pyrenoid region, the wheel-like structure consisting of several fibers were clearly observed (Fig. 3c). Inside the developed pyrenoid, chlorophyll autofluorescence were hardly detected (Fig. 3a), which was consistent with a previous report (Uniacke and Zerges 2007). This is possibly because the mean diameter of the pyrenoid tubule is very thin at 107 ± 26 nm (Engel et al. 2015), or the amount of chlorophyll could be much decreased in the pyrenoid tubules. By enhancing the contrast of fluorescence, thin fibers were observed, which could be derived from the structure of the pyrenoid tubules (Fig. 3e). In LC conditions after 12 h, the wheel-like structure had almost disappeared, and CAS-Clover was localized to the center of the pyrenoid (Fig. 3f).

230 60 **237**

 Considering that part of the thylakoid membrane, termed the pyrenoid tubules, penetrates into the pyrenoid and fuses at the center of the pyrenoid, forming a knotted core (Engel et al. 2015; Meyer et al. 2016) and that relocation of CAS was not associated with *de novo* protein synthesis (Wang et al. 2016), dispersed CAS-Clover in the chloroplast in HC conditions could move and gather into the pyrenoid along the thylakoid membranes during CCM induction.

1 Discussion

In this study, we determined suborganellar localization of CAS based on fluorescence images of functional CAS-Clover *in vivo* at high resolution. CAS showed distinct different localization patterns between HC and LC conditions. Dispersed localization of CAS-Clover in HC conditions changed to a wheel-like structure in LC conditions at 2 h and aggregated inside the pyrenoid at 12 h. In particular, this wheel-like localization of CAS-Clover was clearly observed for the first time in this study, strengthening the hypothesis that CAS gathers inside the pyrenoid along the pyrenoid tubules during the operation of the CCM (Wang et al. 2016). Although the relocation of CAS in the chloroplast and its importance for regulation of the CCM has been proposed, it remains unclear how CAS moves along thylakoid membranes.

One possible mechanism is posttranslational modification. Other CCM-related proteins, such as LCIB and CAH3, also change their localization in response to CO₂ availability and undergo phosphorylation when CO₂ availability is limiting (Blanco-Rivero et al. 2012; Yamano et al. 2010). LCIB is an indispensable factor in the CCM and is observed as dispersed speckles in the chloroplast in HC conditions, but changes its localization as a ring-like structure in the vicinity of the pyrenoid in the LC-adapted cells (Yamano et al. 2010), which is distinctly different from the CAS localization pattern. Because de novo protein synthesis inhibits the relocation of LCIB (Yamano et al. 2014), but does not affect that of CAS (Wang et al. 2016), the regulatory mechanism of relocation could be different between these proteins. An α -type carbonic anhydrase, CAH3, is shown to be associated with dehydration of HCO₃⁻ to CO₂ within the lumen of pyrenoid tubules (Karlsson et al. 1998). Although CAH3 is associated with the donor side of PSII in the stroma of thylakoid membranes in HC conditions, CAH3 is partly concentrated in the pyrenoid tubules, which does not contain PSII, to provide CO₂ to Rubisco in LC conditions (Blanco-Rivero et al. 2012). Moreover, LCI5/EPYC1 was the first reported protein phosphorylated in response to CO₂-limiting conditions (Turkina et al. 2006). LCI5/EPYC1 is colocalized with Rubisco in

 the pyrenoid matrix and assists in the formation of the pyrenoid and the packing of Rubisco in the pyrenoid in LC conditions by linking with Rubisco (Mackinder et al. 2016). In *Arabidopsis*, it is reported that a light-dependent thylakoid protein kinase STN8 phosphorylates a stroma-exposed Thr380 residue of CAS (flanking sequence is SGTKFLP and phosphorylated Threonine is underlined; Vainonen et al. 2008), which is also conserved as Thr370 (flanking sequence is TSTRRLP and putative phosphorylated Threonine is underlined) in *Chlamydomonas* CAS. Based on these results, phosphorylation could be an important factor to regulate the relocation and/or function of CCM-related proteins. Identifying kinases, phosphorylation sites, and obtaining high-resolution images of these proteins could lead to a better understanding of the regulatory mechanism of suborganellar protein relocation.

Another possible mechanism is the structural dynamics of thylakoid membranes. CAS has a hydrophobic sequence that separates the protein sequence into an N-terminus with a Ca²⁺-binding region and a C-terminus with a rhodanese-like domain, and it is thought that CAS anchors to the thylakoid membrane via the hydrophobic sequence (Wang et al. 2016). A recent study revealed that both the structural stability and flexibility of thylakoid membranes is essential for dynamic protein reorganization (Iwai et al. 2014). It is possible that CAS also moves along with the membrane dynamics, although directional movement of the thylakoid membrane from dispersed chloroplast region into the pyrenoid and *vice versa* is unknown.

Recently, CAS was detected in a purified fraction of the *Chlamydomonas* eyespot and also involved in regulating the positive phototactic response under continuous illumination (Trippens et al. 2017). Consistent with this result, we first observed that the fluorescence signal of CAS-Clover overlapped with the eyespot *in vivo*. Ca²⁺ influx through the channel rhodopsins in the eyespot region play an important role for the regulation of phototactic behavior, but the primary Ca²⁺ sensing mechanism is unknown. Using our knockout mutant H82, the regulatory roles of CAS associated with the positive phototactic response could be more clarified.

It has become clear that the pyrenoid is important not only for CO₂ fixation but also for the regulation of the CCM (Meyer et al. 2017; Mitchell et al. 2017). So far, hundreds of proteins with unknown function have been identified in the purified pyrenoid (Mackinder et al. 2016), and there could be other CCM-related proteins that could relocate in the chloroplast in response to the CO₂ availability as reported previously (Yamano et al. 2010). Further screening of mutants showing aberrant localization patterns of these proteins could lead to understanding the regulatory mechanism of suborganellar relocation in response to

	272	environmental stresses (Yamano et al. 2014). Obtaining high-resolution images described in
1 2	273	this study could be useful for observing the suborganellar localization of proteins, especially
3 4	274	for ones localized in small compartments such as the pyrenoid in a single cell.
5 6	275	
7	276	Acknowledgments
9	277	This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI
	278	Grants 16H04805 (to H.F.) and 16K07399 (to T.Y.) and the Japan Science and Technology
12 13	279	Agency Advanced Low Carbon Technology Research and Development Program (to H.F.).
14 15	280	
16 17	281	References
18 19	282	Blanco-Rivero A, Shutova T, Roman MJ, Villarejo A, Martinez F (2012)
20	283	Phosphorylation controls the localization and activation of the luminal carbonic
	284	anhydrase in Chlamydomonas reinhardtii. PLoS One 7:e49063
23 24	285	doi:10.1371/journal.pone.0049063
25 26	286	Duanmu D, Miller AR, Horken KM, Weeks DP, Spalding MH (2009) Knockdown of
27 28	287	limiting-CO ₂ -induced gene HLA3 decreases HCO ₃ ⁻ transport and photosynthetic Ci
	288	affinity in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 106:5990-5995
31	289	Engel BD, Schaffer M, Cuellar LK, Villa E, Plitzko JM, Baumeister W (2015) Native
	290	architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron
34 35	291	tomography. eLife 4:e04889 doi:10.7554/eLife.04889
36 37	292	Fukuzawa H, Miura K, Ishizaki K, Kucho K, Saito T, Kohinata T, Ohyama K (2001)
38 39	293	Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism
40	294	in Chlamydomonas reinhardtii by sensing CO2 availability. Proc Natl Acad Sci USA
	295	98:5347–5352
43 44		Fukuzawa, H, Ogawa T, Kaplan A (2012) The uptake of CO ₂ by cyanobacteria and
45 46	297	microalgae. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Photosynthesis "plastid
47 48	298	biology, energy conversion and carbon assimilation." Springer, Advances in
49 50		Photosynthesis and Respiration 34:625–650
51	300	Gao H, Wang Y, Fei X, Wright DA, Spalding MH (2015) Expression activation and
	301	functional analysis of HLA3, a putative inorganic carbon transporter in Chlamydomonas
54 55	302	reinhardtii. Plant J 82:1–11
56 57	303	Han S, Tang R, Anderson LK, Woerner TE, Pei ZM. (2003) A cell surface receptor
58 59	304	mediates extracellular Ca ²⁺ sensing in guard cells. Nature 425:196–200
60 61		
62		
63 64		10
65		

	305	Im CS, Grossman AR (2002) Identification and regulation of high light-induced genes in
1 2	306	Chlamydomonas reinhardtii. Plant J 30:301-313
3 4	307	Iwai M, Yokono M, Nakano A (2014) Visualizing structural dynamics of thylakoid
5 6	308	membranes. Sci Rep 4:3768 doi:10.1038/srep03768
7	309	Jones HG (1992) Plants and microclimate: A quantitative approach to environmental plant
9	310	physiology, 2nd ed. Cambridge University Press: Cambridge, UK.
10 11	311	Karlsson J, Clarke AK, Chen ZY et al (1998) A novel alpha-type carbonic anhydrase
12 13	312	associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for
14 15	313	growth at ambient CO ₂ . EMBO J 17:1208-1216
16 17	314	Lauersen KJ, Kruse O, Mussgnug JH (2015) Targeted expression of nuclear transgenes in
18 19	315	Chlamydomonas reinhardtii with a versatile, modular vector toolkit. Appl Microbiol
20	316	Biotechnol 99:3491-3503
	317	Mackinder LCM, Meyer M, Mettler-Altmann T et al (2016) A repeat protein links
23 24	318	Rubisco to form the eukaryotic carbon-concentrating organelle. Proc Natl Acad Sci
25 26	319	USA 113:5958–5963
27 28	320	Mariscal V, Moulin P, Orsel M, Miller AJ, Fernandez E, Galvan A (2006) Differential
29	321	regulation of the Chlamydomonas Nar1 gene family by carbon and nitrogen. Protist
31	322	157:421–433
32	323	Meyer MT, McCormick AJ, Griffiths H (2016) Will an algal CO ₂ -concentrating
34 35	324	mechanism work in higher plants? Curr Opin Plant Biol 31:181-188
36 37	325	Meyer MT, Whittaker C, Griffiths H (2017) The algal pyrenoid: key unanswered
38 39	326	questions. J Exp Bot 68:3739-3749
	327	Mitchell MC, Metodieva G, Metodiev MV, Griffiths H, Meyer MT (2017) Pyrenoid loss
42	328	impairs carbon-concentrating mechanism induction and alters primary metabolism in
43	329	Chlamydomonas reinhardtii. J Exp Bot 68:3891-3902
45 46	330	Miura K, Yamano T, Yoshioka S et al (2004) Expression profiling-based identification of
47 48	331	CO ₂ -responsive genes regulated by CCM1 controlling a carbon-concentrating
49 50	332	mechanism in Chlamydomonas reinhardtii. Plant Physiol 135:1595-1607
51 52	333	Motohashi K (2015) A simple and efficient seamless DNA cloning method using SLiCE
53	334	from Escherichia coli laboratory strains and its application to SLiP site-directed
54 55	335	mutagenesis. BMC Biotechnol 15:47 doi:10.1186/s12896-015-0162-8
56 57	336	Nomura H, Komori T, Kobori M, Nakahira Y, Shiina T (2008) Evidence for chloroplast
58 59	337	control of external Ca ²⁺ -induced cytosolic Ca ²⁺ transients and stomata closure. Plant J
60 61	338	53:988–998
62 63 64 65		1:

	339	Nomura H, Komori T, Uemura S et al (2012) Chloroplast-mediated activation of plant
1 2	340	immune signaling in Arabidopsis. Nat Commun 3:926 doi:10.1038/ncomms1926
3 4	341	Ohad I, Siekevitz P, Palade GE (1967) Biogenesis of chloroplast membranes. I. Plastid
5 6	342	dedifferentiation in a dark-grown algal mutant (Chlamydomonas reinhardtii). J Cell Bio
7	343	35:521–552
9	344	Skinner SO, Sepúlveda LA, Xu H, Golding I (2013) Measuring mRNA copy number in
10 11	345	individual Escherichia coli cells using single-molecule fluorescent in situ hybridization.
12 13	346	Nat Protoc 8:1100-1113
14 15	347	Trippens J, Reißenweber T, Kreimer G (2017) The chloroplast calcium sensor protein
16 17	348	CAS affects phototactic behaviour in Chlamydomonas reinhardtii (Chlorophyceae) at
18	349	low light intensities. Phycologia 56:261-270
20	350	Turkina MV, Blanco-Rivero A, Vainonen JP, Vener AV, Villarejo A (2006) CO ₂
21 22	351	limitation induces specific redox-dependent protein phosphorylation in Chlamydomonas
23 24	352	reinhardtii. Proteomics 6:2693–2704
25 26	353	Uniacke J and Zerges W (2007) Photosystem II assembly and repair are differentially
27 28	354	localized in Chlamydomonas. Plant Cell 19:3640-3654
29	355	Vainonen JP, Sakuragi Y, Stael S et al (2008) Light regulation of CaS, a novel
31	356	phosphoprotein in the thylakoid membrane of Arabidopsis thaliana. FEBS J 275:1767-
32 33	357	1777
34 35	358	Wang L, Yamano T, Kajikawa M, Hirono M, Fukuzawa H (2014) Isolation and
36 37	359	characterization of novel high-CO2-requiring mutants of Chlamydomonas reinhardtii.
38 39	360	Photosynth Res 121:175–184
40 41	361	Wang L, Yamano T, Takane S et al (2016) Chloroplast-mediated regulation of CO ₂ -
42	362	concentrating mechanism by Ca ²⁺ -binding protein CAS in the green alga
43 44	363	Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 113:12586-12591
45 46	364	Wang Y, Huang Y, Wang J et al (2009) Structure of the formate transporter FocA reveals a
47 48	365	pentameric aquaporin-like channel. Nature 462:467-472
49 50	366	Wang Y, Spalding MH (2014) Acclimation to very low CO ₂ : Contribution of limiting CO ₂
51 52	367	inducible proteins, LCIB and LCIA, to inorganic carbon uptake in Chlamydomonas
53	368	reinhardtii. Plant Physiol 166:2040–2050
54 55	369	Wang Y, Stessman DJ, Spalding MH (2015) The CO ₂ concentrating mechanism and
56 57	370	photosynthetic carbon assimilation in limiting CO2: how Chlamydomonas works against
58 59	371	the gradient. Plant J 82:429–448
60 61		
62		
64		12
65		

	372	Xiang Y, Zhang J, Weeks DP (2001) The Cia5 gene controls formation of the carbon	
1	373	concentrating mechanism in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA	
3 4	374	98:5341–5346	
5 6	375	Yamano T, Miura K, Fukuzawa H (2008) Expression analysis of genes associated with the	he
7	376	induction of the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plan	1t
9	377	Physiol 147:340–354	
10 11	378	Yamano T, Tsujikawa T, Hatano K, Ozawa S, Takahashi Y, Fukuzawa H (2010) Ligh	t
12 13	379	and low-CO ₂ -dependent LCIB-LCIC complex localization in the chloroplast supports	
14 15	380	the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Cell Physic	ol
16 17	381	51:1453–1468	
18 19	382	Yamano T, Iguchi H, Fukuzawa H (2013) Rapid transformation of Chlamydomonas	
20	383	reinhardtii without cell-wall removal. J Biosci Bioeng 115:691-694	
21 22	384	Yamano T, Asada A, Sato E, Fukuzawa H (2014) Isolation and characterization of mutan	nts
23 24	385	defective in the localization of LCIB, an essential factor for the carbon-concentrating	
25 26	386	mechanism in Chlamydomonas reinhardtii. Photosynth Res 121:193-200	
27 28	387	Yamano T, Sato E, Iguchi H, Fukuda Y, Fukuzawa H (2015) Characterization of the	
29 30	388	cooperative bicarbonate uptake into chloroplast stroma in the green alga	
31	389	Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 112:7315-7320	
32 33	390		
34 35			
36 37			
38			
39 40			
41 42			
43			
44 45			
46 47			
48			
49 50			
51 52			
53			
54 55			
56 57			
58			
59 60			
61 62			
63			13
64 65			10

Figure legends Fig. 1 Isolation of transgenic lines expressing CAS-Clover. (a) A schematic illustration of the expression plasmid of CAS-Clover. The plasmid was constructed based on the pOptimized 6 Clover vector (Lauersen et al. 2015). Translation start (ATG) and stop (TAA) sites are shown. The genomic sequence of CAS is placed at the downstream of $P_{A/R}$, HSP70A/RBCS2tandem promoter, which is followed by first intron of *RBCS2*. The nucleotide acid sequence GGCGGCGCGCGGGC encoding the amino acid sequence Gly-Gly-Ala-Ala-Gly represents a synthetic flexible linker between CAS and Clover. The expression of CAS-Clover is terminated by the T_{RBCS2} , 3'-untranslated region of RBCS2. Restriction enzyme sites for cloning of CAS (NdeI and BglII) and for insertion check of the flexible linker (NotI) are 18 401 shown. (b) Accumulation of CAS and CAS-Clover fusion protein in wild-type (WT), H82, 20 402 and transformants (CL strains). Cells were grown in low-CO₂ (LC) conditions for 12 h. 22 403 Histone H3 was used as a loading control. (c) Maximum photosynthetic O₂-evolving activity (V_{max}; left) and inorganic carbon (Ci) affinity (right) of WT, H82, and CL-2 cells grown in LC conditions for 12 h. Photosynthetic O₂-evolving activity was measured in externally dissolved Ci concentrations at pH 7.8, and the $K_{0.5}$ (Ci), the Ci concentrations required for half V_{max} , were calculated. Data in all experiments are mean values \pm standard deviation from three biological replicates. *P<0.001 by Student's t test. Fig. 2 Fluorescence signals derived from CAS-Clover in high-CO₂ (HC) conditions. (a) CL-2 cells were adapted to HC conditions. Defocused images +1.0 µm from the focal plane are ³⁸ **412** shown in the bottom row. Each image is placed with the flagella facing upward on the panel. 40 413 DIC, differential interference contrast image. Scale bar, 2 µm. (b) Enlarged fluorescence 42 414 images of the white boxed area in (a) obtained by defocusing the sample from -0.6 to +0.8µm from the focal plane. Scale bar, 400 nm. Fig. 3 Fluorescence signals derived from CAS-Clover in low-CO₂ (LC) conditions. (a) CL-2 cells grown in high-CO₂ conditions were transferred to LC conditions for 2 h. Defocused 51 419 images +1.0 µm from the focal plane are shown in the bottom row. Each image is placed with the flagella facing upward on the panel. White arrowheads indicate the eyespot region. DIC, 53 420 differential interference contrast image. Scale bar, 2 µm. (b) Autofluorescence image of wild-type (WT) cells grown in LC conditions for 2 h. White arrowheads indicate the eyespot region. Scale bar, 2 µm. (c) Enlarged fluorescence images of the pyrenoid region by defocusing the sample from -0.6 to +0.8 μ m from the focal plane. Scale bar, 400 nm. (d)

Click here to view linked References

1	Title: High-resolution suborganellar localization of Ca ²⁺ -binding protein CAS, a novel
2	regulator of CO ₂ -concentrating mechanism
3	
4	Authors: Takashi Yamano, Chihana Toyokawa, and Hideya Fukuzawa
5	
6	Affiliation: Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
7	
8	Corresponding author:
9	Hideya Fukuzawa
10	Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
11	Phone: +81-75-753-4298
12	FAX: +81-75-753-9228
13	E-mail: fukuzawa@lif.kyoto-u.ac.jp
	2 3 4 5 6 7 8 9 10 11 12

	14
1 2	15
3 4	16
5 6	17
7	18
8 9 10	19
11	20
12 13	21
14 15	22
16 17	23
18	24
19 20 21	25
22 23	26
2.4	27
25 26	28
27 28	29
29 30 31	30
32	31
33 34	32
35	33
36 37 38	34
39	35
40 41	
42	
43 44	
45	
47	
48 49	
50	
51 52 53	
53 54	
55	
56 57	
58 59	
60	
61 62	
63 64	
65	

Abstract
Many aquatic algae induce a CO ₂ -concentrating mechanism (CCM) associated with active
inorganic carbon transport to maintain high photosynthetic affinity using dissolved inorganic
carbon even in low-CO ₂ (LC) conditions. In the green alga Chlamydomonas reinhardtii, a
Ca ²⁺ -binding protein CAS was identified as a novel factor regulating the expression of CCM-
related proteins including bicarbonate transporters. Although previous studies revealed that
CAS associates with the thylakoid membrane and changes its localization in response to CO_2
and light availability, its detailed localization in the chloroplast has not been examined in vivo
In this study, high-resolution fluorescence images of CAS fused with a Chlamydomonas-
adapted fluorescence protein, Clover, were obtained by using a sensitive hybrid detector and
an image deconvolution method. In high-CO ₂ (5% v/v) conditions, the fluorescence signals
of Clover displayed a mesh-like structure in the chloroplast and part of the signals
discontinuously overlapped with chlorophyll autofluorescence. The fluorescence signals
gathered inside the pyrenoid as a distinct wheel-like structure at 2 h after transfer to LC-light
condition, and then localized to the center of the pyrenoid at 12 h. These results suggest that
CAS could move in the chloroplast along the thylakoid membrane in response to lowering
CO ₂ and gather inside the pyrenoid along the pyrenoid tubules, penetrated thylakoid
membrane into pyrenoid, during the operation of the CCM.
Key words: Bicarbonate transporter, Ca ²⁺ -binding protein, <i>Chlamydomonas</i> , CO ₂ -

Introduction

Photosynthetic organisms can sense and respond to changes of several environmental factors, such as light, CO₂, temperature, and various nutrient availabilities, to optimize and/or maintain their photosynthetic activity. Among these stresses, the shortage of CO₂ supply impacts many physiological aspects of plants, especially photosynthetic efficiency due to the low affinity of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) against CO₂. In aquatic environments, CO₂-limiting stress is caused not only by the low catalytic activity of Rubisco but also by the 10,000-fold slower diffusion rate of CO₂ in aquatic conditions than that in atmospheric conditions (Jones 1992). To acclimate to this stress, many aquatic organisms possess a CO₂-concentrating mechanism (CCM), which involves the active transport of inorganic carbon (Ci; CO₂ and HCO₃⁻) and enzymatic conversion between CO₂ and HCO₃⁻ to maintain the Ci pool and concentrate CO₂ in the vicinity of Rubisco (Fukuzawa et al. 2012; Wang et al. 2015).

Molecular aspects of the eukaryotic CCM have been mainly studied using the eukaryotic green alga *Chlamydomonas reinhardtii* as a model. So far, it was reported that high-light activated 3 (HLA3) and low-CO₂ (LC)-inducible protein A (LCIA) are associated with the HCO₃⁻ transport system, which facilitate HCO₃⁻ uptake from outside of cells to the chloroplast stroma across physiological barriers such as the plasma membrane and chloroplast envelope (Gao et al. 2015; Yamano et al. 2015). HLA3 belongs to a multidrug-resistance-related protein subfamily of the ATP-binding cassette transporter superfamily (Im and Grossman 2001) and localizes to the plasma membrane (Yamano et al. 2015). LCIA belongs to a formate-nitrite transporter family (Mariscal et al. 2006), in which proteins form a pentameric aquaporin-like channel rather than an active transporter (Wang et al. 2009), and localizes to the chloroplast envelope (Wang and Spalding 2014; Yamano et al. 2015).

Because simultaneous knockdown or knockout of *HLA3* and *LCIA* causes a dramatic decrease in photosynthetic Ci uptake, and simultaneous overexpression of these genes raised photosynthetic Ci affinity and internal Ci accumulation, HLA3 and LCIA are cooperatively associated with HCO₃⁻ transport to increase the Ci pool in the chloroplast stroma (Duanmu et al. 2009; Wang and Spalding 2014; Gao et al. 2015; Yamano et al. 2015). These LC-inducible proteins are regulated by zinc-containing regulatory protein CCM1/CIA5 (Fukuzawa et al. 2001; Xiang et al. 2001; Miura et al. 2004). Recently, we isolated a novel high-CO₂ (HC)-requiring mutant H82 (Wang et al. 2014) and revealed that a Ca²⁺-binding protein, CAS, is also essential for the operation of the CCM by regulating the expression of *HLA3* and *LCIA* (Wang et al. 2016). CAS was initially identified in *Arabidopsis thaliana*

 (Han et al. 2003) and was detected in the thylakoid membrane fraction (Nomura et al. 2008). By proteomic analysis and indirect immunofluorescence assays, *Chlamydomonas* CAS was also localized to the thylakoid membrane and especially inside the pyrenoid, which is a prominent structure in the chloroplast of the cells cultured in LC conditions (Wang et al. 2016). In many algae, the pyrenoid develops as a spherical proteinaceous structure surrounded with starch sheathes in the chloroplast. Some of the thylakoid membrane penetrates into the pyrenoid, termed pyrenoid tubules (Ohad et al. 1967), and multiple parallel minitubules are bundled within the pyrenoid tubule (Engel et al. 2015). Recently, Chlamydomonas CAS was also detected in the protein fraction of purified eyespot (Trippens et al. 2017). Considering that Arabidopsis CAS regulates nuclear-encoded genes related to plant immune responses (Nomura et al. 2012) and that Chlamydomonas CAS also regulates nuclear-encoded genes related to the CCM such as HLA3 and LCIA (Wang et al. 2016), CAS-mediated retrograde signaling systems from the chloroplast to the nucleus appear to be conserved during the evolution of the plant lineage. However, the actual function of CAS and

In this study, by combination of sensitive hybrid detector system, optimization of imaging parameters, and image deconvolution technique, we revealed distinct localization patterns of CAS in HC and LC conditions at high resolution. This result could help in understanding the function of CAS associated with the retrograde signal regulating stress-responsive genes.

Materials and Methods

Cell culture and growth conditions

- 93 Chlamydomonas reinhardtii strain C-9 (photosynthetically WT strain originally provided by
- 94 the IAM Culture Collection held at Tokyo University, and available from the

its detailed subcellular localization in vivo remain to be determined.

- 95 Chlamydomonas Resource Center as strain CC-5098), and transgenic lines were cultured in
- 96 Tris-acetate-phosphate (TAP) medium for maintenance. For physiological and biochemical
- 97 experiments, a 5 mL volume of cells were grown in liquid TAP medium for pre-cultivation,
- 98 and diluted with modified high-salt medium supplemented with 20 mM 3-(N-
- 99 Morpholino)propanesulfonic acid (pH 7.0) to an OD₇₃₀ of ~0.05 for photoautotrophic growth.
- Then, the cells were grown under HC (5% v/v) conditions at 120 μ mol photons m⁻² s⁻¹ until
- midlog phase with OD₇₃₀ of 0.3 to 0.5. For LC induction, HC-acclimated cells were
- centrifuged at 600 × g, and pellets were resuspended in 50 mL of fresh HSM medium, and
- cultured in LC (0.04% v/v) conditions at 120 μmol photons m⁻² s⁻¹ for indicated time

periods. For all culture conditions, cells were cultured at 25°C with illumination at 120 µmol photons m⁻²-s⁻¹. 3 4 5 6 Plasmid construction and transformation The genomic sequence of CAS was amplified by PCR with PrimeSTAR GXL (Takara Bio) using genomic DNA extracted from strain C-9 as a template with forward primer TP-clover-F (5'-TTTGCAGGATGCATATGCAGCTTGCTAACGCTCCT-3') and reverse primer gCAS-clover-R (5'-CGATGACGTCAGATCTCGAGCGGGGGGGGGGCAG-3'). The PCR products were purified and cloned into pOptimized Clover vector (Lauersen et al. 2015) digesting with NdeI and BglII using a SLiCE cloning method (Motohashi 2015). For the ¹⁸ **114** introduction of a flexible amino acid linker between CAS and Clover, two synthetic oligo 20 115 nucleotides, gCAS clover linker-F (5'-CCCCGCTCGAGATCTGGCGGCGGCGGCGGGCAGATCTGACGTCATCG-3') and 22 116 gCAS clover linker-R (5'-CGATGACGTCAGATCTGCCCGCGGCCGCCGCCAGATCTCGAGCGGGGG-3') was annealed and then cloned into the above plasmid digesting with BglII using a SLiCE cloning method (18-bp nucleotide sequences encoding flexible linker are shown by underlines). This expression plasmid of CAS-Clover was transformed into the H82 mutant **122** (Wang et al. 2014) by electroporation using a NEPA-21 electroporator (NEPAGENE), as described previously (Yamano et al. 2013). The transformants were incubated at 25°C for 24 h with gentle shaking and illumination of less than 1.5 µmol photons m⁻² s⁻¹ and spread over TAP plates containing 30 µg mL⁻¹ hygromycin. 40 126 **Immunoblotting analyses 127** Extracted total proteins suspended in SDS loading buffer containing 50 mM Tris HCl (pH 8.0), 25% (vol/vol) glycerol, 2% (wt/vol) SDS, and 0.1 M DTT were incubated at 37°C for 30 min and subsequently centrifuged at 13,000 × g for 5 min. The supernatant was loaded onto an SDS-polyacrylamide gel electrophoresis (SDS/PAGE) gel for the separation of proteins. Next, proteins were transferred to polyvinylidene fluoride (Pall Life Science) **132** membranes using a semidry blotting system. Membranes were blocked with 5% (wt/vol) **133** skim milk powder (Wako) in phosphate-buffered saline (PBS). Blocked membranes were washed with PBS containing 0.1% (vol/vol) Tween 20 (PBS-T) and treated with anti-CAS (1:5,000 dilution) or anti-Histone H3 (1:20,000 dilution) antibodies. To recognize the primary antibody, a horseradish peroxidase-conjugated goat anti-rabbit IgG antibody (Life

Technologies) was used as a secondary antibody in a dilution of 1:10,000. After washing with PBS-T, immunoreactive signals were detected using Luminata Crescendo Western HRP 3 4 5 6 7 substrate (Merck Millipore) and images were obtained using ImageQuant LAS-4010 (GE Healthcare). Photosynthetic oxygen evolution For evaluating the affinity for Ci, the rate of dissolved Ci-dependent photosynthetic O₂ evolution was measured. Cells harvested after growth in HC and LC conditions were suspended in Ci-depleted Hepes-NaOH buffer (pH 7.8) at 10 µg mL⁻¹ chlorophyll. Photosynthetic O₂ evolution was measured by applying a Clark-type O₂ electrode (Hansatech ¹⁸ **148** Instruments), as described preciously (Yamano et al. 2008). 20 149 **150** Capture of high-resolution fluorescence images To reduce Chlamydomonas cell movement, 2.5 µL cells were placed between a coverslip and a thin agarose pad (Skinner et al. 2013), and then 16-bit digital fluorescence images were acquired with oil immersion objective lens (HC PL APO 63×/1.40; Leica) using an inverted laser-scanning confocal fluorescence microscope TCS SP8 (Leica) equipped with a sensitive hybrid detector (HyD). CAS-Clover was excited at 488 nm and emission was detected at **155** 500-520 nm. Image scanning was performed with pinhole size of 0.6 Airy units, with z-stack **156** distance of the scan at 150 nm, at a pixel size of 25 nm, and with a line scan speed of 200 Hz. Huygens Essential software (Scientific Volume Imaging B.V.) was used for data processing. Deconvolution of confocal datasets was performed using the point-spread function (PSF) 40 160 theoretically calculated from the microscopic parameters attached to the data and classic maximum likelihood estimation (CMLE) algorithm (settings: maximum iterations: 100; **161** 44 162 signal-to-noise: 20; quality criterion: 0.05). Results Isolation of transgenic lines expressing CAS-Clover **166** To examine the subcellular localization of CAS in vivo, we generated transgenic lines expressing CAS fused with Clover (CAS-Clover), a Chlamydomonas-adapted modified green **167** ₅₅ **168** fluorescence protein (Lauersen et al. 2015). We modified the expression plasmid of CAS-Clover used previously (Wang et al. 2016) by introducing a flexible amino acid linker (Gly-Gly-Ala-Ala-Ala-Gly) between CAS and Clover to minimize interference by the protein fusion (Fig. 1a). This plasmid was used to transform the H82 mutant, from which 960

 transformants showing paromomycin resistance were obtained, and nine transformants designated as CL-1–CL-9 showing fluorescence signals derived from CAS-Clover inside the pyrenoid were screened. By immunoblotting analysis using an anti-CAS antibody, a band of approximately 63 kDa corresponding to the predicted size of the CAS-Clover fusion protein was detected (Fig. 1b). Among these transformants, strain CL-2 showed the strongest fluorescence signal and was selected for further analyses. The values of maximum O₂-evolving activity (V_{max}) and K_{0.5} (Ci), the Ci concentration required for half V_{max}, of CL-2 were similar to those of wild-type (WT) cells (Fig. 1c), indicating that decreased photosynthetic Ci-affinity of H82 was complemented by expressing the CAS-Clover.

High-resolution suborganellar localization of CAS-Clover in vivo

High-resolution fluorescence images of the CL-2 cells expressing CAS-Clover were obtained using the combination of a sensitive hybrid detector and an image deconvolution technique. In HC conditions, the fluorescence signals were distributed across the entire chloroplast and several punctuate spots were also observed (Fig. 2a). By defocusing of confocal images, fluorescence signals displayed a mesh-like structure, and part of the signals discontinuously overlapped with chlorophyll autofluorescence (Fig. 2b). Considering that CAS was detected in the fraction enriched with the thylakoid membrane (Wang et al. 2016), CAS could be not uniformly but discontinuously distributed on the thylakoid membrane in HC conditions.

Next, when the cells were shifted from HC to LC conditions, the fluorescence signals were detected inside the pyrenoid as a distinct wheel-like structure at 2 h (Fig. 3a–c). When we shifted the focus along the z-axis direction, a strong fluorescent spot was also observed in the lateral region of the chloroplast, which overlapped with the region of eyespot observed in a differential interference contrast image (Fig. 3a). Although the autofluorescence signals of the eyespot were detected in the WT cells, their signal intensities were significantly weaker than that of CL-2 cells with the same microscopic conditions (Fig. 3b), indicating that the fluorescence signals of the eyespot region in CL-2 cells were mostly derived from CAS-Clover. By defocusing of confocal images in the pyrenoid region, the wheel-like structure consisting of several fibers were clearly observed (Fig. 3ch). Inside the developed pyrenoid, chlorophyll autofluorescence were hardly detected (Fig. 3a), which was consistent with a previous report (Uniacke and Zerges 2007). This is possibly because the mean diameter of the pyrenoid tubule is very thin at 107 ± 26 nm (Engel et al. 2015), or the amount of chlorophyll could be much decreased in the pyrenoid tubules. By enhancing the contrast of fluorescence, thin fibers were observed, which could be derived from the structure of the

60 239

 pyrenoid tubules (Fig. 3ed). In LC conditions after 12 h, the wheel-like structure had almost disappeared, and CAS-Clover was localized to the center of the pyrenoid (Fig. 3fe). Considering that part of the thylakoid membrane, termed the pyrenoid tubules, penetrates into the pyrenoid and fuses at the center of the pyrenoid, forming a knotted core (Engel et al. 2015; Meyer et al. 2016) and that relocation of CAS was not associated with *de novo* protein synthesis (Wang et al. 2016), dispersed CAS-Clover in the chloroplast in HC conditions could move and gather into the pyrenoid along the thylakoid membranes during CCM

.14

Discussion

induction.

In this study, we determined suborganellar localization of CAS based on fluorescence images of functional CAS-Clover *in vivo* at high resolution. CAS showed distinct different localization patterns between HC and LC conditions. Dispersed localization of CAS-Clover in HC conditions changed to a wheel-like structure in LC conditions at 2 h and aggregated inside the pyrenoid at 12 h. In particular, this wheel-like localization of CAS-Clover was clearly observed for the first time in this study, strengthening the hypothesis that CAS gathers inside the pyrenoid along the pyrenoid tubules during the operation of the CCM (Wang et al. 2016). Although the relocation of CAS in the chloroplast and its importance for regulation of the CCM has been proposed, it remains unclear how CAS moves along thylakoid membranes.

One possible mechanism is posttranslational modification. Other CCM-related proteins, such as LCIB and CAH3, also change their localization in response to CO₂ availability and undergo phosphorylation when CO₂ availability is limiting (Blanco-Rivero et al. 2012; Yamano et al. 2010). LCIB is an indispensable factor in the CCM and is observed as dispersed speckles in the chloroplast in HC conditions, but changes its localization as a ring-like structure in the vicinity of the pyrenoid in the LC-adapted cells (Yamano et al. 2010), which is distinctly different from the CAS localization pattern. Because *de novo* protein synthesis inhibits the relocation of LCIB (Yamano et al. 2014), but does not affect that of CAS (Wang et al. 2016), the regulatory mechanism of relocation could be different between these proteins. An α-type carbonic anhydrase, CAH3, is shown to be associated with dehydration of HCO₃⁻ to CO₂ within the lumen of pyrenoid tubules (Karlsson et al. 1998). Although CAH3 is associated with the donor side of PSII in the stroma of thylakoid membranes in HC conditions, CAH3 is partly concentrated in the pyrenoid tubules, which does not contain PSII, to provide CO₂ to Rubisco in LC conditions (Blanco-Rivero et al. 2012). Moreover, LCI5/EPYC1 was the first reported protein phosphorylated in response to

 CO₂-limiting conditions (Turkina et al. 2006). LCI5/EPYC1 is colocalized with Rubisco in the pyrenoid matrix and assists in the formation of the pyrenoid and the packing of Rubisco in the pyrenoid in LC conditions by linking with Rubisco (Mackinder et al. 2016). In *Arabidopsis*, it is reported that a light-dependent thylakoid protein kinase STN8 phosphorylates a stroma-exposed Thr380 residue of CAS (flanking sequence is SGTKFLP and phosphorylated Threonine is underlined; Vainonen et al. 2008), which is also conserved as Thr370 (flanking sequence is TSTRRLP and putative phosphorylated Threonine is underlined) in *Chlamydomonas* CAS. Based on these results, phosphorylation could be an important factor to regulate the relocation and/or function of CCM-related proteins. Identifying kinases, phosphorylation sites, and obtaining high-resolution images of these proteins could lead to a better understanding of the regulatory mechanism of suborganellar protein relocation.

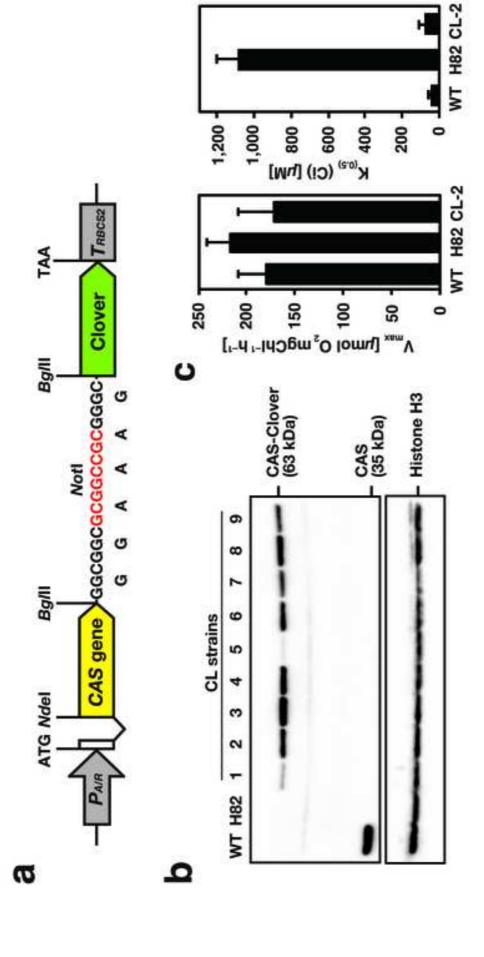
Another possible mechanism is the structural dynamics of thylakoid membranes. CAS has a hydrophobic sequence that separates the protein sequence into an N-terminus with a Ca²⁺-binding region and a C-terminus with a rhodanese-like domain, and it is thought that CAS anchors to the thylakoid membrane via the hydrophobic sequence (Wang et al. 2016). A recent study revealed that both the structural stability and flexibility of thylakoid membranes is essential for dynamic protein reorganization (Iwai et al. 2014). It is possible that CAS also moves along with the membrane dynamics, although directional movement of the thylakoid membrane from dispersed chloroplast region into the pyrenoid and *vice versa* is unknown.

Recently, CAS was detected in a purified fraction of the *Chlamydomonas* eyespot and also involved in regulating the positive phototactic response under continuous illumination (Trippens et al. 2017). Consistent with this result, we first observed that the fluorescence signal of CAS-Clover overlapped with the eyespot *in vivo*. Ca²⁺ influx through the channel rhodopsins in the eyespot region play an important role for the regulation of phototactic behavior, but the primary Ca²⁺ sensing mechanism is unknown. Using our knockout mutant H82, the regulatory roles of CAS associated with the positive phototactic response could be more clarified.

It has become clear that the pyrenoid is important not only for CO₂ fixation but also for the regulation of the CCM (Meyer et al. 2017; Mitchell et al. 2017). So far, hundreds of proteins with unknown function have been identified in the purified pyrenoid (Mackinder et al. 2016), and there could be other CCM-related proteins that could relocate in the chloroplast in response to the CO₂ availability as reported previously (Yamano et al. 2010). Further screening of mutants showing aberrant localization patterns of these proteins could lead to

	274	improved understand the regulatory mechanism of suborganellar relocation in response to
1 2	275	environmental stresses (Yamano et al. 2014). Obtaining high-resolution images described in
3 4	276	this study could be useful for observing the suborganellar localization of proteins, especially
5 6	277	for ones localized in small compartments such as the pyrenoid in a single cell.
7	278	
8 9	279	Acknowledgments
10 11	280	This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI
12 13	281	Grants 16H04805 (to H.F.) and <u>16K0739925840109</u> (to T.Y.) and the Japan Science and
14 15	1 282	Technology Agency Advanced Low Carbon Technology Research and Development
16	283	Program (to H.F.).
17 18	l 284	
19 20	285	References
21 22	286	Blanco-Rivero A, Shutova T, Roman MJ, Villarejo A, Martinez F (2012)
23 24	287	Phosphorylation controls the localization and activation of the luminal carbonic
25 26	288	anhydrase in Chlamydomonas reinhardtii. PLoS One 7:e49063
27	289	doi:10.1371/journal.pone.0049063
28 29	290	Duanmu D, Miller AR, Horken KM, Weeks DP, Spalding MH (2009) Knockdown of
	291	limiting-CO ₂ -induced gene HLA3 decreases HCO ₃ ⁻ transport and photosynthetic Ci
32 33	292	affinity in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 106:5990-5995
34 35	293	Engel BD, Schaffer M, Cuellar LK, Villa E, Plitzko JM, Baumeister W (2015) Native
36 37	294	architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron
38	295	tomography. eLife 4:e04889 doi:10.7554/eLife.04889
40	296	Fukuzawa H, Miura K, Ishizaki K, Kucho K, Saito T, Kohinata T, Ohyama K (2001)
	297	Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism
43 44	298	in Chlamydomonas reinhardtii by sensing CO2 availability. Proc Natl Acad Sci USA
45 46	299	98:5347–5352
47 48	300	Fukuzawa, H, Ogawa T, Kaplan A (2012) The uptake of CO ₂ by cyanobacteria and
49	301	microalgae. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Photosynthesis "plastid
51	302	biology, energy conversion and carbon assimilation." Springer, Advances in
52 53	303	Photosynthesis and Respiration 34:625–650
54 55	304	Gao H, Wang Y, Fei X, Wright DA, Spalding MH (2015) Expression activation and
56 57	305	functional analysis of HLA3, a putative inorganic carbon transporter in Chlamydomonas
58 59	306	reinhardtii. Plant J 82:1–11
60		
61 62		
63 64		10
65		

	307	Han S, Tang R, Anderson LK, Woerner TE, Pei ZM. (2003) A cell surface receptor
1 2		mediates extracellular Ca ²⁺ sensing in guard cells. Nature 425:196–200
3 4	309	Im CS, Grossman AR (2002) Identification and regulation of high light-induced genes in
5 6	310	Chlamydomonas reinhardtii. Plant J 30:301-313
7 8		Iwai M, Yokono M, Nakano A (2014) Visualizing structural dynamics of thylakoid
9	~	membranes. Sci Rep 4:3768 doi:10.1038/srep03768
10 11	313	Jones HG (1992) Plants and microclimate: A quantitative approach to environmental plant
12 13		physiology, 2nd ed. Cambridge University Press: Cambridge, UK.
14 15	315	Karlsson J, Clarke AK, Chen ZY et al (1998) A novel alpha-type carbonic anhydrase
16 17	316	associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for
	317	growth at ambient CO ₂ . EMBO J 17:1208-1216
20	318	Lauersen KJ, Kruse O, Mussgnug JH (2015) Targeted expression of nuclear transgenes in
21 22	319	Chlamydomonas reinhardtii with a versatile, modular vector toolkit. Appl Microbiol
23 24	320	Biotechnol 99:3491-3503
25 26	321	Mackinder LCM, Meyer M, Mettler-Altmann T et al (2016) A repeat protein links
27 28	322	Rubisco to form the eukaryotic carbon-concentrating organelle. Proc Natl Acad Sci
	323	USA 113:5958–5963
31	324	Mariscal V, Moulin P, Orsel M, Miller AJ, Fernandez E, Galvan A (2006) Differential
32 33	325	regulation of the Chlamydomonas Nar1 gene family by carbon and nitrogen. Protist
34 35	326	157:421–433
36 37	327	Meyer MT, McCormick AJ, Griffiths H (2016) Will an algal CO ₂ -concentrating
38 39	328	mechanism work in higher plants? Curr Opin Plant Biol 31:181-188
40	329	Meyer MT, Whittaker C, Griffiths H (2017) The algal pyrenoid: key unanswered
	330	questions. J Exp Bot 68:3739-3749
43 44	331	Mitchell MC, Metodieva G, Metodiev MV, Griffiths H, Meyer MT (2017) Pyrenoid loss
45 46	332	impairs carbon-concentrating mechanism induction and alters primary metabolism in
47 48	333	Chlamydomonas reinhardtii. J Exp Bot 68:3891-3902
49 50	334	Miura K, Yamano T, Yoshioka S et al (2004) Expression profiling-based identification of
51 52		CO ₂ -responsive genes regulated by CCM1 controlling a carbon-concentrating
53		mechanism in Chlamydomonas reinhardtii. Plant Physiol 135:1595-1607
54 55	337	Motohashi K (2015) A simple and efficient seamless DNA cloning method using SLiCE
56 57	338	from Escherichia coli laboratory strains and its application to SLiP site-directed
58 59	339	mutagenesis. BMC Biotechnol 15:47 doi:10.1186/s12896-015-0162-8
60 61		
62		
63 64		1
65		


	340	Nomura H, Komori T, Kobori M, Nakahira Y, Shiina T (2008) Evidence for chloroplast
1	341	control of external Ca ²⁺ -induced cytosolic Ca ²⁺ transients and stomata closure. Plant J
3 4	342	53:988–998
5 6	343	Nomura H, Komori T, Uemura S et al (2012) Chloroplast-mediated activation of plant
7	344	immune signaling in Arabidopsis. Nat Commun 3:926 doi:10.1038/ncomms1926
9	345	Ohad I, Siekevitz P, Palade GE (1967) Biogenesis of chloroplast membranes. I. Plastid
10 11	346	dedifferentiation in a dark-grown algal mutant (Chlamydomonas reinhardtii). J Cell Biol
12 13	347	35:521–552
14 15	348	Skinner SO, Sepúlveda LA, Xu H, Golding I (2013) Measuring mRNA copy number in
16 17	349	individual Escherichia coli cells using single-molecule fluorescent in situ hybridization.
18 19	350	Nat Protoc 8:1100-1113
20	351	Trippens J, Reißenweber T, Kreimer G (2017) The chloroplast calcium sensor protein
21 22	352	CAS affects phototactic behaviour in Chlamydomonas reinhardtii (Chlorophyceae) at
23 24	353	low light intensities. Phycologia 56:261-270
25 26	354	Turkina MV, Blanco-Rivero A, Vainonen JP, Vener AV, Villarejo A (2006) CO_2
27 28	355	limitation induces specific redox-dependent protein phosphorylation in Chlamydomonas
29 30	356	reinhardtii. Proteomics 6:2693–2704
31	357	Uniacke J and Zerges W (2007) Photosystem II assembly and repair are differentially
32	358	localized in Chlamydomonas. Plant Cell 19:3640-3654
34 35	359	Vainonen JP, Sakuragi Y, Stael S et al (2008) Light regulation of CaS, a novel
36 37	360	phosphoprotein in the thylakoid membrane of Arabidopsis thaliana. FEBS J 275:1767-
38 39	361	1777
	362	Wang L, Yamano T, Kajikawa M, Hirono M, Fukuzawa H (2014) Isolation and
42	363	characterization of novel high-CO ₂ -requiring mutants of <i>Chlamydomonas reinhardtii</i> .
43	364	Photosynth Res 121:175–184
45 46	365	Wang L, Yamano T, Takane S et al (2016) Chloroplast-mediated regulation of CO ₂ -
47 48	366	concentrating mechanism by Ca ²⁺ -binding protein CAS in the green alga
49 50	367	Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 113:12586-12591
51 52	368	Wang Y, Huang Y, Wang J et al (2009) Structure of the formate transporter FocA reveals a
53	369	pentameric aquaporin-like channel. Nature 462:467–472
54 55	370	Wang Y, Spalding MH (2014) Acclimation to very low CO ₂ : Contribution of limiting CO ₂
56 57	371	inducible proteins, LCIB and LCIA, to inorganic carbon uptake in Chlamydomonas
58 59	372	reinhardtii. Plant Physiol 166:2040–2050
60 61		
62 63		
64 65		12

_	373	Wang Y, Stessman DJ, Spalding MH (2015) The CO ₂ concentrating mechanism and	
1 2	374	photosynthetic carbon assimilation in limiting CO2: how Chlamydomonas works agains	ŧ
3 4	375	the gradient. Plant J 82:429–448	
5 6	376	Xiang Y, Zhang J, Weeks DP (2001) The Cia5 gene controls formation of the carbon	
7	377	concentrating mechanism in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA	
9	378	98:5341–5346	
10 11	379	Yamano T, Miura K, Fukuzawa H (2008) Expression analysis of genes associated with the	Э
12 13	380	induction of the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant	
14 15	381	Physiol 147:340–354	
16 17	382	Yamano T, Tsujikawa T, Hatano K, Ozawa S, Takahashi Y, Fukuzawa H (2010) Light	
18 19	383	and low-CO ₂ -dependent LCIB-LCIC complex localization in the chloroplast supports	
20	384	the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol	
21 22	385	51:1453–1468	
23 24	386	Yamano T, Iguchi H, Fukuzawa H (2013) Rapid transformation of Chlamydomonas	
25 26	387	reinhardtii without cell-wall removal. J Biosci Bioeng 115:691-694	
27 28	388	Yamano T, Asada A, Sato E, Fukuzawa H (2014) Isolation and characterization of mutant	S
29 30	389	defective in the localization of LCIB, an essential factor for the carbon-concentrating	
31	390	mechanism in Chlamydomonas reinhardtii. Photosynth Res 121:193-200	
32	391	Yamano T, Sato E, Iguchi H, Fukuda Y, Fukuzawa H (2015) Characterization of the	
34 35	392	cooperative bicarbonate uptake into chloroplast stroma in the green alga	
36 37	393	Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 112:7315-7320	
38 39	394		
40 41			
42			
43 44			
45 46			
47			
48 49			
50			
51 52			
53 54			
55			
56 57			
58			
59 60			
61 62			
63		1	.3
64 65		-	_

Figure legends Fig. 1 Isolation of transgenic lines expressing CAS-Clover. (a) A schematic illustration of the expression plasmid of CAS-Clover. The plasmid was constructed based on the pOptimized 6 Clover vector (Lauersen et al. 2015). Translation start (ATG) and stop (TAA) sites are shown. The genomic sequence of CAS is placed at the downstream of $P_{A/R}$, HSP70A/RBCS2 tandem promoter, which is followed by first intron of RBCS2. The nucleotide acid sequence GGCGGCGCGCGGGC encoding the amino acid sequence Gly-Gly-Ala-Ala-Gly represents a synthetic flexible linker between CAS and Clover. The expression of CAS-Clover is terminated by the T_{RBCS2} , 3'-untranslated region of RBCS2. Restriction enzyme sites for cloning of CAS (NdeI and BglII) and for insertion check of the flexible linker (NotI) are ¹⁸ 405 shown. (b) Accumulation of CAS and CAS-Clover fusion protein in wild-type (WT), H82, 20 406 and transformants (CL strains). Cells were grown in low-CO₂ (LC) conditions for 12 h. 22 407 Histone H3 was used as a loading control. (c) Maximum photosynthetic O₂-evolving activity (V_{max}; left) and inorganic carbon (Ci) affinity (right) of WT, H82, and CL-2 cells grown in LC conditions for 12 h. Photosynthetic O₂-evolving activity was measured in externally dissolved Ci concentrations at pH 7.8, and the $K_{0.5}$ (Ci), the Ci concentrations required for half V_{max} , were calculated. Data in all experiments are mean values \pm standard deviation from three biological replicates. *P<0.001 by Student's t test. Fig. 2 Fluorescence signals derived from CAS-Clover in high-CO₂ (HC) conditions. (a) CL-2 cells were adapted to HC conditions. Defocused images +1.0 µm from the focal plane are ³⁸ **416** shown in the bottom row. Each image is placed with the flagella facing upward on the panel. 40 417 DIC, differential interference contrast image. Scale bar, 2 µm. (b) Enlarged fluorescence images of the white boxed area in (a) obtained by defocusing the sample from -0.6 to +0.842 418 44 419 µm from the focal plane. Scale bar, 400 nm. Fig. 3 Fluorescence signals derived from CAS-Clover in low-CO₂ (LC) conditions. (a) CL-2 cells grown in high-CO₂ conditions were transferred to LC conditions for 2 h. Defocused images +1.0 µm from the focal plane are shown in the bottom row. Each image is placed with the flagella facing upward on the panel. White arrowheads indicate the eyespot. DIC, differential interference contrast image. Scale bar, 2 µm. (b) Autofluorescence image of wild-type (WT) cells grown in LC conditions for 2 h. White arrowheads indicate the eyespot region. Scale bar, 2 µm. (bc) Enlarged fluorescence images of the pyrenoid region by defocusing the sample from –0.6 to +0.8 μm from the focal plane. Scale bar, 400 nm. (ed)

Conflict of Interest:

The authors declare that they have no conflict of interest.

