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The Split Common Fixed Point Problem and
the Hybrid Method in Banach Spaces

ZTHIEKRE
JEEES (Mayumi Hojo)
Shibaura Institute of Technology, Oomiy, Saitama 337-8570, Japan

Abstract. In this article, we consider the split common fixed point problem in Banach spaces.
Using the hybrid method in mathematical programming, we prove a strong convergence the-
orem for finding a solution of the split common fixed point problem in Banach spaces. Using
this result, we get well-known and new results which are connected with the split feasibility
problem and the split common null point problem in Banach spaces.

1 Introduction

Let H; and H» be two real Hilbert spaces. Let D and @ be nonempty, closed and convex
subsets of H; and Hy, respectively. Let A : H; — H3 be a bounded linear operator. Then the
split feasibility problem [7] is to find z € Hy such that z € DN A~1Q. Byrne, Censor, Gibali
and Reich [6] also considered the following problem: Given set-valued mappings A; : H; —
2B 1 <i<m,and B; : Hy — 2H2 1 < j < n, respectively, and bounded linear operators
T; : Hi — Ha, 1 < j < n, the split common null point problem [6] is to find a point z € H;

such that
z€ (ﬂ A;10> N ((’] :rj—l(B].—lo)>,

i=1 j=1

where A0 and By 10 are null point sets of A; and Bj, respectively. Defining U = A*(I—Pg)A
in the split feasibility problem, we have that U : H; — H; is an inverse strongly monotone
operator [1], where A* is the adjoint operator of A and Py is the metric projection of H, onto
Q. Furthermore, if D N A~1Q is nonempty, then z € DN A~1Q is equivalent to

Zz = PD(I - )\A*(I — PQ)A)Z, (1.1)

where A > 0 and Pp is the metric projection of H; onto D. Using such results regarding
nonlinear operators and fixed points, many authors have studied the split feasibility problem

~ and the split common null point problem in Hilbert spaces; see, for instance, [1, 6, 8, 16, 17, 31].
However, we have not known such results outside Hilbert spaces. Recently, Takahashi [25]
extended the result of (1.1) to Banach spaces. Furthermore, by using the ideas of [18, 19, 21],
Takahashi [25, 26] obtained two results for the split feasibility problem and the split common
null point problem in Banach spaces.
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In this article, we consider the split common fixed point problem in Banach spaces. Using
the hybrid method in mathematical programming, we prove a strong convergence theorem for
finding a solution of the split common fixed point problem in Banach spaces. Using this result,
we get well-known and new results which are connected with the split feasibility problem and
the split common null point problem in Banach spaces.

2 Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the set of real
numbers. Let H be a real Hilbert space with inner product (-, -} and norm || - ||, respectively.
For z,y € H and X € R, we have from [24] that

Iz +yl? < ll«l* + 2@y, = + v);
Az + (1 = Nyl* = Allz]|? + (1 = N [ly]? = A(1 = Mz - y]*.
Furthermore we have that for z,y,u,v € H,
200 - y,u—v) = llo = ol* + ly — ul* |}z — ul]* - [y - v]>

Let C be a nonempty, closed and convex subset of a Hilbert space H. The nearest point
projection of H onto C is denoted by Pg, that is, ||z — Poz|| < ||z —y|| for all z € H and
y € C. Such Pg is called the metric projection of H onto C. We know that the metric
projection Pg is firmly nonexpansive, i.e.,

| Poz — Peyll® < (P — Poy,z —y)

for all z,y € H. Furthermore (z — Pcz,y — Pox) < 0 holds for all z € H and y € C; see [22].

Let E be a real Banach space with norm || - || and let E* be the dual space of E. We denote
the value of y* € E* at x € E by (z,y*). When {z,} is a sequence in F, we denote the strong
convergence of {z,} to z € E by z, — x and the weak convergence by z, — z. The modulus
¢ of convexity of E is defined by

. T+
o0 =int {1 -2 oy <1, < 1o - o1 2 o

for every e with 0 < € < 2. A Banach space F is said to be uniformly convex if §(e) > 0 for
every € > 0. It is known that a Banach space FE is uniformly convex if and only if for any two
sequences {z,} and {y,} in E such that

lim |z,|| = lim |y,|]|=1and lm |z, + y.| =2,
-0 n—roo n—oo

limy 00 ||Zn —yn|| = 0 holds. A uniformly convex Banach space is strictly convex and reflexive.
We also know that a uniformly convex Banach space has the Kadec-Klee property, that is,
2 — u and ||z, || — ||ul| imply z, — u; see [9].

The duality mapping J from E into 2E" is defined by

Jz={z" € E*: (z,2") = |lz]|* = " ||’}



for every z € E. Let U = {z € E : ||z|| = 1}. The norm of E is said to be Giteaux
differentiable if for each z,y € U, the limit

i a4 tyl = ]

t—0 t
exists. In the case, E is called smooth. We know that E is smooth if and only if J is a single-
valued mapping of E into E*. We also know that F is reflexive if and only if J is surjective,
and F is strictly convex if and only if J is one-to-one. Therefore, if E is a smooth, strictly
convex and reflexive Banach space, then J is a single-valued bijection and in this case, the
inverse mapping J~! coincides with the duality mapping J. on E*. For more details, see [22]
and [23]. We know the following result:

Lemma 2.1. Let E be a smooth Banach space and let J be the duality mapping on E. Then,
(x—y,Jx—Jy) > 0 for allz,y € E. Furthermore, if E is strictly convez and (z—y, Jx—Jy) =
0, thenz =y.

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive Banach
space E. Then we know that for any z € E, there exists a unique element z € C such that
|z —z|| < ||z —y|| for all y € C. Putting z = Pz, we call Po the metric projection of E onto
C.

Lemma 2.2 ([22]). Let E be a smooth, strictly convez and reflezive Banach space. Let C be
a nonempty, closed and convex subset of E and let x1 € E and z € C. Then, the following
conditions are equivalent

(1) z = Powz;
(2) (z—y,J(z1—2)) >0, VyeC.

Let E be a Banach space and let A be a mapping of E into 2E". The effective domain of
A is denoted by dom(A), that is, dom(A) = {z € E : Az # 0}. A multi-valued mapping A on
E is said to be monotone if (z — y,u* —v*) > 0 for all z,y € dom(A), u* € Az, and v* € Ay.
A monotone operator A on E is said to be maximal if its graph is not properly contained in
the graph of any other monotone operator on E. The following theorem is due to Browder
[4]; see also [23, Theorem 3.5.4].

Theorem 2.3 ([4]). Let E be a uniformly conver and smooth Banach space and let J be
the duality mapping of E into E*. Let A be a monotone operator of E into 28" . Then A is
mazimal if and only if for any r > 0,

R(J +rA) = E*,

where R(J +rA) is the range of J +rA.

Let E be a uniformly convex Banach space with a Gateaux differentiable norm and let A4
be a maximal monotone operator of E into 2E". For all z € F and r > 0, we consider the
following equation

0€ J(zr —z)+rAz,.

This equation has a unique solution z,.. We define J,. by =, = J.z. Such J.,r > 0 are called
the metric resolvents of A. The set of null points of A is defined by A"10={2 € E: 0 € Az}.
We know that A~10 is closed and convex; see [23].

Let E be a smooth, strictly convex and reflexive Banach space and let 7 be a real number
with 7 € (—o0,1). Then a mapping U : E — E with F(U) # 0 is called n-demimetric [27] if,
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for any z € E and q € F(U),

1-

Lz — Ual?,

{(zx—q,J(x—Ux)) >

where F(U) is the set of fixed points of U.
Examples. We know examples of n-demimetric mappings from [27].

(1) Let H be a Hilbert space and let k be a real number with 0 < k < 1. Let U be a strict
pseud-contraction [5] of H into itself such that F(U) # . Then U is k-demimetric.

(2) Let E be a strictly convex, reflexive and smooth Banach space and let C be a nonempty,
closed and convex subset of E. Let Po be the metric projection of E onto C. Then P is
(—1)-demimetric.

(3) Let E be a uniformly convex and smooth Banach space and let B be a maximal monotone
operator with B10 # §. Let A > 0. Then the metric resolvent Jy is (—1)-demimetric.

Furthermore, we know an important result for demimetric mappings in a smooth, strictly
convex and reflexive Banach space.

Lemma 2.4 ([27]). Let E be a smooth, strictly convex and reflexive Banach space and let n
be a real number with € (—o0,1). Let U be an n-demimetric mapping of E into itself. Then
F(U) is closed and convez.

3 Main result and its Applications

In this section, using the demimetric operators, we prove a strong convergence theorem for
finding a solution of the split common fixed point problem in Banach spaces. Let F be a
Banach space and let C be a nonempty, closed and convex subset of E. A mappingU : C —» E
is called demiclosed if, for a sequence {z,} in C such that z, — p and z,, — Uz, = 0, p=Up
holds. The following theorem was proved by Hojo and Takahashi [11].

Theorem 3.1 ([11]). Let H be a Hilbert space and let F' be a smooth, strictly conver and
reflexive Banach space. Let Jp be the duality mapping on F and let n) be a real number with n €
(—o00,1). Let T : H — H be a nonezpansive mapping and let U : F — F be an n-demimetric
and demiclosed mapping with F(U) # 0. Let A: H — F be a bounded linear operator such
that A # 0 and let A* be the adjoint operator of A. Suppose that F(T)NA~F(U) # 0. Let
z1 € H and let {z,} be a sequence generated by

2y = T(xn — A A* T (AT, — UAxn)),
Yn = 0nZTpn + (1 — an)2n,
Co = {2 € H : |yn — 2]l < l2n — 21},
D, ={2€ H:(x, — 2,71 — z,) > 0},
Zn+1 = Po,np, 1, Yn €N,
where {a,} C [0,1] and {\,} C (0,00) satisfy the conditions such that

0<o,<a<l, and 0<b< M|A><c<(1-7n)
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for some a,b,c € R. Then {z,} converges strongly to a point z; € F(T) N A71F(U), where
z1 = PF(T)OA—lF(U)xl-
Using Theorem 3.1, we get well-known and new strong convergence theorems which are con-

nected with the split common fixed point problems in Banach spaces. We know the following
result obtained by Marino and Xu [15]; see also [30].

Lemma 3.2 ([15]). Let H be a Hilbert space and let C be a nonempty, closed and conver subset
of H. Let k be a real number with0 < k <1 andU : C — H be a k-strict pseudo-contraction.
Ifzp — 2z and 2, — Uz, — 0, then z € F(U).

Theorem 3.3. Let Hy and Hy be Hilbert spaces. Let k be a real number with k € [0,1). Let
T : Hy — H; be a nonezpansive mapping and let U : Hy — Hy be a k-strict pseud-contraction
such that F(U) # 0. Let A: Hy — H> be a bounded linear operator such that A # 0 and let
A* be the adjoint operator of A. Suppose that F(T)NA™'F(U) # 0. Let x1 € H and let {z,}
be a sequence generated by

Zn = T(a:n — A A*(Az,, — UAzn)),
Yn = QnTp + (1 - an)zn’
Con={z€H:|lyn — 2| < |lzn — 2|},
D, ={z€ H: {(zn — 2,51 — x,) >0},
Tntl = PCnnanli Vn € Na

where {an} C [0,1] and {\,} C (0,00) satisfy the conditions such that
0<apn<a<l, and 0<b< A AJ?<c<(1—k)

for some a,b,c € R. Then {z,} converges strongly to a point z; € F(T) N A~'F(U), where
21 = Pp(ryna-1F(U)Z1-

Theorem 3.4. Let H be a Hilbert space and let F' be a smooth, strictly convez and reflexive
Banach space. Let Jp be the duality mapping on F. Let C and D be nonempty, closed and
conver subsets of H and F, respectively. Let Pc and Pp be the metric projections of H onto
C and F onto D, respectively. Let T : H — H be a nonexpansive mapping, let A: H — F be
a bounded linear operator such that A # 0 and let A* be the adjoint operator of A. Suppose
that CNA™D # 0. Let z; € H and let {x,} be a sequence generated by

Zn = PC (Il?n - )\nA*JF(A:En - PDAzn)),

Yn = QT + (1 — an)2n,
Con={2€H:|lyn — 2| < ||lza — 2|1},
D,={z€ H: (xp— 2,21 —Tpn) > 0},
Znt+1 = Po,np,T1, Vn €N,

where {ap} C [0,1] and {\,} C (0,00) satisfy the conditions such that
0<ap<a<l, and 0<b< A A|?<c<?2

for some a,b,c € R. Then the sequence {x,} converges strongly to a point 2o € CN A™D,
where 29 = Pona-1p%1 -
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Theorem 3.5. Let H be a Hilbert space and let F' be a uniformly convex and smooth Banach
space. Let Jr be the duality mapping on F. Let A and B be mazimal monotone operators of
H into H and F into F™*, respectively. Let J be the resolvent of A for A > 0 and let Q,, be
the metric resolvent of B for p > 0, respectively. Let T : H — F be a bounded linear operator
such that T # 0 and let T* be the adjoint operator of T. Suppose that A='0NT~1(B~10) # 0.
Let z1 € H and let {z,} be o sequence generated by

20 = Iz (20 = MT*Jr (T - QuTan)),
Yn = QnZn + (1 — an)2zn,

Cn={z€ H:|lyn — z|| < [lzn — 2|I},
D, ={z€ H: (Tn — 2,1 — z,) > 0},
Tpt1 = Pcnnanl, Vn € N,

where {an} C [0,1] and {A\,} C (0,00) satisfy the conditions such that
0<ap<a<l and 0<b< \|T|?<c<2

for some a,b,c € R. Then the sequence {T,} converges strongly to a point 29 € A~10N
T_I(B‘IO), where zg = PA—lonT—l(B—lo)wl.
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