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TRANSFORMATION FORMULAE AND ASYMPTOTIC EXPANSIONS FOR
DOUBLE HOLOMORPHIC EISENSTEIN SERIES OF TWO COMPLEX
VARIABLES (SUMMARIZED VERSION)

MASANORI KATSURADA, DEPT. MATH., FAC. ECON., KEIO UNLV.
(BIERBRY: - P - =M B
AND
TAKUMI NODA, DEPT. MATH., FAC. ENG., NITHON UNIV.
(AARY: - THE - B H T)

ABSTRACT. This is a summarized version of the forthcoming paper [10]. -

The main object of study in [10] is the double holomorphic Eisenstein series {2 (s; z), defined
by (1.10) with (1.9) below, having two complex variables s = (s1,s2) and two parameters z =
(z1,72) satisfying either z € ()2 or z € ($~)?, for which its transformation properties and
asymptotic aspects are studied when the distance |z — z;| becomes small and large under certain
natural settings on the movement of z € ($*)2. Let £(w) be the signature defined by (1.2). We
establish in [10] complete asymptotic expansions of {z2(s;z) when z moves within either the
poly-sector ($7)2 or ()2, so as that the ‘pivotal’ parameter 7, defined by (1.7) with (1.2) and
(1.5), tends to O through |argn| < 7/2 in the ascending order of ) (Theorem 1); this further
leads us to show that ‘counterpart’ expansions exist for {72 (s; z) in the descending order of 11 as
1 — oo through |argn| < /2 (Theorem 2). Our second main formula in Theorem 2 naturally
reduces to various expressions of {:(s;z) (in finitely closed forms) at any integer lattice points
s€ 72 (Corollaries 2.1-2.14). A major portion of these results reveals that specific values of
{a(s;2) at s € Z2 are closely linked to WeierstraB® elliptic functions @(w | 27(1,€(z;)z;))
(j = 1,2), the classical Eisenstein series .#(g;) in (5.9), reformulated by Ramanujan [18], as
well as the Jordan-Kronecker type functions ¢ (w; ;) and ¢2(w;g;) in (5.23), each defined with
the distinct bases g; = e(€(zj)z;) (j = 1,2), the latter two of which were extensively utilized by
Ramanujan in the course of developing his theory of Eisenstein series, elliptic functions and theta
functions (cf. [1][2][21]). As for the methods used in [10], crucial rdles are played by a class of
Mellin-Barnes type integrals, manipulated with several properties of confluent hypergeometric
functions.

1. INTRODUCTION

Throughout the present article, s and s = (s1,s72) are complex variables with s = 6 + it and
sj=o0j+it; (j=1,2), zand z = (z1,z2) complex parameters with z = x+iy and z; = x; +iy;
(j=1,2), and C* denotes the universal covering of C* = C\ {0}; note that argw € (—oo, +o0)
is uniquely determined for any w € C*. The principal leaves of the upper and lower half-planes
are denoted respectively by

5’J+={ze(6;<|0<argz<7r} and ﬁ‘={z€6‘|—7£<argz<0}.

We suppose throughout the article that z = (z1,z») belongs to either ($7)? or (£ )2, and that
(1.1 Imz; # Imz.

It is the principal aim of the paper [10] (announced partially in [8][17]) to study transfor-
mation properties and asymptotic aspects of the double holomorphic Eisenstein series, de-

fined by (1.10) with (1.9) below, having two variables s = (s1,52) € C? and two parameters
z = (z1,22) € (HT)?; this further leads us to establish its complete asymptotic expansions both
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in the ascending (Theorem 1) and descending (Theorem 2) orders when z moves within the
poly-sectors ($*)? so as that the distance |z, — z;| becomes small and large respectively. Our
main formulae in Theorem 2 naturally reduce to various expressions (in finitely closed forms)
for evaluating specific values of {;(s;2) at any integer lattice pints s € Z2 (Corollaries 2.1—
2.14), as well as its certain ‘central values’ (Corollary 2.15).

We prepare here several notations necessary for describing our results. The symbol €(w) is

defined for any w € C* (except when argw = 0) by

1.2) €(w) = sgn(argw) = {—'_-% gg‘éng:
and the (vector-like) notations

(1.3) =221 and mi=z1-2

are frequently used; their arguments are to be restricted as

(1.4) 0<|argzip| <= and 0<|argz| < =,
where the first equalities come from (1.1). It is readily seen under (1.4) that
(1.5) 21 = @My, and gy = e ERITL,
and also that

(1.6) €(z21) = —€(z12).

We next introduce a new parameter 1 defined by

(17) n= %e-e(zu)ni/zzlz — %e—s(zzl)m'/ZZZh

or equivalently by
212 = 265(212)751'/217 and 1= 268(221)751'/2”,

which plays pivotal réles in describing our results; its argument satisfies under (1.4) that

1 (4
argzy) — 58(221)717 <3
We remark that the introduction of 1 above is made with the intention to the forthcoming
study [11] (partially announced in [9]), where the non-holomorphic case z = (z,7) € HT x 9~
or z = (7,2) € H~ x HT is to be treated, where 75| =z —7 = 2¢™/2y or z5) =7 — 7 = 2¢ /2y
golds; this in comparison with (1.7) suggests that 1 is a ‘complexification’ of the real parameter

1
(1.8) |argn| = |argzi2 — 58(212)75

Throughout the following, the notation (s) = sy + s for any s = (s,s2) € C? is used, and

~+
{2 (s;2) denotes the double holomorphic Eisenstein series of two variables s € C? and with
two parameters z € (H*)2, defined by

co

~+
(1.9) G (832)= Z (m+nz1) " (m+nzy) ™ (Re(s) > 1),
mp=—oo
(m.n)#(0,0)
where the branch of each summand is to be chosen such that arg(m + nz;) falls within the range
—_— + —~—
(—m,x] in {72 (s;2), and within [—7,7) in {72 (s;2), for j = 1,2. We now introduce the

—
main object by taking (from a viewpoint of symmetry) the arithmetical mean of ;2 (s;2):

(1.10) Ge(s2)=5{G (524 G (52)},

for which we establish at first in [10] complete asymptotic expansions when z = (z1,z2) moves
within either the poly-sector ($7)? or ($7)2, so as that the ‘pivotal’ parameter 7 in (1.7) tends
to 0 through the sector |argn| < @/2 (Theorem 1). The case N = 0 of our first main result
(2.5) with (2.6) (resp. (2.7)) and (2.10) reduces to a transformation formulae for {;2(s;z) in
terms of Kummer’s hypergeometric function ; F; (% ;Z) (Corollary 1.1); this further leads us to
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show that ‘counterpart’ expansions exist for {z2(s;z) when 7 tends to oo through |argn| <
7/2 (Theorem 2).

The use of Mellin-Barnes type integrals in [10], manipulated with several properties of hy-
pergeometric functions, is crucial throughout the proofs; the transference from Theorem 1 to
Theorem 2 is for instance achieved by a classical connection formula relating Kummer’s con-
fluent hypergeometric functions of the first and second kind.

As for asymptotic aspects of relevant Eisenstein series (of one complex variable), Matsumoto
[15] obtained complete asymptotic expansions (with respect z) of holomorphic Eisenstein se-
ries, while the second author [16] studied an asymptotic formula (as t — +oo) for the non-
holomorphic Eisenstein series Ey(s;z) (of weight 0). Complete asymptotic expansions for the
classical Epstein zeta-function {;2(s;z) as y = Imz — oo have been established by the first
author [5], in which similar expansions were also derived for the Laplace-Mellin transform of
{y2(s;z). The main formula in [5] for §y2(s;z) is readily switched to that for Ep(s;z) by the
relation Eo(s;z) = y*872(s32) /28 (s), where {(s) denotes the Riemann zeta-function; this could
further be transferred to complete asymptotic expansions as y — oo for Ex(s;z) (of any even
weight k) by the authors [7] upon using MaaB’ weight change operators. Furthermore, complete
asymptotic expansions for a more general Epstein zeta-function Wy (s;a,b; 1L, V;z) as y — oo
have recently been established by the first author [6], together with those for the Riemann-
Liouville transform of §;»(s;z). We further mention that Eisenstein type series (of two complex
variables) relevant to (1.10) have recently been treated in [12][13][14].

The authors would like to thank Professor Kohji Matsumoto for valuable comments on the
present work.

2. MAIN RESULTS
Let @;.t (j = 1,2) be the domains in $*, defined by
27 ={z € ($*)? | [Imz;| < |Imzal},
in ={ze€ (55)? | |Imzy| > |Imz|}.

We shall split the statements of our results into the following two cases (with the equivalent
description in terms of (1.2)):

Case i) 2€Z/UY] < €(z) =¢(n) =¢(z12);

2.1
@D Case ii) 2€ 95U, < e(z) =¢£(z2) = &(za1).

It is seen from the definition (1.10) with (1.9) of {;2(s;z) that the assertions in Case i) can
readily be switched to those in Case ii) by the replacements
{ C?3 s =(s1,%) — (s2,51) =5 € C?,

25U 2z=(21,22) — (v,21) =2 € D UD5
and vice versa; however, the statements are to be given in both the cases for clarifying symmetry
of our results. _

We frequently use the notation e(w) = **™* for any w € C*. Let I'(s) be the gamma func-
tion, (s), = I'(s+n)/I"(s) for any n € Z the shifted factorial of s. Further let 1F1(% ;Z) and
U(A;Vv;Z) denote respectively the first and second solutions of Kummer’s hypergeometric dif-

ferential equation, defined by
A R "
Fl%*:,Z) = VA
! (v ) k)z:o(v)kk!

(2.2)

for |Z| < +eo (cf. [20]), and
cogi®
2.3) U(A;v;Z) = ﬁ /0 e WA (14 w)Y A ldw

for ReA > 0 and |@ +argZ| < 7/2 with any fixed angle ¢ € (—7,7), where the path of inte-
gration is the ray from the origin to coe’® (cf. [20]). Next let 6,,(I) = Yo<ph*, and Pr5(e(2))
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the function defined for any z € §* by
(2.4) Dp(e(z) = Y, e(hk2)h'k =Y 0rs(1)e(lz),
hk=1 =1

which was first introduced and studied by Ramanujan [18] for the purpose of giving various
evaluations of the holomorphic Eisenstein series Ey(z) with k = 2,4,6.
‘We now state our first main result.

Theorem 1. Let 1) be given by (1.7). Then the double holomorphic Eisenstein series Egz(s;z)
in (1.10) with (1.9) can be continued to an entire function to the s-space C?, and the formula

(2.5) Cox(5:2) = 2¢05% (55 £ ({8)) + G2 (5:2)

~ %
holds, where §;» (8;z) is represented for any integer N > 0 as:

)ifze 9 U9,

—~x s)
(2.6) Cp (852) = cos (g(s)) {Sn(s;2)+Ry(s;2)}

in the region 6, > —N;
i) ifz€ 209,

—~ % s)
@7 Lp (8;2) = cos (g(s)){SN(g;E) +Ry(5:2)}

in the region 01 > —N.
Here in both the cases i) and ii), SN (s; z) is further expanded as

. _N_l (=1)"(s2)n n
(2.8) SN(S7Z) = ZO ((8))nn! ‘15<3)_H_,,7,,(8(€(21)Z]))(47F1]) )

giving the asymptotic series in the ascending order of 1 as 11 — 0 through the sector |argn| <
7/2; the remainder Ry (s; z) is expressed by a certain Mellin-Barnes type integral, and satisfies
the estimate

2.9) Ry(s;2) = O(e 2™imal g V)

as 1 — O through |argn| < m/2 — & with any small § > 0, while z € ($%)? moves within
[Tmzj| > yo > 0 (j = 1,2). Here the constant implied in the O-symbol depends at most on s,
vo, N and 8. Furthermore, the explicit expression

(=D (s2)w N v ()= 1+N

(2.10) Ry(s;z) = ————2_ (47n) e(hke(z1)z1)h'® KN

Gy (T L elhkez)a)

1
N—1 s2+N |

X/O (1-¢) 1F1(<8>+N,—47thk1‘]5>d§
holds in the same region of s above, where the case N = 0 should read without the factor (—1)!
and the & -integration.
Remark The n-th indexed term on the right side of (2.8) is of order = ¢~2#/1mz] [n|", since
(2.11) @, 5(e(e(2)2)) = e(&(2)z) + O(e4Hmly < (=27l Im|
as Imz — +oo, by (2.4); this shows that the presence of the bound in (2.9) is reasonable.

The case N = 0 of Theorem 1 yields the following result.

Corollary 1.1. The function Q,:Z/z*(s;z) defined by (2.5) can be continued to an entire function
of s to the s-space C?, and the following transformation formulae hold for all s € C2:
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i) ifze 2 U9y,

—~ % (s) hind s
(212) Lz (si2) = 2}2(7(:2>) cos (g(.s)) hkz_le(hks(zl 2R R (<:>;—47thk11);
i) if 2 € 25 U2, ’
— (s) d s
213)  Lp (si2) = %s)—)cos (g<s)) hkz_le(hke(a)zz)h(s)_llﬂ ( ( Sl>;—47rhkn).

‘We now state our second main result.
Theorem 2. Let {5 (s;2z) be defined by (2.5). Then the following formulae hold for any
seC%
) ifze 2 U9,

214 o 5 (s) T £E(212)Tis2 e€(za1)misy
. M = s — J— Ti . . .
(2.14) 82 (832) =2(2m)'¥ cos (2 (s ){ o) 1(s;2)+ o) Tz(s,z)},
i) ifz€ 2/ UD;,
Ea)mis  e(z)mis

— T
2.15 12) =202m) % cos ((8))§ S T1(8:2) + - Ba(8:2) -
(2.15) Czr (832) =2(2m)" cos ( S (s) ) 1(852) + o) 2(5:2
Here in both the cases i) and ii), Tj(s; z) (j = 1,2) are represented for any integer N > 0 as
(2.16) Ti(s;z) =Sjn(s;2) +Rjn(s;2)
in the region —N < 6; <N+1 (j = 1,2), where

N-1/_1\n _ .
@17 sin(siz) = ¥ (sz,)ﬁ(l 8 o -sylelee)on) (4me DTy
n=0 .

N-1
—1)" 1—
(2.18) Syn(s;2) = Z (=1 (sl)':( $2)n
n=0 n
both giving the asymptotic series in the descending order of 11 as 11 — oo through the sector
largn| < m/2; the remainders Rjn(s;z) (j = 1,2) are expressed by certain Mellin-Barnes

type integrals, and satisfy the estimates

2.19) Rin(s;2) = O(e” 2mmal|p|—02=N),

(2.20) Ro(s;2) = O(e~2MImal g =1 =)

respectively as 1) — oo through |argn| < /2 — & with any small § > 0, while z € ($%)? moves

within |Imzj| > yo > 0 (j = 1,2). Here the constants implied in the O-symbols depend at most
on 8, yo, N and 6. Furthermore, the explicit expressions

(D) s2n(1=s)y ¢ "
(]3—1)! - Nh’kzzf(hks(zl)zl)m )1

X /01 E72 N1~ EYWVTIU (52 + N3 (s);4mhke D)y /E)dE,

(=DV(sn(1—s2)n ¢ o)
T ”hk)izle(hks<Z2)z2>h< -1

% /01 E VA=V U (51 + Vi (s); 4mhkn /£)dE

hold in the same region of s above, where the case N = 0 should read without the factor (—1)!
and the & -integration.
Remark By virtue of (1.2), it is ensured that |e(€(zj)z;)| < 1 (j = 1,2) in (2.5)—+2.22).

Pyy-n-1,-s1-n(e(€(z2)22)) (4mm) 177,

2.21) Rin(s;z) =

(2.22) Ron(s;z)=
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3. SPECIFIC VALUES AT s € N? AND s € (—Np)?
The following Sections 3—6 are devoted to showing that our second main formula (2.5) with
(2.14) (resp. (2.15)), (2.17), (2.18),/\/(2.21) and (2.22) reduces to various expressions (in closed

form) of the particular values of {;2(s;z) and its partial derivatives when s is at any integer
lattice points, as well as its central values at s = (s,s) (s € C). For this, let B, (n € Np) denote
the n-th Bernoulli number (cf. [3]), and write 0 = (0,0), e; = (1,0), e; = (0,1),and 1 = (1,1)
for brevity. We hereafter use the customary notation (g; ). = [Tr; (1 — g*) for any complex g
with |g| < 1, and set ¢; = e(&(z;)z;) (j = 1,2). The assertions only when z € 2;" U 9, are to
be stated in the sequel, since those when z € 9,7 U %, are readily obtained from the former by
(2.2).

Corollary 2.1. For specific values of §;(s;2) and its first derivatives at any lattice points
s =m € N? with m = (my,my), the following formulae hold when z € 9;" U 9; :

D) if (m) = my +my is even,
(27131)< >B(m)

3.1) (s 2) = — o +2(2m)™)
1)m 1)m
% {%Sl m (T52) + %Szymz(m;z)},
and in particular for m =1,
32) Z_,?/z(l'z)zﬂ_2+2_7t (41391)
' e 3m (92:92)

il) if (m) =my +my is odd,

(3.3) Cpa(m;z) =0,
and further for j = 1,2,

(3.4) 3aiz2 (m;z) = %(2ni)<m)+l { il_)il_sl,ml (m;z)+ —(-_—1—%52,,,,2 (m;z)}.

j (1! (m
Here in both the cases above, S;,(m;z) (j = 1,2) are given (in finite closed forms) as
m;—1 mi — 1
65 Sim(miz)= L (") m)amcnt ealan) ()
n=0
m2—1 m2 _ 1
(3.6) S2my (M 2) = Z ( n ) (M1)nPrmy—n—1,-my —n(g2) (47m) ™"
n=0

Remark. Formula (3.2) gives a two variable analogue of the classical Kronecker limit formula
for the (one variable) Epstein zeta-function as s — 1 (cf. [19]), while (3.1), (3.3) and (3.4) may

be regarded as its variants at s = m € N?; similar reductions from asymptotic expansions are
also observed in [5][6].
Corollary 2.2. For specific values of {;(s;z) at any lattice points s = —m € (—Ng)? with
m = (my,my), the following formulae hold when z € 2} U9, :
o R | ifm =0,
@37 Sor(-miz) = {0 otherwise.
Corollary 2.3. For specific values of (08z2/9s;)(s;z) (j = 1,2) at any lattice points s =
-me (—No)2 with m = (m1,my), the following formulae hold when z € @f Uy
i) ifm=0, forj: 1,2,

Ay

%, (0;2) = —2log V2w +25;,1(0;2) = —2log {V27(gj3q))=},

(3.8)
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it} if (m) = my +my is even with {m) > 2,

86;2 v (m) 2my! .
(3.9 a—sl(_m’z) = (27ti)<m) C((m)+1)+ (ZJti)(m) Sl,m2+1( m;z),

Wy, . (m) 2my! o
(3.10) 95, ) = Gy ) H D) oy S (=i 2);

iil) if (m) = my +my is odd with (m) > 1,
(3.11) aaizz(—m;z)zo (k=1,2),
k
and further

PCp o B 1

(3-12) 951952 (Fmiz)=- my+1° 2(2mi){m)-1

X M1 my1(— M 2) +ma!So my 11 (—5 2) ).

Here in the cases i)iii) above, S; m+1(—m; z) (j = 1,2) are given (in finitely closed forms) as
my m
(3.13) Sl,m2+l(_m;z) = Z ( nl) (1 +my )nd)—ml—n—l,mz—n(QI)(_47n1)m2_n7

n=0
my

m _

G189 Sumir(omiz) = () (sl 0
n=0

Remark. Formula (3.8) gives a two variable analogue of the classical Kronecker limit formula

for (the derivative of) Epstein zeta-function at s = 0 (cf. [19]), while (3.9)—(3.12) may be re-

garded as its variants at s = —m € (—Ny)?; similar reductions from asymptotic expansions are

also observed in [5][6].

4. SPECIFIC VALUES IN CONNECTION WITH GENERALIZED LAMBERT SERIES

We evaluate in this section several specific values of C;;(s;z) in terms of the generalized
Lambert series defined for any s,w € C with w # g~* (k € N) by
(4.1) Zi(wiq) = i M-
’ =i 1—wgt
Let §(m) (m € Z) be the symbol which equals 1 or 0 according to m = 0 or otherwise, and &}
(n,k € Np) denote the Stirling numbers of the first kind defined by

(ew—l)k oo n

“ Ll S
Proposition 1. For any r € Ng and s € C we have the relation

(43) @)= Y, 6129(g),

where = o

@y 2= (L) Ama) - j!k: ?T]Tm (j € No).

‘We remark that the Lambert series of the type in (4.4) play underlying roles in Ramanujan’s
theories of Eisenstein series, theta functions and elliptic functions (cf. [1][2][21]), where, for
e.g.,

@5  Pq)=1-242"(g), 0(q)=1+2402(q), R(g)=1-5042"(q).
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are the classical Eisenstein series reformulated by Ramanujan [18]. It is possible to transfer,

through (4.3), from the expressions in (3.5), (3.6), (3.13) and (3.14) to those in terms of .Zg(j ) (9)
(7 € Np). We can for instance show the following Corollaries 2.4-2.6.

Corollary 2.4. For specific values of é;(s;z) and its first derivatives at s = 1, (1,2), (2,1)
and 2 - 1, the following formulae hold when z € 9" U 9y :

~ n? 2m 27
@o  Gp=5+ L) -T2V @)
Ay n? 273
@n %2002 = E2Y0) - 2@+ T2 @),
j n n

aC 2 71'2 0 0 27[3 1
@8 G2 =25 a) - 2G @) - S 20 @),

both for j = 1,2, and

49 G012 = Er T+ 2 - SV - 2 e

Corollary 2.5. For specific values of (B?Zz/asj)(s;z) ats=0, -1, =21, —mje; with even
m; (j = 1,2), the following formulae hold when z € 2}t U 9; :

(4.10) aa%;(o;z):—log\/§7—t+2$_((i)(qj) (j=1,2),

@.1) aa% (-12) =~ 5563) + 12D (ar) - 2,

@12) ‘%(—1; )= 5738 ®) - 22 (@) - 2@,

(4.13) aa%<—z-1;z>=ﬁa)+—7{$ (a) +25 @)},
-0 )+Fz<‘?(q1),

@.14) P (2 112) = 5505+ {z (42)+ 2 )}

6”2% )+ 52V a),

and for any even mj € Ny (j = 1,2),

M , 2m ©)
(4.15) 95, (—mjej;z) = (27ci)mJC(m]+1)+ )" jjf_mj_l(qj)
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Corollary 2.6. For specific values (82?22/3s13sz)(s;z) at s = —ej for j=1,2, (=2,-1),
and (—1,—2), the following formulae hold when z € 9" U9, :

(4.16) %(—el;z)——ﬁ—Zﬂng( a2)~ 3 (£ an +2 @),
an T e T o2V L (#a) +$£‘;> (@)},
(“.18) %(—2, ~1i2) = 2 o2 W)+ 20 @) - U2 @)
229 (@)} + o 2 ) + 28 ).
.19) g;%(—l, “%z)= % +on 2 Y@ + L8 @)} - 12 (a)

1 3 0 0
~ 20 ()} + m{g_(f(lh) + 29 (@)}
Using the relation (4.3), we can further show that S; ,,(m;2) in (3.5) and (3.6), as well as
Sjm+1(—m;z) in (3.13) and (3.14) are (as functions of z) the elements from the Z[(47mn)*]-

modules spanned by certain sets of the generalized Lambert series .Z; (] ) (9).
Corollary 2.7. For the functions in (3.5), (3.6), (3.13) and (3.14), the following algebraic prop-
erties hold when z € 9{" U ; :

i) at any lattice points s = m € N? with m = (my,my),

(4.20) Sim(miz) € ({L0 0 @) [0< ) <1<~ }>z[1/47m]’

4.21) Sy my (T3 2) <{,§f J) (11 (02) [0 < j<T<my— 1}>Z[1/4,m]?
ii) at any lattice points s = —m € ( NO)2 with m = (mi,ms),

4.22) Stmy+1(—m; 2) <{ ry-1(@1) 10 < j <l<m2}>2[4m,]’

4.23) S2m+1(— <{=5f”z Ve 1(@2) 10 <1 <m1}>z[4m1]'

5. SPECIFIC VALUES AT s € Nx (—Np) OR s € (—Np) x N

Our second main formula in Theorem 2 further yields various evaluations (in finitely closed
forms) for specific values of {;2(s;2) and its partial derivatives at any lattice points s = m in
either N x (—Np) or (—Np) x N,

Corollary 2.8. For specific values of Z/Zz(s;z) at any lattice points s = m € N x (—Ny) with
m = (m,—my), thefollowingformulae hold when z € 2, U2 upon Ny = min(m;,my+1):

i) if (m) = my —my is even,
5. Eomi) 28 ) 1 i)
i) if (m) = my —my is odd, .
(5.2) Cpo(miz) =0,
and further for k = 1,2,
3522 2 (27tl)m1_m2+1

5.3) aSk (m ) 8(( ) )+2(m]—1)S1 Nl(m z)
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Here in both the cases i) and ii), Si y,(; 2) is given by

Ni—1 m
5.4) Sl,Nl (m;z) = Z ( )(1 "‘ml)n¢m1—n—l,mz—n(ql)(_4nn)mz_n'

n=0 n
Corollary 2.9. For specific values of (z2(s;z) at any lattice points s = m € (—Ng) x N with
m = (—my,my), the following formulae hold when z € 97" U9 upon N> = min(my + 1,my):

i) if (m) =my —my is even,
2(2mi)m2 M (—1)™

(5.5) Cgp (i 2) = 28 (m —mn) + S (i 2);
(mz — 1)!
ii) if (m) = my —m is odd,
(5.6) G (msz) =0,
and further for k=1,2,
BCZz (27L’z)’"2"’”1Jrl
5.7 = _pyg EEE
Here in both the cases i) and ii), Sy v, (M; 2) is given by
Nl
(5.9 SZ,NZ (m;z) = Z ( n1> (1 _mZ)nq)mz—n—l,ml—n(q2)(47[n)ml .
n=0
We next define for any r € Ny the functions .%(g) by
B
1 714‘@0,0(‘1) if r =0,
(5.9 rSﬂr(Q) = EC(_") + (pO,r(q) = B,y & > 1
_2(r+1)1L 0(4) tr=5

which was first introduced and studied by Ramanujan [18] in the course of developing his theory
of Eisenstein series and elliptic functions (see, for e.g., [1][2][21]); the Eisenstein series in (4.5),
due to Ramanujan [18], are for instance connected with .%,(q) as

P(q) = —24%1(q), Q(q) =2407(q), R(q) = —50475(q),

while WeierstraB’ elliptic function @(w | 27(1,z)), associated with the basis 27(1,z) forz € $+,
is expanded into the Laurent series involving .%; (q) with g = e(z) in its coefficients as

1 -1 n+1
(5.10) plw|2m(1,2)) = —+22 o T Jw"

for 0 < |w| < 2wmin(1,]z|). The case m = mje] (] = 1,2) of Corollaries 2.8 and 2.9 in partic-
ular implies the following relations:
Corollary 2.10. The following formulae hold for any mj € N (j = 1,2) when z € 97 U9y :
i) ifmj e N (j=1,2) is even,

—~ ) 2(2mi)™ 2(2mi)™i

.11 Cpp(mjej; z) =28 (m;) + (—T)!‘Pm,-—l,o(qj') BCTEN]
and in particular when mj > 4,

—~ Q)™ d \mi-2 1

61D Gelmesz) = o2 (55) (o1 280e@)) - s

i) ifm; €N (j=1,2) is odd,

ymj—l(q])

;
w=0

(5.13) CZz(mjej;z) =0,
and further fork=1,2,
2 27i mj+1 2i mj+1
19 22 i) = Tatn, 1+ Lt = L2V )
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Remark. Tt is interesting to note that the even index cases of .%,(q) appear in the formulae for

952/ dsi. above, whereas the cases cannot be observed in Ramanujan’s theories of Eisenstein
series, elliptic functions and theta functions.

Corollary 2.11. For specific values of (f;z(s;z) and its derivatives at any lattice points 8 =
(m1,—1) € N x (=Ny), the following formulae hold when z € 9;F U 9

i) if my is odd,
_ 2(2miym—1
(5.15) Cga(my, —1;2) =28 (my —1)—%

+ (1 —my )¢m1 —2,0(q1)}7
and in particular if my > 3,

{—4xN Dy —1,1(q1)

~ 2(2mi)™ an
(5.16) gZZ(ml, —122) = (’1(114_)2)!{5/"11—2(6]1) + leqj'"l—l,l(ql)};
ii) if my is even,
(5.17) Gpp(my,—1;2) =0,
and further fork = 1,2,
3@ N (2mi)™
(5.18) 950 (m1,—1;2) = —=-8(m; —2) — m{_4”’1¢m1—1,1(Q1)
+ (1 =m1) P —20(q1)}
= %{ym|—2(ql) + ;I—_ld)ml_l’l(ql)}'

Corollary 2.12. For specific values of @(s;z) and its derivatives at any lattice points s =
(—1,mp) € (—Np) x N, the following formulae hold when z € @f U, :

i) if my is odd,
_ 2(2mi)y™—!
(5.19) b (—1,m3;2) :2“’”2"1)'%

+ (1 —=mp) P, —20(q2) },
and in particular if my > 3,

{4xn Dy, —1,1(92)

— Hym2—1
620 Grctmin) =22 ) - (e
it) if my is even,
(5:21) Gy (—1,ma;2) =0,
and further for k = 1,2,
s n? (2mi)™

(5.22) (—l,mz;z) = 75(”!2 — 2) — {471'1" q)mz—l,l(QZ)

2(ma—1)!
+ (1 —m) P, —20(q2)
4

— w{ymz-z(qz) - ',112717145'”2_1’1 (QZ)}'

2(m2 - 2) !
We next define the functions ¢;(w;q) (j = 1,2) by the Fourier series expansions

3sk

1 T —
. = — f—
d1(w:q) 400 3 +n—El

sinnw,
1—-g"
(5.23) -
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for |Imw| < 27| Imz| with ¢ = e(z), and their analytic continuations. These were first introduced
by Ramanujan, who made extensive use of these functions for developing his theories of elliptic
functions, theta functions and Eisenstein series (see, for e.g., [1][2][21]); Weierstral}’ elliptic
function @(w | 27(1,z)) for z € H is in fact connected with these functions as

d
oo 2801.0) =2{ 020:0)~ 51 i) .
In view of the Laurent series expansions

n—1
01(wig) = —+): )1),5’2;: oW,

$2(wiq) = +): n ), D1 20(q)W
for 0 < |w| < 2zmin(1, |z|), we can show the followmg relations.

Corollary 2.13. The following evaluations are valid if z € 9}t U9 :
i) foranymj e N (j=1,2),

(-25) G (mjejiz) = —% ((;iw)m]_l{dn (w;q)) — %}

and in particular for any m; > 3,

526 Galmesin) = gt ()" {1202 - 55

which unifies (5.11) and (5.12) for m; > 3;
ii) for any m; € N withmy > 2,

(5.27) fvzz(ml,—l;z):z((n?—)_m;;[_ (%)ml-Z{qﬁl(w;éh)-jluj}lwzo

w=0] ’
iii) for any mp € N with my > 2,

(5.28) @(—me:z(z”—)m_l[—(%)mz‘z{(pl(w;qz)—ﬁ}

(mz — 2)!
w—O] ;

4nm ¢ 3 \m-1
+m2—1 (%) ¢2(W,L]2)
Using again the relation (4.3), we can show the following results.
Corollary 2.14. For the functions in (5.4) and (5.8), the following algebraic properties hold
when z € 9} U9y :

i) atany s =m = (my,—my) € N x (—Np),

(524)

)

w=0

I’
w=0

47m ( 0 )m1—1

_ml—l -

ow

w=0

j 0<j<I,
(5:29) Sin (m;z) € <{%ﬁﬁ)_1+z(q1) ax(0,1— (J ) <1< m2}> ;
Z[azn)

ii) atany s=m = (—m1,my) € (—Np) x N,

. ) 0<j<t;
(5-30) S2.m, (M3 2) € <{‘Z<Tjn)—1+z(‘12) max(0,1 () £ 1< m1}> :
Z[4mn]
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6. CENTRAL VALUES

Next let Ky (Z) denote the Bessel function of the third kind (cf. [4]), and write d(I) = op(l)
for I € N. Then the case N = 0 of our main fo}lnula (2.5) with (2.14), (2.21) and (2.22) yields
the following results on the central values of {;2(s;2) along the complex line s = s1 (s € C),
and further its ‘extremal’ central value at s = (1/2)1.

Corollary 2.15. The following formula holds for any s € C when z € 2;" U9y :

Gp(s1:2) 3 1ty (el (et +22)/2)
1=1

4imsn!/
©.1) cos(7s)

= 2cos(7s)§(2s) + T T(s)

X {3(le)Ks—l/z(2”138(212)7”71) +8(221)6’8(22‘)m(l/z—s)Ks—l/z(znln)} )

whose limiting case as s — 1/2 asserts that

Ip R~
62) 9 (1/2;2) = % —27i Y d(De(le(z1)(z1 +22)/2)
5j 2 =1
x {&(z12)Ko(2mlef @)% n) 1+ g(z01 ) Ko(27In)}
for j=1,2.
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