
Title
ON THE NAGELL-LJUNGGREN EQUATION (Analytic
Number Theory : Distribution and Approximation of
Arithmetic Objects)

Author(s) Hirata-Kohno, Noriko; Kovacs-Coskun, Tunde; Miyazaki,
Takafumi

Citation 数理解析研究所講究録 (2016), 2013: 60-67

Issue Date 2016-12

URL http://hdl.handle.net/2433/231633

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/160458794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ON THE NAGELL‐LJUNGGREN EQUATION

N. HIRATA‐KOHNO, T. KOVÁCS AND T. MIYAZAKI

ABSTRACT. We show that there exists an effective upper bound for the solutions to the Nagell‐
x^{m}-1

Ljunggren equation of the form --=y^{q} in4 unknowns in integers x>1, y>1, m>2, q>
x-1

1, when x is a cube of an integer. Our method relies on a refined estimate of linear forms in

logarithms.

1. INTRODUCTION

It is a longstanding conjecture that the exponential Diophantine equation in four unknowns,
so‐called the Nagell‐Ljunggren equation:

(1) \displaystyle \frac{x^{ $\gamma$ n}-1}{x-1}=y^{q} in integers x>1, y>1, m>2, q>1

has finitely many solutions (x, y, m, q) . Nagell and Ljunggren confirmed [12][15][16] that apart
from

(2) \displaystyle \frac{3^{5}-1}{3-1}=11^{2}, \frac{7^{4}-1}{7-1}=20^{2}, \frac{18^{3}-1}{18-1}=7^{3},
the equation (1) has no solution (x, y, m, q) if either one of the following conditions is satisfied:

(i) q=2 , (ii) 3|m , (iii) 4|m , (iv) q=3 and m\not\equiv 5 (mod)6.

It remains unknown to date whether the number of the solutions is finite or not, and there is

no known solution other than those of (2). It is widely believed that there is no other solution.

The problem requires us when it happens a perfect power of an integer to be written with all

digits equal to 1 in base x . Shorey and Tijdeman [22] proved that the equation (1) has only
finitely many solutions (x, y, m, q) if one of the following conditions is satisfied:

(i) x is fixed, (ii) m has a fixed prime factor, (iii) y has a fixed prime factor. This assertion

is effective.

It is mentioned by Shorey [20] that the abc conjecture implies the finiteness of the solutions

to the equation (1).

Since the case q=2 is solved, there is no loss of generality in assuming that q is an odd

prime. The fact that there is no other solution with m even follows from the affirmative answer

of Catalan�s conjecture due to Mihăilescu [14]. Note that it is still an open problem to prove in

general the equation (1) has only finitely many solutions of form (x, y, q, q) .
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Now we consider the Nagell‐Ljunggren equation under the condition that x is a power.

Bugeaud, Mignotte, Roy and Shorey [7] proved that the equation (1) has no solution when‐

ever x is a square. Hirata‐Kohno and Shorey [9] considered an analogous question when x=z^{ $\mu$}

where z>1,  $\mu$\geq 3 and they showed that the equation (1) with x=z^{ $\mu$} with q>2( $\mu$-1)(2 $\mu$-3)
has only finitely many solutions effectively bounded depending only on  $\mu$.

In this paper, we show that the constant giving an upper bound for the height of the solutions,
can be improved using a refinement of a lower bound for the linear forms in logarithms of form

|b_{1}\log$\alpha$_{1}+\cdots+b_{n}\log$\alpha$_{n}|.

Theorem 1.1 (Hirata‐Kohno, Kovács and Miyazaki). Let z>1 be an integer. Assume  q\neq
 5

, 7, 11. Then there exists an effectively computable absolute constant C>0 satisfying the

following statement. Suppose (x, y, m, q) is a solution to the equation (1) with x=z^{3} . Then we

have \displaystyle \max(x, y, m, q)\leq C.

We may derive the finiteness of the solutions to the equation (1) of Theorem 1.1 from [9],
however, our new ingredient here for the proof is based on an advantage of the factor \log E in

[11] and [18] appeared in a lower bound for the linear forms in logarithms. We use a lower bound

obtained by Bugeaud in [5] which is again precisely calculated by the third author.

Note that the result is due to Inkeri when  $\mu$=q=3 (Lemma 4, [10]). Bugeaud and Mignotte

proved if  $\mu$=q ,
there is no solution in (x, y, m, q) (Théorème 9, [6]), and this statement follows

from a theorem of Bennett on the Thue equation [3] showing, when a>b\geq 1 and n\geq 3 ,
that

the equation

|ax^{n}-by^{n}|=1
has at most 1 solution in positive integers (x, y) (indeed, if  $\mu$=q ,

we suppose that there

exists z>1, y>1, q\leq 3, m\leq 3 with z^{qm}-1=(z^{q}-1)y^{q} , then consider the equation

z^{q}Z^{q}-(z^{q}-1)Y^{q}=1 where Bennett�s theorem can bc applied to conclude the statement).
In 2007, Bugeaud and Mihăilescu showed  $\omega$(m)\leq 4 if (x, y, m, q) is a solution to the equation

(1) [8] and it was improved to  $\omega$(m)\leq 3 by Bennett and Levin [4].

2. OUTLINE OF THE PROOF

Proposition 2.1 (Consequence of Lemma 2 of [9]). The equation (1) with x=z^{3} implies that

either \displaystyle \max(x, y, m, q) is bounded by a positive effective constant, or

\displaystyle \frac{z^{7\} $\tau$}-1}{z-1}=y_{1}^{q}, \frac{z^{2m}+z^{ $\tau$ n}+1}{z^{2}+z+1}=y_{2}^{q}
where y_{1}>1 and y_{2}>1 are relatively prime integers such that y_{1}y_{2}=y.

The next lemma states approximations of certain algebraic numbers by rationals using Padé

approximations found in [5] which is a precise statement of Shorey and Nesterenko [17]. This

also improves Lemma 3 of [9].

Lemma 2.2. Let A, B, K and n be positive integers such that A>B,K<n, n\geq 3 and

 $\omega$=(B/A)^{1/n} is not a rational number. For 0< $\phi$<1 , put

 $\delta$=1+\displaystyle \frac{2- $\phi$}{K}, s=\frac{ $\delta$}{1- $\phi$},
u_{1}=40^{n(K+1)(s+1)/(Ks-1)}, u_{2}^{-1}=K2^{K+s+1}40^{n(K+1)}.

Assume that

A(A-B)^{- $\delta$}u_{1}^{-1}>1.
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Then

| $\omega$-\displaystyle \frac{p}{q}|>\frac{u_{2}}{Aq^{K(s+1)}}
for all integers p and q with q>0.

Now we apply the lemma above to prove the statement whenever q is fixed. We show:

Proposition 2.3. The equation (1) with x=z^{3} and the condition q\neq 5 , 7, 11 implies that max

(x, y, m) is bounded by an effectively computable number depending only on q.

The proposition 2.3 is proven as follows. Let us consider the equation (1) with x=z^{3}.

Recall that Shorey and Tijdeman showed that the equation (1) has only finitely many solutions

if either x is fixed or m has a fixed prime divisor. Then we may assume that \displaystyle \min(m, z)
exceeds a sufficiently large constant depending only on q . By Proposition 2.1, we may suppose

\displaystyle \frac{z^{m}-1}{z-1}=y_{1}^{q}, \displaystyle \frac{z^{2m}+z^{m}+1}{z^{2}+z+1}=y_{2}^{q} , namely (z-1)y_{1}^{q}=z^{m}-1, (z^{2}+z+1)y_{2}^{q}=z^{2m}+z^{m}+1 . thus

0<(z^{2}+z+1)y_{2}^{q}-(z-1)^{2}y_{1}^{2q}\leq 3z^{m} which implies

(3) 0<|(\displaystyle \frac{(z-1)^{2}}{z^{2}+z+1})^{1/q}-\frac{y_{2}}{y_{1}^{2}}|<\frac{6z^{m}}{z^{2}y_{1}^{2q}}
But Lemma 2.2 with A=z^{2}+z+1, B=(z-1)^{2} gives a contradiction against the upper bound

above.

Now it remains to show that the equation (1) with x=z^{3} implies that q is bounded. The

proof uses a lower bound for the linear forms in logarithms.
The following result is a precise version of [11, Corollaire 3], whose advantage comes from the

role of \log E in a lower bound for the linear forms in logarithms.

Proposition 2.4. Let X_{1}/Y_{1} and X_{2}/Y_{2} be multiplicatively independent rational numbers greater
than the unity. Let b_{1} and b_{2} be positive integers. We consider the linear form

=b_{2}\log(X_{2}/Y_{2})-\mathrm{b}_{1}\log(X_{1}/Y_{1}) .

Let A_{1}, A_{2} be positive real numbers such that

\displaystyle \log A_{i}\geq\max\{\log x_{i}, 1\} (i=1,2) .

Let E\geq 3 be a real number such that

E\displaystyle \leq 1+\min\{\frac{\log A_{1}}{\log(X_{1}/Y_{1})}, \frac{\log A_{2}}{\log(X_{2}/Y_{2})}\}.
Assume that

E\displaystyle \leq\min\{A_{1}^{3/2}, A_{2}^{3/2}\}.
Then we have

\log||\geq-35.1(\log A_{1})(\log A_{2})(\log B)^{2}(\log E)^{-3},
where

\displaystyle \log B=\max\{\log(\frac{b_{1}}{\log A_{2}}+\frac{b_{2}}{1\mathrm{o}gA_{1}})+\log\log E+0.47, 10\log E\}.
Using this result, we show the following.
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Corollary 2.5. Let X_{1}/Y_{1} and X_{2}/Y_{2} be multiplicatively independent rational numbers greater
than the unity. Assume that

X_{2} 4

X_{1}\geq 3, X_{2}\geq 3, \overline{Y_{2}}\leq_{\overline{3}}.
Let b_{1} be a positive integer. We consider the linear f_{07 $\gamma \gamma$}b

=\log(X_{2}/Y_{2})-b_{1}\log(X_{1}/Y_{1}) .

Assume that || is not zero and that

X_{2}/Y_{2}>X_{1}/Y_{1}.

Define  $\epsilon$ with  $\epsilon$<1 by

\displaystyle \frac{X_{2}}{Y_{2}}=1+\frac{1}{X_{2}^{1- $\epsilon$}}.
Then we have

\displaystyle \log||\geq-35.1\frac{(\log X_{1})\log X_{2}}{\min\{\log X_{1},(1- $\epsilon$)\log X_{2}\}}(\log b_{1}+10)^{2}.
Proof. We may take (A_{1}, A_{2})=(X_{1}, X_{2}) . It suffices to show that we can take E such that

(4) \displaystyle \log E=\min\{\log X_{1}, (1- $\epsilon$)\log X_{2}\}.

Indeed, if so, since

\displaystyle \log(\frac{b_{1}}{\log X_{2}}+\frac{1}{\log X_{1}})+\log\log E
\displaystyle \leq\log(\frac{b_{1}}{\log X_{2}}+\frac{1}{\log X_{1}})+\log\log\min\{X_{1}, X_{2}\}
\leq\log(b_{1}+1) ,

we have

(\displaystyle \log B)^{2}(\log E)^{-3}\leq\max\{\log(b_{1}+1)+0.47, 10\log E\}^{2}\cdot(\log E)^{-3}

=\displaystyle \max\{\frac{\log(b_{1}+1)+0.47}{\log E}, 10\}^{2}\cdot(\log E)^{-1}
\displaystyle \leq\max\{\frac{\log(b_{1}+1)+0.47}{\log 3}, 10\}^{2}\cdot(\log E)^{-1}
\leq(\log b_{1}+10)^{2}\cdot(\log E)^{-1}.

Hence, Proposition 2.4 gives us the desired inequality. So, we define E by (4). We are left with

checking that all required inequalities on E hold.

First, we show E\geq 3 . For this, it suffices to check that X_{2}^{1- $\epsilon$}\geq 3 holds. Since X_{2}/Y_{2}\leq 4/3
by our assumption, we have

X_{2}^{ $\epsilon$-1}=X_{2}/Y_{2}-1\leq 1/3.
Next, from the definition of  $\epsilon$ , we have

\log(X_{2}/Y_{2})=\log(1+X_{2}^{ $\epsilon$-1})<X_{2}^{ $\epsilon$-1},
and so

-\log\log(X_{2}/Y_{2})>(1- $\epsilon$)\log X_{2}\geq\log E.
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Since X_{1}, X_{2}\geq 3 and X_{2}/Y_{2}>X_{1}/Y_{1} , it follows from (4) that

1 + \displaystyle \min\{\frac{\log X_{1}}{\log(X_{1}/Y_{1})}, \displaystyle \frac{\log X_{2}}{\log(X_{2}/Y_{2})}\}>\frac{\log 3}{\log(X_{2}/Y_{2})}>E.
Finally, we can observe that (4) yields

\displaystyle \log\min\{X_{1}^{3/2}, X_{2}^{3/2}\}=(3/2)\log\min\{X_{1}, X_{2}\}>\log E.

This completes the proof. \square 

We now give an outline of the proof of Theorem 1.1.

Proof. Consider the following linear form in two logarithms:

=\displaystyle \log(\frac{z^{2}+z+1}{(z-1)^{2}})-q\log(\frac{y_{1}^{2}}{y_{2}}) ,

where positive integers y_{1}, y_{2} satisfy

y_{1}^{q}=z^{m-1}+z^{m-2}+\displaystyle \cdots+z+1, y_{2}^{q}=\frac{z^{2m}+z^{m}+1}{z^{2}+z+1}.
In our case, we may assume that

m is odd >1.

Set

(X_{1}, Y_{1})=(y_{1}^{2}, y_{2}) , (X_{2}, Y_{2})=(z^{2}+z+1, (z-1)^{2}) , b_{1}=q.

Note that X_{1}, X_{2}\geq 3 and

\displaystyle \frac{X_{2}}{Y_{2}}=\frac{z^{2}+z+1}{(z-1)^{2}}\leq\frac{4}{3} (\Leftarrow z\geq 11) .

(i) Put ($\gamma$_{1}, $\gamma$_{2})=(X_{1}/Y_{1}, X_{2}/Y_{2}) . First, we show that $\gamma$_{2}>$\gamma$_{1} . We already know

||=|\displaystyle \log$\gamma$_{2}-q\log$\gamma$_{1}|<\frac{8 $\mu$}{z^{m}}=\frac{24}{z^{m}}.
Then

\displaystyle \log$\gamma$_{2}>q\log$\gamma$_{1}-\frac{24}{z^{m}}.
Hence, since q\geq 3 ,

it suffices to show

q\displaystyle \log$\gamma$_{1}\geq\frac{36}{z^{m}}.
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Observe that

$\gamma$_{1}^{q}=(\displaystyle \frac{y_{1}^{2}}{y_{2}})^{q}=\frac{y_{1}^{2q}}{y_{2}^{q}}=\frac{(z^{rn-1}+z^{m-2}+\cdots+z+1)^{2}(z^{2}+z+1)}{z^{2m}+z^{rn}+1}
>\displaystyle \frac{(z^{m-1}+1)^{2}z^{2}}{z^{2m}+z^{m}+1}
=\displaystyle \frac{z^{2m}+2z^{m+1}+z^{2}}{z^{2m}+z^{m}+1}
=1+\displaystyle \frac{2z^{m+1}+z^{2}-z^{m}-1}{z^{2m}+z^{m}+1}
>1+\displaystyle \frac{1}{z^{m-1}}.

(ii)

Hence

q\displaystyle \log$\gamma$_{1}>\log(1+\frac{1}{z^{rn-1}})>\frac{0.95}{z^{m-1}}>\frac{36}{z^{m}} (\Leftarrow z\geq 38) .

Next, we show that X_{1}/Y_{1}, X_{2}/Y_{2} are multiplicative independent. Suppose the contrary.

Then, we can find two co‐prime positive integers k, l such that

(X_{1}/Y_{1})^{qk}=(Y_{2}/X_{2})^{l},
that is,

(\displaystyle \frac{(z^{m-1}+z^{m-2}+\cdots+z+1)^{2}(z^{2}+z+1)}{z^{2m}+z^{ $\gamma$ n}+1})^{k}=(\frac{(z-1)^{2}}{z^{2}+z+1})^{l}
(5) (z^{2}+z+1)^{k+l}(z^{m-1}+z^{m-2}+\cdots+z+1)^{2k}=(z-1)^{2l}(z^{2rn}+z^{m}+1)^{k}.

Since m is odd, we easily see from (5) that

z is even.

or

Since m\geq 2 and z is even, we have

(z^{2}+z+1)^{k+l}\equiv(z+1)^{k+l}\equiv(k+l)z+1 \mathrm{m}\mathrm{o}\mathrm{d} 2z,
(z^{rn-1}+z^{m-2}+\cdots+z+1)^{2k}\equiv(z+1)^{2k}\equiv 2kz+1\equiv 1 \mathrm{m}\mathrm{o}\mathrm{d} 2z,
(z-1)^{2l}\equiv(z^{2}-2z+1)^{l}\equiv 1 \mathrm{m}\mathrm{o}\mathrm{d} 2z,

(z^{2_{7}n}+z^{rn}+1)^{k}\equiv 1 \mathrm{m}\mathrm{o}\mathrm{d} 2z.
It follows from (5) that

k+l\equiv 0 \mathrm{m}\mathrm{o}\mathrm{d} 2.

This together with the fact \mathrm{g}\mathrm{c}\mathrm{d}(k, l)=1 implies that

k is odd.

Now, we reconsider (5). Since k is odd, we may conclude that the term

z^{2_{7}n}+z^{m}+1=\displaystyle \frac{z^{3m}-1}{z^{m}-1}
has to be a perfect square. But, this contradicts the result of Ljunggren [12].
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(iii) We use Corollary 2.5. Noting that

 $\epsilon$=\displaystyle \frac{\log(\frac{3z(z^{2}+z+1)}{(z-1)^{2}})}{\log(z^{2}+z+1)}(>0.5) ,

we have

\displaystyle \log||\geq-35.1\max\{\frac{1}{1- $\epsilon$}\log X_{1}, \log X_{2}\}(\log q+10)^{2}
=-35.1\displaystyle \max\{\frac{2}{1- $\epsilon$} logy1, \log(z^{2}+z+1)\}(\log q+10)^{2}
\displaystyle \geq-35.1\max\{\frac{2}{q(1- $\epsilon$)}\log(\frac{z^{m}-1}{z-1}) , \log(z^{2}+z+1)\}(\log q+10)^{2}
>-35.1\displaystyle \max\{\frac{2.1m}{q}\log z, 2.1\log z\}(\log q+10)^{2}
=-73.71(\displaystyle \log z)\max\{mq^{-1}, 1\}(\log q+10)^{2}.

On the other hand, we know

\displaystyle \log||<\log(\frac{24}{z^{m}})=\log 24-m\log z.
Combining this with the obtained lower bound for \log|| ,

we have

\displaystyle \log 24-\mathrm{m}\log \mathrm{z}>-73.71(\log z)\max\{mq^{-1}, 1\}(\log q+10)^{2},
or

m<73.71\displaystyle \max\{mq^{-1}, 1\}(\log q+10)^{2}+\frac{\log 24}{\log z}.
If q\leq m ,

then

q(1-\displaystyle \frac{\log 24}{m\log z})<73.71(\log q+10)^{2},
which implies, say

q<40, 000 .

If q>m , then

m<73.71(\displaystyle \log q+10)^{2}+\frac{\log 24}{\log z}.
Since z^{m}>y_{1^{q}}(=z^{m-1}+z^{m-2}+\cdots+1) ,

we may replace the left‐hand side above by

\displaystyle \frac{\log y_{1}}{\log z}q.
Then we have

\displaystyle \frac{\log y_{1}}{\log z}q<73.71(\log q+10)^{2}+\frac{\log 24}{\log z}.
Hence,

q<73.71\displaystyle \frac{\log z}{\log y_{1}}(\log q+10)^{2}+\frac{\log 24}{\log y_{1}}.
So, we need an explicit upper estimate of z (or \displaystyle \frac{\log z}{\log y_{1}} ) in terms of q ,

to bound q . But

this is already done by Proposition 2.3. This completes the proof of our theorem.

\square 
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