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The Split Common Fixed Point Problem and

the Hybrid Method in Banach Spaces

芝浦工業大学

北條真弓(Mayumi Hojo)
Shibaura Institute of Technology, Oomiy, Saitama 337‐8570, Japan

Abstract. In this article, we consider the split common fixed point problem in Banach spaces.

Using the hybrid method in mathematical programming, we prove a strong convergence the‐

orem for finding a solution of the split common fixed point problem in Banach spaces. Using
this result, we get well‐known and new results which are connected with the split feasibility
problem and the split common null point problem in Banach spaces.

1 Introduction

Let H_{1} and H_{2} be two real Hilbert spaces. Let D and Q be nonempty, closed and convex

subsets of H_{1} and H_{2} , respectively. Let A:H_{1}\rightarrow H_{2} be a bounded linear operator. Then the

split feasibility problem [7] is to find z\in H_{1} such that z\in D\cap A^{-1}Q . Byrne, Censor, Gibali

and Reich [6] also considered the following problem: Given set‐valued mappings Ai :  H_{1}\rightarrow
 2^{H_{1}}, 1\leq i\leq m , and Bj : H_{2}\rightarrow 2^{H_{2}}, 1\leq j\leq n , respectively, and bounded linear operators

T_{j} : H_{1}\rightarrow H_{2}, 1\leq j\leq n , the split common null point problem [6] is to find a point z\in H_{1}
such that

z\displaystyle \in(\bigcap_{i=1}^{m}A_{i}^{-1}0)\cap(\bigcap_{j=1}^{n}T_{j}^{-1}(B_{j}^{-1}0)) ,

where A_{i}^{-1}0 and B_{j}^{-1}0 are null point sets of Ai and B_{j} , respectively. Defining U=A^{*}(I-P_{Q})A
in the split feasibility problem, we have that U : H_{1}\rightarrow H_{1} is an inverse strongly monotone

operator [1], where A^{*} is the adjoint operator of A and P_{Q} is the metric projection of H_{2} onto

Q . Furthermore, if D\cap A^{-1}Q is nonempty, then z\in D\cap A^{-1}Q is equivalent to

z=P_{D}(I- $\lambda$ A^{*}(I-P_{Q})A)z , (1.1)

where  $\lambda$>0 and P_{D} is the metric projection of H_{1} onto D . Using such results regarding
nonlinear operators and fixed points, many authors have studied the split feasibility problem
and the split common null point problem in Hilbert spaces; see, for instance, [1, 6, 8, 16, 17, 31].
However, we have not known such results outside Hilbert spaces. Recently, Takahashi [25]
extended the result of (1.1) to Banach spaces. Furthermore, by using the ideas of [18, 19, 21],
Takahashi [25, 26] obtained two results for the split feasibility problem and the split common

null point problem in Banach spaces.
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In this article, we consider the split common fixed point problem in Banach spaces. Using
the hybrid method in mathematical programming, we prove a strong convergence theorem for

finding a solution of the split common fixed point problem in Banach spaces. Using this result,
we get well‐known and new results which are connected with the split feasibility problem and

the split common null point problem in Banach spaces.

2 Preliminaries

Throughout this paper, we denote by \mathrm{N} the set of positive integers and by \mathbb{R} the set of real

numbers. Let H be a real Hilbert space with inner product \{\cdot, \rangle and norm \Vert . respectively.
For  x, y\in H and  $\lambda$\in \mathbb{R} , we have from [24] that

\Vert x+y\Vert^{2}\leq\Vert x\Vert^{2}+2\langle y, x+y\rangle ;

\Vert $\lambda$ x+(1- $\lambda$)y\Vert^{2}= $\lambda$\Vert x\Vert^{2}+(1- $\lambda$)\Vert y\Vert^{2}- $\lambda$(1- $\lambda$)\Vert x-y\Vert^{2}.

Furthermore we have that for x, y, u, v\in H,

2\langle x-y, u-v\rangle=\Vert x-v\Vert^{2}+\Vert y-u\Vert^{2}-\Vert x-u\Vert^{2}-\Vert y-v\Vert^{2}.

Let C be a nonempty, closed and convex subset of a Hilbert space H . The nearest point
projection of H onto C is denoted by P_{C} , that is, \Vert x-P_{C}x\Vert\leq\Vert x-y\Vert for all  x\in H and

y\in C . Such P_{C} is called the metric projection of H onto C . We know that the metric

projection P_{C} is firmly nonexpansive, i.e.,

\Vert P_{C}x-P_{C}y\Vert^{2}\leq\langle P_{C}x-P_{C}y, x-y\rangle
for all  x, y\in H . Furthermore \langlex—Pcx,  y-P_{C}x\rangle\leq 0 holds for all x\in H and y\in C ; see [22].

Let E be a real Banach space with norm \Vert\cdot\Vert and let  E^{*} be the dual space of E . We denote

the value of y^{*}\in E^{*} at x\in E by \langle x,  y^{*}\rangle . When \{x_{n}\} is a sequence in E , we denote the strong
convergence of \{x_{n}\} to x\in E by x_{n}\rightarrow x and the weak convergence by x_{n}\rightarrow x . The modulus

 $\delta$ of convexity of  E is defined by

 $\delta$( $\epsilon$)=\displaystyle \inf\{1-\frac{\Vert x+y\Vert}{2} : \Vert x\Vert\leq 1, \Vert y\Vert\leq 1, \Vert x-y\Vert\geq $\epsilon$\}
for every  $\epsilon$ with  0\leq $\epsilon$\leq 2 . A Banach space E is said to be uniformly convex if  $\delta$( $\epsilon$)>0 for

every  $\epsilon$>0 . It is known that a Banach space E is uniformly convex if and only if for any two

sequences \{x_{n}\} and \{y_{n}\} in E such that

\displaystyle \lim_{n\rightarrow\infty}\Vert x_{n}\Vert=\lim_{n\rightarrow\infty}\Vert y_{n}\Vert=1 and \displaystyle \lim_{n\rightarrow\infty}\Vert x_{n}+y_{n}\Vert=2,
\displaystyle \lim_{n\rightarrow\infty}\Vert x_{n}-y_{n}\Vert=0 holds. A uniformly convex Banach space is strictly convex and reflexive.

We also know that a uniformly convex Banach space has the Kadec‐Klee property, that is,
x_{n}\rightarrow u and \Vert x_{n}\Vert\rightarrow\Vert u\Vert imply  x_{n}\rightarrow u ; see [9].

The duality mapping J from E into 2^{E^{*}} is defined by

Jx=\{x^{*}\in E^{*} : \langle x, x^{*}\rangle=\Vert x\Vert^{2}=\Vert x^{*}\Vert^{2}\}

128



for every x\in E . Let U=\{x\in E : \Vert x\Vert=1\} . The norm of E is said to be Gâteaux

differentiable if for each x, y\in U , the limit

\displaystyle \lim_{t\rightarrow 0}\frac{\Vert x+ty\Vert-\Vert x\Vert}{t}
exists. In the case, E is called smooth. We know that E is smooth if and only if J is a single
valued mapping of E into E^{*} . We also know that E is reflexive if and only if J is surjective,
and E is strictly convex if and only if J is one‐to‐one. Therefore, if E is a smooth, strictly
convex and reflexive Banach space, then J is a single‐valued bijection and in this case, the

inverse mapping J^{-1} coincides with the duality mapping J_{*} on E^{*} . For more details, see [22]
and [23]. We know the following result:

Lemma 2.1. Let E be a smooth Banach space and let J be the duality mapping on E. Then,
\langle x-y, Jx-Jy\rangle\geq 0 for all x, y\in E . Furthermore, ifE is strictly convex and \langle x-y, Jx-Jy\rangle=
0 , then x=y.

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive Banach

space E . Then we know that for any x\in E , there exists a unique element z\in C such that

\Vert x-z\Vert\leq\Vert x-y\Vert for all  y\in C . Putting z=P_{C}x , we call P_{C} the metric projection of E onto

C.

Lemma 2.2 ([22]). Let E be a smooth, strictly convex and reflexive Banach space. Let C be

a nonempty, closed and convex subset of E and let x_{1}\in E and z\in C. Then, the following
conditions are equivalent

(1) z=P_{C}x_{1} ;

(2) \langle z-y, J(x_{1}-z)\rangle\geq 0, \forall y\in C.

Let E be a Banach space and let A be a mapping of E into 2^{E^{*}} The effective domain of

A is denoted by \mathrm{d}\mathrm{o}\mathrm{m}(A) , that is, \mathrm{d}\mathrm{o}\mathrm{m}(A)=\{x\in E: Ax\neq\emptyset\} . A multi‐valued mapping A on

E is said to be monotone if \langle x-y, u^{*}-v^{*} ) \geq 0 for all x, y\in \mathrm{d}\mathrm{o}\mathrm{m}(A) , u^{*}\in Ax , and v^{*}\in Ay.
A monotone operator A on E is said to be maximal if its graph is not properly contained in

the graph of any other monotone operator on E . The following theorem is due to Browder

[4]; see also [23, Theorem 3.5.4].
Theorem 2.3 ([4]). Let E be a uniformly convex and smooth Banach space and let J be

the duality mapping of E into E^{*} . Let A be a monotone operator of E into 2^{E^{*}} Then A is

maximal if and only if for any r>0,

R(J+rA)=E^{*},

where R(J+rA) is the range of J+rA.

Let E be a uniformly convex Banach space with a Gâteaux differentiable norm and let A
be a maximal monotone operator of E into 2^{E^{*}} For all x\in E and r>0 , we consider the

following equation
0\in J(x_{r}-x)+rAx_{\mathrm{r}}.

This equation has a unique solution x_{r} . We define J_{r} by x_{r}=J_{r}x . Such J_{r}, r>0 are called
the metric resolvents of A . The set of null points of A is defined by A^{-1}0=\{z\in E:0\in Az\}.
We know that A^{-1}0 is closed and convex; see [23].

Let E be a smooth, strictly convex and reflexive Banach space and let  $\eta$ be a real number

with  $\eta$\in(-\infty, 1) . Then a mapping U : E\rightarrow E with  F(U)\neq\emptyset is called  $\eta$‐demimetric [27] if,
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for any  x\in E and q\in F(U) ,

\displaystyle \langle x-q, J(x-Ux)\rangle\geq\frac{1- $\eta$}{2}\Vert x-Ux\Vert^{2},
where F(U) is the set of fixed points of U.

Examples. We know examples of  $\eta$‐demimetric mappings from [27].

(1) Let  H be a Hilbert space and let k be a real number with 0\leq k<1 . Let U be a strict

pseud‐contraction [5] of H into itself such that  F(U)\neq\emptyset . Then  U is k‐demimetric.

(2) Let E be a strictly convex, reflexive and smooth Banach space and let C be a nonempty,
closed and convex subset of E . Let P_{C} be the metric projection of E onto C . Then P_{C} is

(-1) ‐demimetric.

(3) Let E be a uniformly convex and smooth Banach space and let B be a maximal monotone

operator with  B^{-1}0\neq\emptyset . Let  $\lambda$>0 . Then the metric resolvent J_{ $\lambda$} is (-1) ‐demimetric.

Furthermore, we know an important result for demimetric mappings in a smooth, strictly
convex and reflexive Banach space.

Lemma 2.4 ([27]). Let E be a smooth, strictly convex and reflexive Banach space and let  $\eta$
be a real number with  $\eta$\in(-\infty, 1) . Let U be an  $\eta$ ‐demimetric mapping of  E into itself. Then

F(U)\dot{u} closed and convex.

3 \mathrm{M}\mathrm{a}|\mathrm{n} result and |\mathrm{t}\mathrm{s} Applications

In this section, using the demimetric operators, we prove a strong convergence theorem for

finding a solution of the split common fixed point problem in Banach spaces. Let E be a

Banach space and let C be a nonempty, closed and convex subset of E . A mapping U:C\rightarrow E

is called demiclosed if, for a sequence \{x_{n}\} in C such that x_{n}\rightarrow p and x_{n}-Ux_{n}\rightarrow 0, p=Up
holds. The following theorem was proved by Hojo and Takahashi [11].

Theorem 3.1 ([11]). Let H be a Hilbert space and let F be a smooth, strictly convex and

reflexive Banach space. Let J_{F} be the duality mapping on F and let  $\eta$ be a real number with  $\eta$\in

(-\infty, 1) . Let T:H\rightarrow H be a nonexpansive mapping and let U : F\rightarrow F be an  $\eta$ ‐demimetric

and demiclosed mapping with  F(U)\neq\emptyset . Let  A:H\rightarrow F be a bounded linear operator such

that A\neq 0 and let A^{*} be the adjoint operator of A. Suppose that  F(T)\cap A^{-1}F(U)\neq\emptyset . Let

 x_{1}\in H and let \{x_{n}\} be a sequence generated by

\left\{\begin{array}{l}
z_{n}=T(x_{n}-$\lambda$_{n}A^{*}J_{F}(Ax_{n}-UAx_{n}\\
y_{n}=$\alpha$_{n}x_{n}+(1-$\alpha$_{n})z_{n},\\
C_{n}=\{z\in H:\Vert y_{n}-z\Vert\leq\Vert x_{n}-z\\
D_{n}=\{z\in H : \{x_{n}-z, x_{1}-x_{n}\rangle\geq 0\},\\
x_{n+1}=P_{C_{n}\cap D_{n}}x_{1}, \forall n\in \mathrm{N},
\end{array}\right.
where \{$\alpha$_{n}\}\subset[0 , 1] and \{$\lambda$_{n}\}\subset(0, \infty) satisfy the conditions such that

0\leq$\alpha$_{n}\leq a<1 , and 0<b\leq$\lambda$_{n}\Vert A\Vert^{2}\leq c<(1- $\eta$)
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for some a, b, c\in \mathbb{R} . Then \{x_{n}\} converges strongly to a point z_{1}\in F(T)\cap A^{-1}F(U) , where

z_{1}=P_{F(T)\cap A^{-1}F(U)^{X}1}.

Using Theorem 3.1, we get well‐known and new strong convergence theorems which are con‐

nected with the split common fixed point problems in Banach spaces. We know the following
result obtained by Marino and Xu [15]; see also [30].

Lemma 3.2 ([15]). Let H be a Hilbert space and let C be a nonempty, closed and convex subset

of H. Let k be a real number with 0\leq k<1 and U:C\rightarrow H be a k ‐strict pseudo‐contraction.
If x_{n}\rightarrow z and x_{n}-Ux_{n}\rightarrow 0 , then z\in F(U) .

Theorem 3.3. Let H_{1} and H_{2} be Hilbert spaces. Let k be a real number with k\in[0 , 1). Let

T:H_{1}\rightarrow H_{1} be a nonexpansive mapping and let U : H_{2}\rightarrow H_{2} be a k ‐strict pseud‐contraction
such that  F(U)\neq\emptyset . Let  A:H_{1}\rightarrow H_{2} be a bounded linear operator such that A\neq 0 and let

A^{*} be the adjoint operator of A. Suppose that  F(T)\cap A^{-1}F(U)\neq\emptyset . Let  x_{1}\in H and let \{x_{n}\}
be a sequence generated by

\left\{\begin{array}{l}
z_{n}=T(x_{n}-$\lambda$_{n}A^{*}(Ax_{n}-UAx_{n}\\
y_{n}=$\alpha$_{n}x_{n}+(1-$\alpha$_{n})z_{n},\\
C_{n}=\{z\in H:\Vert y_{n}-z\Vert\leq\Vert x_{n}-z\\
D_{n}=\{z\in H : \langle x_{n}-z, x_{1}-x_{n}\rangle\geq 0\},\\
x_{n+1}=P_{C_{n}\cap D_{n}}x_{1}, \forall n\in \mathbb{N},
\end{array}\right.
where \{$\alpha$_{n}\}\subset[0 , 1 ] and \{$\lambda$_{n}\}\subset(0, \infty) satisfy the conditions such that

0\leq$\alpha$_{n}\leq a<1 , and 0<b\leq$\lambda$_{n}\Vert A\Vert^{2}\leq c<(1-k)

for some a, b, c\in \mathbb{R} . Then \{x_{n}\} converges strongly to a point z_{1}\in F(T)\cap A^{-1}F(U) , where

z_{1}=P_{F(T)\cap AF(U)^{X}1}-1.
Theorem 3.4. Let H be a Hilbert space and let F be a smooth, strictly convex and reflexive
Banach space. Let J_{F} be the duality mapping on F. Let C and D be nonempty, closed and

convex subsets of H and F , respectively. Let P_{C} and P_{D} be the metric projections of H onto

C and F onto D , respectively. Let T:H\rightarrow H be a nonexpansive mapping, let A:H\rightarrow F be

a bounded linear operator such that A\neq 0 and let A^{*} be the adjoint operator of A. Suppose
that  C\cap A^{-1}D\neq\emptyset . Let  x_{1}\in H and let \{x_{n}\} be a sequence generated by

\left\{\begin{array}{l}
z_{n}=P_{C}(x_{n}-$\lambda$_{n}A^{*}J_{F}(Ax_{n}-P_{D}Ax_{n}\\
y_{n}=\mathrm{a}_{n}x_{n}+(1-$\alpha$_{n})z_{n},\\
C_{n}=\{z\in H:\Vert y_{n}-z\Vert\leq\Vert x_{n}-z\\
D_{n}=\{z\in H : \langle x_{n}-z, x_{1}-x_{n}\rangle\geq 0\},\\
x_{n+1}=P_{C_{n}\cap D_{n}}x_{1}, \forall n\in \mathrm{N},
\end{array}\right.
where \{$\alpha$_{n}\}\subset[0 , 1 ] and \{$\lambda$_{n}\}\subset(0, \infty) satisfy the conditions such that

0\leq$\alpha$_{n}\leq a<1 , and 0<b\leq$\lambda$_{n}\Vert A\Vert^{2}\leq c<2

for some a, b, c\in \mathbb{R} . Then the sequence \{x_{n}\} converges strongly to a point z_{0}\in C\cap A^{-1}D,
where z_{0}=P_{C\cap A^{-1}D}x_{1}.
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Theorem 3.5. Let H be a Hilbert space and let F be a uniformly convex and smooth Banach

space. Let J_{F} be the duality mapping on F. Let A and B be maximal monotone operators of
H into H and F into F^{*}

, respectively. Let J_{ $\lambda$} be the resolvent of A for  $\lambda$>0 and let Q_{ $\mu$} be

the metric resolvent of B for  $\mu$>0 , respectively. Let T:H\rightarrow F be a bounded linear operator
such that T\neq 0 and let  $\tau$* be the adjoint operator of T. Suppose that A^{-1}0\cap T^{-1}(B^{-1}0)\neq\emptyset.
Let x_{1}\in H and let \{x_{n}\} be a sequence generated by

\left\{\begin{array}{l}
z_{n}=J_{ $\lambda$}(x_{n}-$\lambda$_{n}T^{*}J_{F}(Tx_{n}-Q_{ $\mu$}Tx_{n}\\
y_{n}=$\alpha$_{n}x_{n}+(1-$\alpha$_{n})z_{n},\\
C_{n}=\{z\in H:\Vert y_{n}-z\Vert\leq\Vert x_{n}-z\\
D_{n}=\{z\in H : \langle x_{n}-z, x_{1}-x_{n}\}\geq 0\},\\
x_{n+1}=P_{C_{n}\cap D_{n}}x_{1}, \forall n\in \mathrm{N},
\end{array}\right.
where \{$\alpha$_{n}\}\subset[0 , 1 ] and \{$\lambda$_{n}\}\subset(0, \infty) satisfy the conditions such that

0\leq$\alpha$_{n}\leq a<1 , and 0<b\leq$\lambda$_{n}\Vert T\Vert^{2}\leq c<2

for some a, b, c\in \mathbb{R} . Then the sequence \{x_{n}\} converges strongly to a point  z_{0}\in A^{-1}0\cap
 T^{-1}(B^{-1}0) , where z_{0}=P_{A^{-1}0\cap T^{-1}(B-1}x.
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