

Title	Spatiotemporal evolution of magmatic pulses and regional metamorphism during a Cretaceous flare-up event: Constraints from the Ryoke belt (Mikawa area, central Japan)
Author(s)	Takatsuka, Kota; Kawakami, Tetsuo; Skrzypek, Etienne; Sakata, Shuhei; Obayashi, Hideyuki; Hirata, Takafumi
Citation	Lithos (2018), 308–309: 428-445
Issue Date	2018-05
URL	http://hdl.handle.net/2433/231107
Right	© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ The full-text file will be made open to the public on 01 May 2020 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
Туре	Journal Article
Textversion	author

1	Spatiotemporal evolution of magmatic pulses and regional metamorphism during a Cretaceous
2	flare-up event: constraints from the Ryoke belt (Mikawa area, central Japan)
3	
4	Kota Takatsuka ¹ , Tetsuo Kawakami ^{1,*} , Etienne Skrzypek ¹ , Shuhei Sakata ^{1, 2} , Hideyuki Obayashi ¹ ,
5	Takafumi Hirata ^{1,†}
6	
7	¹ Department of Geology and Mineralogy, Graduate School of Science, Kyoto University,
8	Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
9	² Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku,
10	Tokyo 171-8588, Japan
11	
12	*Corresponding author: T. Kawakami (e-mail: t-kawakami@kueps.kyoto-u.ac.jp)
13	[†] Present address: Geochemical Research Center, Graduate School of Science, The University of
14	Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

16 Abstract

17The spatiotemporal relationship between granitoid intrusions and low-pressure/temperature type 18 regional metamorphism in the Ryoke belt (Mikawa area) is investigated to understand the tectono-19thermal evolution of the upper- to middle-crust during a Cretaceous flare-up event at the Eurasian 20active continental margin. Three plutono-metamorphic stages are recognized; (1) 99-84 Ma: 21intrusion of granitoids (99–95 Ma pulse) into the upper crust and high-T regional metamorphism 22reaching sillimanite-grade (97.0 \pm 4.4 Ma to 88.5 \pm 2.5 Ma) in the middle crust, (2) 81–75 Ma: 23intrusion of gneissose granitoids (81-75 Ma Ma pulse) into the middle crust at ~19-24 km depth, 24and (3) 75-69 Ma: voluminous intrusions of massive to weakly-foliated granitoids (75-69 Ma pulse) at ~ 9-13 km depth and formation of contact metamorphic aureoles. Cooling of the highest-25grade metamorphic zone below the wet solidus of granitic rocks is estimated at 88.5 ± 2.5 Ma. At 2627ca. 75 Ma, the upper-middle crustal section underwent northward tilting, resulting in the exhumation of regional metamorphic zones to $\sim 9-13$ km depth. Although the highest-grade 2829metamorphic rocks and the 99-95 Ma pulse granitoids preserve similar U-Pb zircon ages, the 30 absence of spatial association suggests that the regional metamorphic zones were mainly produced by a transient thermal anomaly in the mantle and thermal conduction through the crust, 3132supplemented by localized advection due to granitoid intrusions. The successive emplacement of 33 granitoids into shallow, deep and shallow levels of the crust was probably controlled by the

34 combination of change in thermal structure of the crust and tectonics during granitoid intrusions.

35

36 Keywords

- 37 Continental crust formation, flare-ups, plutono-metamorphic evolution, granite, U-Pb zircon
- 38 dating, low-*P*/*T* type metamorphism

39

40 **1. Introduction**

Continental arcs are extended belts where the production, upward migration, eventual 4142solidification at depth or eruption of magma contributes to form new continental material. Arcs 43appear to be mainly built during periods of increased magma production ('flare-ups') punctuated by stages of relatively lower magmatic activity ('lulls') (e.g. Ducea, 2001). Estimates of magma 4445addition rates in the Sierra Nevada Batholith (USA) indicate that 100-1000 times more magma is added to continental arcs during flare-ups than during lulls, and that the ratio of plutonic to 46volcanic material is about 30/1 (Paterson and Ducea, 2015). The latter ratio emphasizes the wealth 4748 of information that can be gathered from relatively deep levels of eroded arc systems, where 49plutonic rocks are widely exposed. This episodic nature of arc magmatism has a fractal character; at a shorter (< 50 Ma) and smaller (< 50 km wide) scale, a 'flare-up' event involves discrete 50'pulses' of increased magmatic activity (e.g. de Silva et al., 2015) while the depth of pluton 5152emplacement or the location of eruption centers varies with time (Tibaldi et al., 2013; de Saint 53Blanquat et al., 2011). Thus, understanding the origin and evolution of a flare-up event and its 54associated crustal response requires deciphering its history in a shorter time-scale. The Ryoke plutono-metamorphic belt, exposed in southwest to central Japan, is an 5556appropriate target to decipher the intricate history of a flare-up. First, it represents the upper- to 57mid-crustal section of a continental arc in which voluminous I-type plutonic rocks (e.g. Nakajima,

58	1994; Shibata and Ishihara, 1979a) and thick ignimbrite sequences (e.g. Yamada and Koido, 2005)
59	testify for the occurrence of a Cretaceous flare-up event (Sato et al., 2016). From a comprehensive
60	set of sensitive high resolution ion microprobe (SHRIMP) zircon dating results, Tani et al. (2014)
61	revealed that granite pulses in SW Japan occurred at 85, 60 and 35 Ma and were separated by 25
62	million year lulls. The flare-up event recorded in the Ryoke belt corresponds to the 85 Ma pulse.
63	Second, the Ryoke belt hosts low-pressure/temperature (low- P/T) type metamorphic rocks which
64	were variably affected by successive plutonic intrusions (Brown, 1998; Ikeda, 1998a, b;
65	Kawakami, 2001; Kawakami and Suzuki, 2011; Miyake et al., 1992; Miyashiro, 1961; Miyazaki,
66	2010; Okudaira et al., 1993). Thanks to the tectono-metamorphic record of these metasedimentary
67	rocks, constraints on the timing, depth and temperature of individual intrusions (e.g. Endo and
68	Yamasaki, 2013; Miyake et al., 2016) are much more accessible than for exclusively plutonic
69	regions.
70	The current challenge is to gather reliable time estimates of the magmatic activity and
71	metamorphic events in the Ryoke belt. For granitoids, the earliest geochronological results
72	involved whole-rock Rb-Sr ages and K-Ar or Rb-Sr ages on biotite and hornblende (Kawano
73	and Ueda, 1967; Nozawa, 1975; Shibata and Ishihara, 1979b), and their compilation revealed an
74	eastward younging from ca. 100 Ma to ca. 70 Ma over ~800 km (Nakajima, 1994). With the
75	assumption that these ages correspond to pluton solidification, the younging trend was explained

76	by a migration of magmatic activity due to the oblique subduction of the Kula-Pacific ridge
77	beneath the Eurasian continent (Nakajima, 1994; Kinoshita, 1995). However, chemical
78	Th-U-total Pb isochron method (CHIME) monazite ages subsequently obtained on high-grade
79	metamorphic rocks and granitoids turned out to be older than K-Ar biotite ages and were ascribed
80	to prograde metamorphism and pluton solidification, respectively (Suzuki et al., 1996; Suzuki and
81	Adachi, 1998). Following this view, the eastward younging of K-Ar biotite ages was ascribed to
82	a difference in the denudation rate rather than in magmatic activity, with the western part of the
83	belt having been eroded more rapidly than the eastern part (Suzuki and Adachi, 1998). More
84	recently, the growing number of available U-Pb zircon ages for the Ryoke granitoids revealed
85	discrepancies between U-Pb zircon, CHIME monazite and K-Ar biotite ages (Murakami et al.,
86	2006; Skrzypek et al., 2016; Takatsuka et al., 2018). The current tendency is to consider zircon as
87	the best tool to constrain the age of pluton solidification. The first advantage of zircon is its high
88	closure temperature near or above the solidus of granitic rocks. The second advantage is its
89	robustness with respect to secondary alteration/recrystallization compared to monazite and biotite
90	(e.g. Bosse et al., 2009; Kawakami et al., 2014). The third advantage is that it is the most
91	representative accessory mineral that can be dated in allanite-bearing granitoids where monazite
92	is virtually absent, as is the case for most granitoids in the Mikawa area so far (Takatsuka et al.,
93	2018).

94	In the present study, we aim to detail the spatial distribution and timing of plutonic
95	activity and regional metamorphism during the Cretaceous flare-up event which occurred at the
96	active continental margin of Eurasia. The solidification age of the so-called 'Younger Ryoke'
97	granitoids exposed in the Mikawa area (Ryoke belt, central Japan) are newly determined using
98	U-Pb zircon dating by Laser Ablation Inductively Coupled Plasma Mass Spectrometry
99	(LA-ICP-MS). Additionally, the emplacement depth of several granitoids is estimated using Al-
100	in-hornblende barometry and published $P-T$ estimates for the host metasedimentary rocks. The
101	timing of regional metamorphism is also constrained by LA-ICP-MS U-Pb zircon dating. The
102	results are combined to reconstruct how a former accretionary complex progressively transformed
103	to the granitoid-dominated, metamorphosed upper- to middle-crust of an arc during a flare-up
104	event.

105

106 **2. Geology of the Ryoke belt in the Mikawa area**

107 Within the Inner Zone of SW Japan, the Ryoke belt extends for about 800 km from northern

- 108 Kyushu to Tsukuba (Fig. 1a), and the Mikawa area is located in its eastern part. The Mikawa area
- 109 exposes low-P/high-T metamorphic rocks and voluminous granitic rocks (Fig. 1b; Asami et al.,
- 110 1982; Miyake et al., 1992, 2014, 2016, 2017; Adachi and Wallis, 2008; Miyazaki, 2010; Takatsuka

111 et al., 2018).

112	The Ryoke granitoids have been classically divided into the gneissose "Older Ryoke"
113	and massive "Younger Ryoke" granitoids based on lithology and intrusive relationships (Ryoke
114	Research Group, 1972). In the Mikawa area, the "Older Ryoke" granitoids include the Kamihara
115	tonalite, Tenryukyo granite and Kiyosaki granodiorite, whereas the "Younger Ryoke" granitoids
116	correspond to the Shinshiro tonalite, Mitsuhashi granodiorite, Inagawa granite and Busetsu
117	granite (Fig. 1b; Makimoto et al., 2004). All plutons are considered as I-type granitoids, except
118	for the Busetsu granite which has a composition close to that of S-type granites (Ishihara and
119	Chappell, 2007). CHIME monazite ages for the "Older Ryoke" and "Younger Ryoke" granitoids
120	are ca. 97-87 Ma and ca. 86-75 Ma, respectively (Table 1; Nakai and Suzuki, 1996; 2003;
121	Morishita et al., 1996; Morishita and Suzuki, 1995; Suzuki and Adachi, 1998; Suzuki et al., 1994a;
122	1994b; Miyake et al., 2016). Based on these CHIME monazite ages, the "Younger Ryoke"
123	granitoids were thought to have continuously intruded one after another from ca. 86 Ma to ca. 75
124	Ma (e.g., Suzuki and Adachi, 1998). Recently, however, LA-ICP-MS U-Pb zircon dating
125	revealed that the gneissose granitoids have a bimodal distribution of U-Pb zircon ages, with two
126	groups at ca. 99-95Ma and ca. 81-75 Ma, the latter age group being further divided into the
127	'81-75 Ma Hbl-Bt tonalite' and '78-75 Ma (Hbl)-Bt granite' (Fig. 1b; Takatsuka et al., 2018).
128	In contrast to the U-Pb zircon and CHIME monazite ages, K-Ar ages of biotite and hornblende
129	from the "Older Ryoke" and "Younger Ryoke" granitoids show similar values of ca. 73-66 Ma

130 (Table 1).

131	The metamorphic rocks represent equivalents of the Jurassic to Early Cretaceous
132	accretionary complex material which is found in the northerly Mino-Tanba belt (Wakita, 1987).
133	They are composed of metachert, metasandstone and metamudstone with scarce metabasalt
134	(Makimoto et al., 2004). The metamorphic rocks are foliated, strike NE-SW to E-W and variably
135	dip towards the north. In the south of the study area, both north- and south-dipping foliation planes
136	are observed and point to km-scale upright folding. Three regional metamorphic zones and one
137	contact metamorphic zone are defined in the Mikawa area; the former are the Bt, Kfs-Sil and
138	Grt-Crd zones in order of increasing metamorphic grade (Fig. 1b; Makimoto et al., 2004;
139	Miyazaki et al., 2008; Nakashima et al., 2008; Yamasaki and Ozaki, 2012). The peak $P-T$
140	conditions of each metamorphic zone are estimated to be 0.29–0.37 GPa, 506–593 °C for the Bt
141	zone, 0.37–0.43 GPa, 574–709 °C for the Kfs–Sil zone, and 0.43–0.57 GPa, 715–801 °C for the
142	Grt-Crd zone (Miyazaki, 2010). The contact metamorphic zone (Kfs-Crd zone) is developed
143	around the "Younger Ryoke" granitoids (Endo and Yamasaki, 2013; Miyazaki et al., 2008;
144	Yamasaki and Ozaki, 2012); its $P-T$ conditions are 0.23–0.24 GPa and > 600 °C around the
145	Shinshiro tonalite and the Mitsuhashi granodiorite (Endo and Yamasaki, 2013), and 0.32 GPa and
146	> 630 °C around the Inagawa granite (Miyake et al., 2016).

147 Pelitic and psammitic gneiss samples from the Kfs-Crd zone give CHIME monazite

148	ages of ca. 102–98 Ma which are interpreted as the timing of prograde monazite growth at upper
149	amphibolite facies conditions during regional metamorphism (Suzuki et al., 1994a, b). K-Ar
150	biotite ages of ca. 67.5 Ma and ca. 69 Ma are reported for a Bt schist sample (Kfs-Crd zone)
151	nearby the Kiyosaki granodiorite (Ueno et al., 1969). SHRIMP U-Pb zircon ages of ca. 87 Ma
152	are reported for a migmatite sample from the Grt-Crd zone and are correlated with the timing of
153	peak regional metamorphism (Nakajima et al., 2013). Among mafic igneous rocks sporadically
154	exposed in the Mikawa area (Fig. 1b), hornblende gabbro and basaltic andesite give SHRIMP
155	U–Pb zircon ages of 72.4 \pm 1.2 Ma and 71.5 \pm 1.1 Ma, respectively (Nakajima et al., 2004).

156

1573. Analytical procedures

158Quantitative analyses of hornblende were performed using a JEOL JXA-8105 superprobe at

159Kyoto University. Analytical conditions were an acceleration voltage of 15.0 kV, a beam current

- 160 of 10 nA and a beam diameter of 3 µm. The counting time for the peak and backgrounds were 30
- 161s and 15 s for Cl, 60 s and 30 s for F, and 10 s and 5 s for other elements. Natural and synthetic
- 162minerals were used as standards and ZAF correction was applied.

Granitoid, leucosome (GY03D) and pegmatite (GY47A) samples were crushed using 163164Selfrag Lab at the National Institute of Polar Research (NIPR), Japan. Zircon grains were

165separated by panning, handpicking under a stereomicroscope, and were mounted in epoxy.

166	Cathodoluminescence (CL) and backscattered electron (BSE) images were obtained using a JEOL
167	JXA-8105 superprobe at Kyoto University. Inclusions in zircon were identified using a S3500H
168	scanning electron microscope equipped with an EDAX X-ray analytical system, and $\mathrm{Al}_2\mathrm{SiO}_5$
169	minerals were identified by Raman spectroscopy (JASCO NRS 3100) at Kyoto University.
170	U-Pb zircon dating by LA-ICP-MS was performed in Kyoto University and
171	Gakushuin University. Most analyses were done on separated zircon grains. Dating in Kyoto
172	University was performed using a Nu PlasmaII multi-collector ICP-MS coupled to a NWR193
173	laser-ablation system utilizing a 193 nm ArF excimer laser. Dating in Gakushuin University was
174	performed using an Agilent8800 single-collector ICP-MS coupled to a NWR213 laser-ablation
175	system utilizing a 213 nm Nd:YAG laser. The 91500 zircon (Wiedenbeck et al., 1995, 2004) was
176	used as a primary reference material for Pb/U and Th/U ratios while NIST SRM610 glass (Pearce
177	et al., 1997; Jochum and Brueckner, 2008) was used for Pb/Pb isotope ratios. Details on the
178	analytical procedures and data reduction schemes are summarized in Supplementary material
179	(Table S1). Secondary standard analyses indicate that inter-laboratory differences in zircon dating
180	results are not significant (Takatsuka et al., 2018). Isoplot 4.15 (Ludwig, 2012) was used to
181	construct concordia diagrams and to calculate weighted mean ²⁰⁶ Pb/ ²³⁸ U ages. Analyses with
182	concordance [= $(^{206}\text{Pb}/^{238}\text{U}\text{ age}) *100 / (^{207}\text{Pb}/^{235}\text{U}\text{ age})$] between 97 and 103% are referred to as
183	concordant in this study and used for calculating weighted mean ²⁰⁶ Pb/ ²³⁸ U ages.

185 **4. Sample description**

186 **4.1. Shinshiro tonalite**

187	Samples GY50A	x [N34.914783°,	E137.455796°]	and GY100A	[N34.940262°,	, E137.548428°]	are
-----	---------------	-----------------	---------------	------------	---------------	-----------------	-----

- 188 Hbl-Bt tonalites (Fig. 1), both corresponding to the main facies of the Shinshiro tonalite (Ohtomo,
- 189 1985). On the outcrops, a moderate foliation defined by the arrangement of biotite and hornblende
- 190 can be recognized, and ellipsoidal mafic enclaves with their long axis oriented parallel to the
- 191 foliation are present (Fig. 2a, b). This foliation has been interpreted to be magmatic in origin
- 192 (Ohtomo, 1985). Both samples are composed of Qtz, Pl, Kfs, Bt and Hbl with accessory Ap, Zrn,
- 193 Ilm, Ttn, secondary Ep and secondary Chl (Fig. 3a, b). Allanite is present in sample GY100A.
- 194 **4.2. Mitsuhashi granodiorite**

195 Sample GY99A [N35.047113°, E137.523850°] is a Hbl-Bt granodiorite (Fig. 1) with a weak

- 196 foliation defined by the arrangement of biotite and hornblende (Fig. 2c). The granodiorite is
- 197 composed of Qtz, Pl, Kfs, Bt and Hbl with accessory Ap, Zrn, Ilm, Ttn and secondary Chl (Fig.
- 198 3c).

199 **4.3. Inagawa granite**

- 200 Samples GY86A [N35.057774°, E137.256294°] and GY93A [N35.149147°, E137.301422°] are
- 201 Hbl-Bt granites with Kfs megacrysts clearly showing the Carlsbad twin (Fig. 1). Sample GY86A

202	collected from the 'gneissose porphyritic facies' (Yamasaki and Ozaki, 2013) shows a weak
203	foliation defined by the arrangement of biotite, whereas sample GY93A collected from the
204	'massive facies' (Yamasaki and Ozaki, 2013) shows a faint grain-shape preferred orientation of
205	Kfs megacrysts and amphibole (Fig. 2d, e). Both samples are composed of Qtz, Pl, Kfs, Bt and
206	Hbl with accessory Ap, Aln, Zrn, Ilm and Ttn (Fig. 3d, e). Xenomorphic Ep is present as a matrix
207	mineral, filling intergranular spaces between euhedral plagioclase grains together with secondary
208	Chl in sample GY93A, whereas secondary Ep overgrowing rims of allanite, secondary Py, and Po
209	included in Kfs are present in sample GY86A.
210	4.4. Busetsu granite
211	Samples GY51A [N34.967778°, E137.335781°] and MK02M [N34.954766°, E137.326847°] are
211 212	Samples GY51A [N34.967778°, E137.335781°] and MK02M [N34.954766°, E137.326847°] are Grt-bearing two-mica granites and sample GY89A [N35.030050°, E137.296534°] is a two-mica
211 212 213	Samples GY51A [N34.967778°, E137.335781°] and MK02M [N34.954766°, E137.326847°] are Grt-bearing two-mica granites and sample GY89A [N35.030050°, E137.296534°] is a two-mica granite (Fig. 1). At locality GY51, biotite-rich lenses and pelitic xenoliths (2–4 cm in length)
211212213214	Samples GY51A [N34.967778°, E137.335781°] and MK02M [N34.954766°, E137.326847°] are Grt-bearing two-mica granites and sample GY89A [N35.030050°, E137.296534°] is a two-mica granite (Fig. 1). At locality GY51, biotite-rich lenses and pelitic xenoliths (2–4 cm in length) locally occur within the medium-grained granite (Fig. 2f). Sample MK02M was collected 1 m
 211 212 213 214 215 	Samples GY51A [N34.967778°, E137.335781°] and MK02M [N34.954766°, E137.326847°] are Grt-bearing two-mica granites and sample GY89A [N35.030050°, E137.296534°] is a two-mica granite (Fig. 1). At locality GY51, biotite-rich lenses and pelitic xenoliths (2–4 cm in length) locally occur within the medium-grained granite (Fig. 2f). Sample MK02M was collected 1 m away from the discordant contact between fine-grained granite and Grt-bearing biotite
 211 212 213 214 215 216 	Samples GY51A [N34.967778°, E137.335781°] and MK02M [N34.954766°, E137.326847°] are Grt-bearing two-mica granites and sample GY89A [N35.030050°, E137.296534°] is a two-mica granite (Fig. 1). At locality GY51, biotite-rich lenses and pelitic xenoliths (2–4 cm in length) locally occur within the medium-grained granite (Fig. 2f). Sample MK02M was collected 1 m away from the discordant contact between fine-grained granite and Grt-bearing biotite metapsammite; the Busetsu granite obliquely cuts the subvertical bedding in metapsammite there
 211 212 213 214 215 216 217 	Samples GY51A [N34.967778°, E137.335781°] and MK02M [N34.954766°, E137.326847°] are Grt-bearing two-mica granites and sample GY89A [N35.030050°, E137.296534°] is a two-mica granite (Fig. 1). At locality GY51, biotite-rich lenses and pelitic xenoliths (2–4 cm in length) locally occur within the medium-grained granite (Fig. 2f). Sample MK02M was collected 1 m away from the discordant contact between fine-grained granite and Grt-bearing biotite metapsammite; the Busetsu granite obliquely cuts the subvertical bedding in metapsammite there (Fig. 2g). Sample GY89A was collected close to the N–S trending contact with the western edge

219 mylonitic foliation (N 152°/65° SW) which surrounds the Kfs megacrysts (Fig. 2h). Bulging

220 recrystallization of quartz indicates low-*T* deformation during the possible fault-like reactivation

of the former contact. All samples of the Busetsu granite are composed of Qtz, Pl, Kfs, Bt and Ms,

- and samples MK02M and GY51A additionally contain Grt (Fig. 3f-h). Accessory Ap, Mnz, Zrn,
- Ilm and xenotime are present in all samples.

4.5. Metasedimentary rocks between the Kamihara and Busetsu granitoids

225A narrow band (< 1 km wide on map view) of metamorphic rocks occurs between the southern 226edge of the Kamihara tonalite and the Busetsu granite (Fig. 1). At several localities, psammitic 227gneiss with an E-W striking and N-dipping foliation is locally intruded by concordant sills of 228fine- to medium-grained granite containing Bt, Ms and Grt. At locality GY92, a pelitic gneiss 229sample (GY92A1) consists of And, Sil (postdating And), Crd (replacing And rims), Bt, Kfs, Pl, Qtz, secondary Ms, and subordinate Tur, Ap, Mnz, Zrn and Gr. Andalusite has a chiastolite texture 230231and is partly transformed to prismatic sillimanite or fibrolite at the rim (Fig. 3i). Inclusion minerals 232defining the chiastolite texture does not define an internal foliation (cf. Adachi and Wallis, 2008). 233Andalusite is surrounded by and replaced by pinitized cordierite at the rim. The main foliation 234defined by the arrangement of biotite and fibrolite is deflected around the andalusite 235porphyroblasts, which indicates a pre-tectonic growth of andalusite and cordierite (Fig. 3i). 236Secondary muscovite grains replace fibrolite and some of them discordantly cut the foliation.

4.6. Migmatite and pegmatite from the Grt-Crd zone

238	A \sim 20 cm thick leucosome in a psammitic metatexite migmatite (GY03D) and a pegmatite
239	concordant with migmatitic banding (GY47A) were collected from the Grt-Crd zone (Fig. 1).
240	The leucosome in sample GY03D is subparallel to the migmatitic banding of the host psammitic
241	migmatite (Fig. 2i), and mainly consists of Bt, Ms, Grt, Kfs, Pl and Qtz, with accessory Tur, Ap,
242	Zrn and opaque mineral (Fig. 3k). Myrmekite is common. The pegmatite concordant with the
243	migmatitic banding (GY47A) is found as a layer (~30-40 cm thick) below mafic lenses enclosed
244	in metatexite migmatite (Fig. 2j). The same cm-thick pegmatite also rims the structurally upper
245	side of the mafic lenses, and is further surrounded by the gneissose structure of the metatexite
246	migmatite hosting them. The pegmatite mainly consists of Kfs, Qtz, Pl, Bt, Crd, Sil, and Ms, with
247	accessory Ap, Zrn and Mnz. Fine-grained myrmekite is abundant along the grain boundaries of
248	K-feldspar, where sillimanite and secondary muscovite are common (Fig. 31). The rims of quartz
249	grains are locally recrystallized into finer grains (Fig. 31).
250	

5. U–Pb zircon dating

252 Cathodoluminescence images of representative zircon grains from all granitoid samples are 253 presented in Figures 5 and 6, and those from migmatite and pegmatite samples are presented in 254 Figures 7 and 8. The weighted mean ages and spot ages reported below are ²⁰⁶Pb/²³⁸U ages unless 255 specified.

256 **5.1. Shinshiro tonalite**

257 Most zircon grains from samples GY50A and GY100A have homogeneous or oscillatory-zoned

- cores, overgrown by oscillatory-zoned CL-bright rims (Fig. 4a, b, e, f).
- 259 Sample GY50A
- A total of 61 spots on 23 grains was analyzed (Table S2; spots 1.1–2.11 and 12.1–14.13). Two
- 261 data were rejected because of irregular signals. One grain has an inherited core with a concordant
- age of 1880 \pm 37 Ma (²⁰⁷Pb/²⁰⁶Pb age). Concordant analyses of Cretaceous domains have
- 263 ²⁰⁶Pb/²³⁸U ages ranging from ca. 79 to ca. 68 Ma. Two grains with CL-dark oscillatory zoning
- 264 (Fig. 4c, d) yield ca. 79–76 Ma and are slightly older than the other Cretaceous concordant ages
- 265 (ca. 71–68 Ma). The main age population is well defined at ca. 71–68 Ma, and its weighted mean
- 266 is 69.5 ± 0.3 Ma (32 spots, MSWD = 1.07, Fig. 8a).
- 267 Sample GY100A
- A total of 33 spots on 14 grains was analyzed (Table S2; spots 71.7–73.13). One data was rejected
- 269 because of irregular signal. The ²⁰⁶Pb/²³⁸U ages of all Cretaceous concordant data range from ca.
- 270 73 to ca. 69 Ma, and their weighted mean is 70.6 ± 1.0 Ma (9 spots, MSWD = 0.44, Fig. 8b).
- 271 **5.2. Mitsuhashi granodiorite**
- 272 Zircon grains from sample GY99A have homogeneous or oscillatory-zoned cores overgrown by
- 273 oscillatory-zoned rims (Fig. 4g-h). A total of 32 spots on 15 grains was analyzed (Table S2; spots

274 69.1–71.6). One data point was rejected because of irregular signal. One grain has an inherited

275 core with a concordant age of 501 ± 18 Ma. The 206 Pb/ 238 U ages of all Cretaceous concordant data

- range from ca. 76 to ca. 71 Ma and define a single age population (Fig. 8c). Their weighted mean
- 277 is 73.2 ± 0.7 Ma (11 spots, MSWD = 0.91, Fig. 8c).

278 **5.3. Inagawa granite**

- 279 Zircon grains from samples GY86A and GY93A show homogeneous or oscillatory-zoned cores
- and oscillatory-zoned rims (Fig. 4i-l).
- 281 Sample GY86A (gneissose porphyritic facies)
- A total of 39 spots on 17 grains was analyzed (Table S2; spots 33.1–35.13) and 25 analyses are
- 283 concordant. One grain has an inherited core with a concordant age of 296 ± 13 Ma. The 206 Pb/ 238 U
- ages of all Cretaceous concordant data range from ca. 78 to ca. 72 Ma, and show a single age
- population. Their weighted mean is 74.7 ± 0.7 Ma (24 spots, MSWD = 0.61, Fig. 8d).
- 286 Sample GY93A (massive facies)
- A total of 33 spots on 15 grains was analyzed (Table S2; spots 64.1-66.7), and 16 analyses are
- 288 concordant. The ²⁰⁶Pb/²³⁸U ages of all concordant data range from ca. 72 to ca. 68 Ma, and show
- a single population. Their weighted mean is 69.2 ± 0.5 Ma (16 spots, MSWD = 1.02, Fig. 8e).
- 290

291 **5.4. Busetsu granite**

292	Zircon grains in Busetsu granite samples record four Cretaceous growth stages at (A) ca. 99 Ma,
293	(B) ca. 95-84 Ma, (C) ca. 80 Ma and (D) ca. 70 Ma (Figs. 5; 8f-h). These age domains are
294	associated with particular textural and compositional features. Domain A corresponds to
295	oscillatory- or sector-zoned cores and rims with a relatively high Th/U ratio $(0.34-0.52)$ and a ca.
296	99 Ma age (Fig. 5a); only one grain of this type has been found so far. Domain B corresponds to
297	the homogeneous to weakly oscillatory-zoned parts commonly occurring in zircon mantle (i.e.
298	between core and rim). These mantles include sillimanite needles, have a low Th/U ratio
299	(0.02–0.12) and ages of ca. 95–85 Ma (Fig. 5b–g). Domain C corresponds to mantle or rim parts
300	with a homogeneously bright or oscillatory-zoned CL pattern, a moderate Th/U ratio (0.22-0.44,
301	with one exception at 0.04) and a ca. 80 Ma age (Fig. 5e-i). Domain D correspond to sector- or
302	oscillatory-zoned cores and oscillatory-zoned rims with a variable Th/U ratio (0.06-2.38) and a
303	ca. 70 Ma age (70.8 \pm 1.4 Ma to 69.5 \pm 0.4 Ma; Fig. 5b–d, h–m). Domain D is dominant in all
304	three samples.

Sample GY51A 305

A total of 112 spots on 45 grains was analyzed (Table S2; spots 4.11-6.13, 15.1-20.13 and 306 63.5-63.9), and 51 analyses gave concordant data. Nine data were rejected because of irregular 307signals. The weighted mean age of domain D analyses (cores and rims) is 69.5 ± 0.4 Ma (37 spots, 308309 MSWD = 2.3, Fig. 8f). Some cores give concordant, inherited ages of 1896 ± 38 Ma and $2272 \pm$

310 35 Ma (207 Pb/ 206 Pb age). Zircon grains showing domain B ± domain C + domain D around some 311inherited cores (Fig. 5b-c; 4 grains) give a concordant age of 254 ± 6 Ma for the inherited core and ca. 95-91 Ma for domain B mantles with a low Th/U ratio (0.02-0.12). Zircon grains with 312313 domain B + domain C (3 grains) give concordant ages of ca. 86-84 Ma and ca. 80-78 Ma for domain B (low Th/U ratio, 0.06–0.09) and domain C, respectively (Fig. 5e–g). Oscillatory-zoned 314315rims were not analyzed because they are thinner than the laser spot size. Zircon grains with 316 domain C + domain D (2 grains) give discordant dates of ca. 78-77 Ma for both cores and mantles. 317Sample MK02M 318A total of 26 spots on 15 grains was analyzed (Table S2; spots 44.1-45.13). One data was rejected

because of irregular signal. Domain D yields concordant ages of ca. 75-68 Ma, and the weighted

mean ages is 70.9 ± 0.9 Ma (21 spots, MSWD = 1.5, Fig. 8g). An inherited core with a discordant

321 date of ca. 1960 Ma (207 Pb/ 206 Pb) is also observed. In one grain preserving an inherited core \pm

322 domain B \pm domain C + domain D, the mantle part (B) gives a concordant age of 89.4 \pm 4.0 Ma

323 with a Th/U ratio of 0.03 (Fig. 5d). Zircon grains with domain C + domain D (2 grains) gave

324 concordant ages of ca. 79–77 Ma for core or mantle parts (Fig. 5h, i).

325 Sample GY89A

326 A total of 26 spots on 13 grains was analyzed (Table S2; spots 46.1-47.13). Four data were

327 rejected because of irregular signals. Except for one grain, all analyzed domains are classified

into domain D. Zircon grains with domain D cores and rims yield concordant ages of ca. 74-68

- Ma, and the weighted mean age is 70.8 ± 1.4 Ma (11 spots, MSWD = 1.6, Fig. 8h). Inherited cores
- 330 with concordant ages of ca. 270-191 Ma and ca. 1905-1879 Ma (²⁰⁷Pb/²⁰⁶Pb age) are also
- observed. The outermost rim of one oscillatory-zoned zircon yields a concordant age of $96.6 \pm$
- 4.3 Ma (Fig. 5a) and is tentatively classified as domain A.

333 5.5. Migmatite and pegmatite from the Grt-Crd zone

334 Sample GY03D (~20 cm thick leucosome in metatexite)

335 Zircon grains commonly show CL-bright cores and CL-dark rims (Fig. 6). Rims are composed of 336 CL-bright inner rims and CL-dark outer rims, and a CL-dark annulus (e.g. Kawakami et al., 2013) 337is commonly observed between the cores and the inner rims. Sillimanite is found as inclusions in the inner rim (Fig. 6) of two zircon grains. A total of 39 spots on 18 grains was analyzed (Table 338 339 S2; spots 41.1–43.13). Four data were rejected because of mixed analysis between cores and rims, 340 and one data was rejected because of irregular signal. Zircon cores give various inherited ages 341(Table S2). Rims give scattered concordant ages from ca. 103 Ma to ca. 83 Ma (Fig. 9a, b). Inner 342rims have a low U concentration (< 1300 ppm) and various Th/U ratio whereas outer rims are U-343richer (> 2300 ppm) and show very low Th/U ratio (Fig. 9c, d). The inner rims tend to give older 344ages ranging from ca. 101 Ma to ca. 92 Ma (weighted mean; 97.0 \pm 4.4 Ma, 6 spots, MSWD = 3.8). In contrast, the outer rims tend to give younger ages from ca. 95 Ma to ca. 83 Ma (weighted 345

- mean; 88.5 ± 2.5 Ma, 12 spots, MSWD = 4.1) (Figs. 6, 9c, d). There was no tendency for U-rich
- 347 zircon domains to give older ages (cf. Skrzypek et al., 2016).
- 348 SampleGY47A (Pegmatite)
- 349 Zircon grains commonly show oscillatory-zoned cores and CL-dark rims (Fig. 7). Sillimanite is
- found as an inclusion in the rim (Fig. 7). A total of 19 spots on 5 grains was analyzed (Table S2;
- spots 9.1–9.13, 27.8–27.13). Two data were rejected because of mixed analysis between cores
- and rims. Zircon cores give various inherited ages (Fig. 7; Table S2). Rims give relatively
- 353 clustered concordant ages from ca. 93 Ma to ca. 87 Ma with one outlier of ca. 98 Ma spot (Figs.
- 7, 9e, f). The concordia age for the zircon rims in this sample gave 90.1 ± 1.2 Ma (8 spots, MSWD)
- 355 = 4.2), excluding the ca. 98 Ma outlier (Fig. 9e-f).
- 356 6. Al-in-hornblende geobarometry

In order to estimate the crystallization depth of the '81–75 Ma Hbl–Bt tonalite' and '78–75 Ma (Hbl)–Bt granite', which are the gneissose granitoids thought to postdate regional metamorphism (Takatsuka et al., 2018), the Al-in-hornblende geobarometer (Schmidt, 1992) was applied to samples GY33A and GY81B (Fig. 1). Sample GY33A is a Hbl-Bt granite (Goyu area) while sample GY81B is a Hbl-Bt tonalite (Hazu area). Their respective U–Pb zircon ages are 78 ± 1 Ma and 81 ± 1 Ma, and their full description is given in Takatsuka et al. (2018). In both granitoids, the mineral assemblage Hbl + Bt + Pl + Kfs + Qtz + Ap + Ilm + Ep + Ttn (+ Po + Py + Zrn) permits the application of the geobarometer. Representative WDS analyses of hornblende used in the estimates are given in Tables S3 and S4. The total Al content was calculated based on O = 23, assuming total iron as Fe^{2+} .

367	Hornblende grains in sample GY33A are in contact with Qtz, Pl, Kfs and Bt, and are
368	partially retrogressed to Bt and Chl at the rims or along cracks. Hornblende grains in sample
369	GY81B are in contact with Qtz, Pl and Bt, and compositional zoning is observed under the optical
370	microscope while it is not noticeable in BSE images. The total Al in hornblende ranges from 0.89
371	to 2.13 atoms per formula unit (a.p.f.u.) for sample GY33A, and from 1.66 to 2.30 a.p.f.u. for
372	sample GY81B. Low-Al domains present along the cracks in hornblende (sample GY33A) and
373	the local development of high-Al domains at the rims of hornblende (both samples) are considered
374	as secondary features which do not record the timing of granitoid crystallization. Excluding these
375	domains, the total Al content of hornblende in both samples is 1.70-2.00 a.p.f.u. for the rims (O
376	= 23, Tables S3 and S4). For geobarometry, the total Al content of hornblende rims was used
377	because rims are considered to have equilibrated with the final melt, fluid and other coexisting
378	minerals at the granitic wet solidus. With the calibration of Schmidt (1992), pressure estimates
379	are 0.50-0.64 GPa and 0.50-0.63 GPa for samples GY33A and GY81B, respectively.
380	Geobarometry was not applied to the Kamihara tonalite and Kiyosaki granodiorite samples
381	because appropriate mineral assemblage was not found.

383 7. Regional implications

384 7.1. Interpretation of U–Pb zircon dating results

385In the Shinshiro tonalite and Mitsuhashi granodiorite samples, zircon is found included in major minerals or along grain boundaries (Fig. 3a-c), and the majority of zircon shows a CL-bright 386 387 oscillatory zoning pattern (Fig. 4a-h). These magmatic features suggest that the dominant age 388 population of each sample reflects the timing of magma crystallization, which occurred at ca. 70 389 Ma for the Shinshiro pluton and ca. 73 Ma for the Mitsuhashi pluton. The main facies of the 390 Shinshiro pluton dated in this study and of Mitsuhashi pluton locally hosts allanite (Yamasaki and 391Ozaki, 2012) and virtually does not contain monazite. Therefore, monazite-bearing granitoid samples used for CHIME monazite dating that yielded 84-86 Ma ages (Suzuki et al., 1994a, b; 392 393 Morishita and Suzuki, 1995) do not correspond to the typical facies of each pluton, and a strong 394interaction with the surrounding metamorphic rocks is inferred. These older monazite grains may 395be derived from the neighboring metamorphic rocks in which the age of high-T regional metamorphism was estimated at ca. 97-89 Ma based on U-Pb zircon dating in this study (see 396 397 below). Similarly, the CL-dark 77 Ma zircon grains found in the Shinshiro tonalite (Fig. 4c, d) 398 could be derived from the neighboring '78-75 Ma (Hbl)-Bt granite' (sample GY48D in Takatsuka 399 et al., 2018).

382

400	In the Inagawa pluton, zircon analyses define a dominant population at 74.7 ± 0.7 Ma
401	for the gneissose porphyritic facies and 69.2 ± 0.5 Ma for the massive facies (Table 2). The
402	ubiquitous occurrence of oscillatory-zoned zircon in both samples is used to ascribe these results
403	to magma solidification. The age of the gneissose porphyritic facies is consistent with the U-Pb
404	zircon age of 73 ± 3 Ma reported from a similar lithology within the Asuke Shear Zone (Murakami
405	et al. 2006; Fig. 8). Again, the absence of monazite and presence of euhedral magmatic allanite
406	in both samples suggests that the previously reported CHIME ages (83–82 Ma; Suzuki and Adachi,
407	1998) are probably not related to the crystallization of the main magma batch.
408	Zircon ages of the metatexite migmatite and pegmatite samples from the Grt-Crd zone
409	place important constraints on the timing of regional metamorphism in the Mikawa area. Zircon
410	grains from the metatexite leucosome GY03D show two stages of rim growth that are texturally,
411	chemically and chronologically distinct; CL-bright, low-U inner rims with a weighted mean age
412	of 97.0 \pm 4.4 Ma are overgrown by CL-dark, high-U outer rims with a weighted mean age of 88.5
413	\pm 2.5 Ma (Figs. 6, 9a–d). The high MSWDs of these weighted mean ages might be due to a
414	continuous growth of zircon rims from 102.9 ± 4.6 Ma to 83.1 ± 3.7 Ma (Figs. 6, 9a–d), but this
415	requires confirmation by higher precision age dating. In the present study, we attach importance
416	to the fact that zircon rims texturally record two growth stages and consider the weighted mean
417	ages as their growth timings. There are two possible scenarios for the origin of inner rims. First,

418	the inner rims might be resulted from prograde growth due to Ostwald ripening in the presence
419	of melt as proposed in another part of the Ryoke belt (Kawakami et al., 2013). In the present study,
420	the variable Th/U ratios (0.01-0.11) observed for the inner rims of zircon, compared to nearly
421	constant values for the outer rims (Fig. 9d), may reflect the chemical variation of fine-grained
422	detrital zircon grains consumed by the Ostwald ripening process which probably took place in
423	isolated melt pockets with different local compositions. Variable Th/U ratio of zircon cores
424	(0.04–1.45) is consistent with this interpretation (sample GY03D in Table S2). Alternatively, the
425	inner rims may reflect early zircon crystallization from melt at the very beginning of the cooling
426	stage immediately after the temperature peak. The entrapment of sillimanite might have equally
427	occurred during prograde or retrograde zircon growth at hypersolidus conditions. In this study,
428	the former interpretation that the inner rims represent the prograde growth of zircon is preferred
429	based on the observation of Th/U ratios. In both cases, the outer rim age of 88.5 ± 2.5 Ma is
430	interpreted as the timing of final zircon crystallization from melt at the granite wet solidus, and a
431	P-T path with a single temperature peak is sufficient to account for the inferred zircon
432	crystallization history (e.g., Brown, 1998; Kawakami et al., 2001). The pegmatite sample GY47A
433	contains cordierite and sillimanite, and could be a segregated partial melt derived from the
434	surrounding or underlying migmatites. The concordia age of 90.1 ± 1.2 Ma (Fig. 9e) represents
435	the timing of zircon crystallization in the pegmatite in the sillimanite stability field (Fig. 7), and

436 probably approximates the crystallization timing of the pegmatite melt. Judging from the 437 available data above, the hypersolidus stage of Ryoke regional metamorphism in the Mikawa area 438 started at 97.0 ± 4.4 Ma and continued until 88.5 ± 2.5 Ma.

439 In all samples from the Busetsu granite, zircon analyses reveal the presence of several age domains. Domain A was recognized in only one zircon from a Grt-free granite sample 440 441(GY89A) collected next to the western edge of the Kamihara pluton (Fig. 1). This grain shows a 442texture, age and Th/U ratio similar to those of zircon grains from the Kamihara tonalite (see 443 Takatsuka et al., 2018), suggesting that it is a xenocryst derived from the neighboring pluton (Fig. 4441). Domain B preserves homogeneous zoning and low Th/U ratios which are typical for 445metamorphic zircon (e.g. Rubatto, 2002). Furthermore, a few sillimanite grains are found as inclusions in this domain. Their age of ca. 95–85 Ma is in agreement with that of high-T regional 446 metamorphism in the Grt-Crd zone (Fig. 9). Therefore, zircon grains with domain B were likely 447448 introduced into the Busetsu granite magma as xenocrysts originating from the assimilated 449 metamorphic rocks that existed in the source region or along the intrusion pathway of the granite. 450The age of domain C (ca. 80 Ma) coincides with that of gneissose granitoids from the southern part of the Mikawa area ('81-75 Ma Hbl-Bt tonalite'; Takatsuka et al., 2018). Considering the 451452moderate Th/U ratio of these domains, zircon grains with domain C alone could be considered as 453xenocrysts derived from the assimilated gneissose granitoids, but the coexistence of domains B

and C in some grains points to a more complex history. Domain D are by far the most voluminous (Fig. 5); their sector or oscillatory zoning pattern and relatively high Th/U ratio indicate that they record a major event of magma crystallization which is ascribed to the solidification of the Busetsu granite at ca. 70 Ma. It is worth noting that for the Busetsu granite, in which monazite is a common accessory mineral while allanite is not observed, CHIME monazite ages ($79-75 \pm 5$ Ma; Suzuki et al., 1994; Nakai and Suzuki, 2003) are nearly compatible with U-Pb zircon ages ($71-69 \pm 1$ Ma).

461

462 7.2. Timing and depth distribution of granitoid intrusions in the Mikawa area

463	The U-Pb zircon ages of massive or foliated granitoids newly determined in this study range from
464	ca. 75 to 69 Ma (Figs. 8, 10). Taking into account the U-Pb zircon ages of gneissose granitoids
465	that are concordant with the main metamorphic foliation (Takatsuka et al., 2018), three magmatic
466	pulses with a different spatial distribution and timing are recognized in the Mikawa area (Fig. 10).
467	The oldest pulse occurred at ca. 99-95 Ma (Fig. 10); it is represented by gneissose granitoids
468	which are mainly enclosed inside younger plutons in the central part of the area (Kamihara tonalite,
469	Kiyosaki granodiorite). The subsequent pulse occurred at ca. 81–75 Ma (Fig. 10); it corresponds
470	to gneissose granitoids which concordantly intruded into metamorphic rocks in the southern
471	(deeper) part of the area ('81–75 Ma Hbl–Bt tonalite', '78–75 Ma (Hbl)–Bt granite'). The 99–95

472 Ma and 81-75 Ma magmatic rocks presently form elongated belts parallel to the NE–SW striking 473 regional foliation of metamorphic rocks (Fig. 10). The youngest pulse occurred at ca. 75–69 Ma; 474 massive to moderately-foliated granitoids intruded throughout the area and discordantly cut the 475 metamorphic fabrics and zones (Shinshiro tonalite, Mitsuhashi granodiorite, Inagawa granite and 476 Busetsu granite). For each pulse, the approximate surface exposure is ~ 135 km², ~ 110 km² and 477 ~ 980 km² with decreasing age (Table S5).

The intrusion depth of the 99-95 Ma pulse plutons remains obscure because these oldest 478479intrusions are either surrounded by younger granitoids (Fig. 10) or in contact with metamorphic 480 rocks in which the contribution of contact and regional metamorphism is hard to evaluate (e.g. 481Miyake et al., 2016). Our best observation comes from a km-scale band of metamorphic rocks (Fig. 1) in between the gneissose Kamihara tonalite (99 Ma) and the massive Busetsu granite (70 482483Ma). There, pre-tectonic And (partly transformed to Sil) porphyroblasts overgrown by Crd (Fig. 3i, j) indicate low-P metamorphism in the andalusite stability field (< 0.38 GPa) before the 484485intrusion of the post-tectonic Busetsu granite. If the grain size and chiastolite texture are regarded 486 as a result of reaction overstepping due to rapid temperature increase (e.g. Waters and Lovegrove, 4872002), the porphyroblasts might be correlated with contact metamorphism at the margin of the 488 Kamihara pluton. This assumption is used to propose a relatively shallow intrusion depth (< 14 km; density of the crustal rocks is assumed to be 2.75 g/cm³ throughout this paper) for the 99-95 489

490 Ma plutons.

491	For the 81-75 Ma pulse, the results of Al-in-hornblende geobarometry indicate that the
492	'81-75 Ma Hbl-Bt tonalite' (sample GY81B) and the '78-75 Ma (Hbl)-Bt granite' (sample
493	GY33A) intruded at a mid-crustal depth of ~19-24 km (Fig. 10). These data are consistent with
494	the crystallization depth deeper than 17.5 km proposed for tonalitic rocks in the Hazu area
495	(Masumoto et al., 2014), a part of the '81-75 Ma Hbl-Bt tonalite' body (Fig. 10). The youngest
496	75-69 Ma pulse granitoids generate contact metamorphic aureoles which allow estimating their
497	emplacement levels (Fig. 10). Using pressure estimates from contact aureoles around the
498	Shinshiro tonalite and the Mitsuhashi granodiorite (0.23-0.24 GPa; Endo and Yamasaki, 2013)
499	and around the Inagawa granite (0.32 GPa; Miyake et al., 2016), the emplacement depth of these
500	granitoids is estimated at \sim 9–12 km. The Busetsu granite is contemporaneous with these
501	granitoids, intrudes all of them (Ryoke Research Group, 1972), and its southern margin overprints
502	the Bt zone for which a peak pressure is estimated at 0.34 GPa (Miyazaki, 2010), suggesting that
503	this granite intruded at a depth of ~ 13 km. Therefore, all data indicate that the 75–69 Ma pulse
504	granitoids were emplaced at a nearly similar depth of $\sim 9-13$ km.
505	

506 **7.3. Plutono-metamorphic evolution of the Ryoke belt in the Mikawa area**

507 The plutono-metamorphic evolution of the Ryoke belt in the Mikawa area during the Cretaceous

508	flare-up starts with the intrusion of the 99-95 Ma pulse granitoids into the shallow levels of the
509	crust (< 14 km) and contemporaneous high-T regional metamorphism at the mid-crustal depth
510	(Fig. 11a). The similar NE-SW orientation of the gneissose structure in granitoids and the
511	foliation in metamorphic rocks suggests that the 99-95 Ma pulse granitoids probably acquired
512	their final structure during regional deformation after their intrusions (Fig. 11). The 99-95 Ma
513	pulse granitoids are not affected by a strong metamorphic overprint, which supports their original
514	intrusion into a relatively shallow level (< 14 km) of the former accretionary complex (Fig. 11a).
515	A direct evidence for contemporaneous high- T regional metamorphism and partial melting at
516	depth is given by the analysis of zircon rims in a leucosome sample from the Grt-Crd zone; the
517	inner rims of zircon containing sillimanite and the outer rims of zircon yield weighted average
518	U–Pb ages of 97.0 \pm 4.4 Ma and 88.5 \pm 2.5 Ma, respectively (sample GY03D; Figs. 6, 9a–d). An
519	indirect evidence is the presence of sillimanite-bearing, low Th/U metamorphic mantles in zircon
520	grains from the Busetsu granite (domain B; Fig. 5b-g). Considering that zircon in high-T
521	metamorphic rocks mostly grows in the presence of anatectic melt (e.g. Roberts and Finger, 1997;
522	Kawakami et al., 2013), the metamorphic mantles (Fig. 5b-g) point to sillimanite-stable,
523	suprasolidus conditions in the source zone or intrusion pathway of the Busetsu granite at ca.
524	95–84 Ma.

The Grt-Crd zone was still at sillimanite-grade hypersolidus conditions at ca. 90 Ma as 525

526	indicated by the age of zircon rims in the pegmatite sample (GY47A; 90.1 ± 1.2 Ma). The dynamic
527	crystallization microtextures developed at grain boundaries of K-feldspar and quartz (Fig. 31)
528	suggests ductile deformation of the Grt-Crd zone rocks after the solidification of the pegmatite
529	at ca. 90 Ma. The youngest zircon age in domain B of zircon from the Busetsu granite (ca. 84 Ma)
530	can be taken as the onset of final cooling towards subsolidus conditions in the Sil-Kfs or Grt-Crd
531	zones. These observations imply that heat flow from the lower crust could no longer sustain
532	hypersolidus, regional high- T conditions at the end of this stage.
533	The second stage corresponds to another magmatic pulse from ca. 81 to 75 Ma (Fig.
534	11c). The 81–75 Ma pulse granitoids intruded in a relatively deep crustal level (> 18 km); Al-in-
535	hornblende geobarometry results for tonalitic rocks (0.50-0.64 GPa) are almost equivalent to
536	peak pressure estimates for the Grt-Crd zone (0.43-0.57 GPa; Miyazaki, 2010), indicating that
537	no significant exhumation had occurred before ca. 81 Ma. The 81-75 Ma gneissose granitoids
538	commonly preserve a magmatic foliation which is parallel to that of the host metamorphic rocks;
539	this points to a syn-tectonic emplacement at relatively high- T conditions, but based on age
540	differences, Takatsuka et al. (2018) interpreted that these granitoids were not the direct cause of
541	the high- T regional metamorphism. Some 81–75 Ma gneissose granitoids also exhibit solid-state
542	foliations (Takatsuka et al., 2018) indicating that they were deformed in a ductile manner even
543	after magma solidification. This observation is used to infer that syn-tectonic cooling and

exhumation of the Grt-Crd zone started just after the youngest deep intrusion, i.e., after ca. 75
Ma (Fig. 11d).

546	The final stage corresponds to the intrusion of the 75–69 Ma pulse granitoids (Fig. 11e).
547	For granitoids emplaced at that time, U-Pb zircon ages range from ca. 75 to 69 Ma while K-Ar
548	ages on biotite are only slightly younger and cluster at ca. 71–68 Ma (Table 1). Such a fast cooling
549	history implies that the host metamorphic rocks into which the 75-69 Ma pulse granitoids
550	intruded were relatively cold, possibly at a temperature below the closure temperature of the K-Ar
551	system in biotite (340-360 °C; Hodges, 2005). In addition, all the 75-69 Ma pulse granitoids
552	were emplaced at ~ $9-13$ km depth (Figs. 10, 11e) and discordantly cut the regional metamorphic
553	zones (e.g., Ryoke Research Group, 1972; Fig. 1). The cold and shallow environment inferred for
554	the intrusion of the 75-69 Ma pulse granitoids requires that the metamorphic section, especially
555	the Grt-Crd zone, had already been exhumed by ca. 70 Ma; it is best explained by a northward
556	tilting of both the metamorphic rocks and gneissose granitoids (Fig. 11d). The average
557	exhumation rate of the Grt-Crd zone metamorphic rocks between ca. 75 and 70 Ma is estimated
558	at 0.80–2.4 km/Myr (0.80–2.4 mm/yr), which is slightly faster than the present-day erosion speed
559	across the Japanese Islands excepting high-elevation areas (<0.75 mm/yr; Fujiwara et al., 1999).
560	

562 8.1. Succession of granitoid emplacement depths

563One of the important features of the flare-up history revealed in this study is the sequence of granitoid emplacement depths. Pre-tectonic chiastolite found around the Kamihara tonalite (Fig. 5645653i-j) is used to propose a shallow intrusion level for the 99-95 Ma pulse granitoids. If this is accepted, the plutono-metamorphic evolutions in the western (Yanai area; Skrzypek et al., 2016) 566567and the eastern (Mikawa area; this study) parts of the Ryoke belt reveal a common feature. In the 568Mikawa area, plutonic activity started with shallow intrusions (< 14 km), and was followed by 569deeper (18-24 km) and finally shallow ones (9-13 km; Figs. 11, 12). A similar cycle is recognized 570in the Yanai area where the oldest and shallow intrusions (< 14 km at ca. 105-100 Ma) are followed by deeper (~ 22 km at ca. 100 Ma) and again shallow (< 14 km at ca. 95 Ma) plutons 571(Skrzypek et al., 2016; Fig. 12). 572

573	The final emplacement level of magmatic intrusions in upper crustal regions is thought
574	to depend on the interaction of rheology and rigidity contrasts within the crust, the crustal stress
575	field, and the crustal and lithospheric density structure (Burov et al., 2003; Schubert et al., 2013).
576	It can also be controlled by the preexisting geological structures that facilitate or prevent its ascent
577	(Brown, 2013; Petri et al., 2017; Vigneresse and Clemens, 2000). Importance of the tectonic
578	control on the intrusions of granitoids during the flare-up is inferred from the syn-tectonic nature
579	of the 81-75 Ma pulse granitoids. However, the shallow granitoids of the first pulses are

580	considered pre-tectonic both in the Yanai and Mikawa areas. The temporal coincidence between
581	the hypersolidus stage of regional metamorphism and the 99-95 Ma pulse in the Mikawa area
582	(Fig. 12) suggests that the prograde stage of regional metamorphism should have already started
583	before the intrusion of the 99–95 Ma pulse. In addition, the intrusion of the deep 81–75 Ma pulse
584	granitoids occurred after the highest-grade regional metamorphic zone (Grt-Crd zone) cooled
585	below the solidus temperature at 88.5 ± 2.5 Ma. These coincidences between granite emplacement
586	depths and changes in the thermal structure suggest that emplacement levels of the plutons may,
587	to some extent, be controlled by the thermal structure of the crust at their intrusion timings. The
588	yield strength of the crust may have been lowered through heating, and this may have enabled
589	granitoid magmas to be emplaced in relatively shallow crustal levels (e.g., Schubert et al., 2013).
590	In the case of diapiric ascent of magmatic bodies, however, numerical models suggest that the
591	effect of background thermal structure on the emplacement depth of plutons are in the order of
592	several km (Burov et al., 2003). Therefore, the change in emplacement level of plutons (~ 10 km
593	depth difference) should also be controlled by other factors such as tectonics during the granitoid
594	intrusion. Whether similar link between high background thermal structure and granitoid
595	emplacement in shallow levels of the crust exists for the 75-69 Ma pulse or not is unknown,
596	because the metamorphic zones were already inclined at the timing of the 75-69 Ma pulse
597	intrusion and thus the middle crust of that time is presently not exposed (Fig. 11e). The vertical

59	98	movement of the granitoid magmas of the 75-69 Ma pulse could have potentially been facilitated
59	99	by existing geologic structures in the crust, such as inclined foliation planes (e.g., Brown, 2013),
60	00	since the foliation planes of the host metamorphic rocks had already been tilted by this stage (Fig.
60	01	11d-e).
60	02	
60	03	8.2. Transient thermal anomaly in the mantle and formation of low-P/T type regional
60	04	metamorphic zones
60	05	In the Mikawa area, the absence of syn-metamorphic (ca. 97-89 Ma) granitoids in the highest-
60	06	grade Grt–Crd zone and the relatively long duration of regional hypersolidus conditions (> 8.5 \pm
60	07	5.1 Myr) point to prolonged heating of the middle crust. The upper-middle continental crust is
60	08	made up of an accretionary complex in which the amount of radiogenic heat producing elements
60	09	is equivalent to the average continental crust values (Togashi et al., 2000). Even relatively deep
6	10	granitoid intrusions hardly generate hypersolidus conditions longer than ca. 1 Ma (e.g. Okudaira
6	11	et al., 1996), so that thermal conduction from the lower crust, heated up by the transient thermal
6	12	input from the mantle, can only satisfactorily explain such a prolonged low- P/T type regional
6	13	metamorphism. Numerical modelling shows that transient thermal anomalies in the mantle can
6	14	significantly raise the temperature of mid-crustal rocks (Bodorkos et al., 2002) and points to the
6	15	importance of thermal conduction. We do not deny the importance of thermal input by advection
6	16	of granitoids, but emphasize the relative importance of thermal conduction from the lower crust
617 compared to the supplementary thermal input by advection of magmatic bodies in the case of the 618 prolonged low-P/T type regional metamorphism.

619 Our dataset suggest that start of the Cretaceous flare-up event was controlled by the 620 increase in thermal input from the mantle. Numerical models suggest that about 10 Myr is required 621 for the middle crust to reach the highest-*T* condition after 5 Myr of duration of 1300 °C in the mantle 622 lithosphere nearly at the bottom of the crust (Bodorkos et al., 2002). Accordingly, the mantle anomaly 623 must have predated the first granitoid pulse. Whether the pattern of granitoid pulses directly reflects 624 a succession of thermal pulses in the mantle or a pulsatile crustal response to a single mantle anomaly 625 (de Silva et al., 2015) remains an important problem to be solved.

626	Estimating the amount of magma addition to the arc crust is a delicate issue. In the
627	Mikawa area, the 75–69 Ma granitoids are contemporaneous with the Nohi rhyolite, a voluminous
628	volcanic complex consisting of caldera-related felsic rocks (ignimbrites, lavas, volcanoclastic
629	rocks, intrusives etc.) erupted at ca. 70 Ma (U-Pb zircon dating, Hoshi et al., 2016). However,
630	the relative importance of the 75-69 Ma pulse with respect to the older ones is not necessarily
631	higher (Fig. 12). Erosion can be responsible for the loss of a volcanic sequences corresponding to
632	the 99-95 Ma pulse, and the fact that the presently exposed crustal level is subparallel to the
633	intrusion level of the 75-69 Ma pulse plutons might overemphasize the volume of magma added
634	during the last pulse (Figs. 10, 11e). Taken together the magmatic pulses occurring from ca. 99

635	Ma to ca.69 Ma in the eastern part of the Ryoke belt may reflect transient thermal inputs from the
636	mantle and resulting partial melting of the lower crust to produce the granitoids, and point to a
637	significant addition of continental material into the metasedimentary upper-middle crust of the
638	Eurasian continental margin during the Cretaceous flare-up event.

639

```
640 9. Conclusions
```

641 The Cretaceous flare-up event which can be deciphered in the eastern part of the Ryoke belt (SW

642 Japan) reveals the following features and implications for crustal evolution:

643 (1) Three plutonic pulses occurred at ca. 99-95, ca. 81-75 and ca. 75-69 Ma, with the first

granitoid pulse being contemporaneous with the hypersolidus stage of the low-P/T type

for regional metamorphism (97.0 \pm 4.4 Ma to 88.5 \pm 2.5 Ma).

646 (2) In spite of the temporal association, the absence of spatial association between the highest-

- 647 grade regional metamorphic zone and pre- to syn-metamorphic granitoids supports the
- 648 presence of a transient thermal anomaly in the mantle and thermal conduction as the main
- 649 process responsible for the formation of the low-P/T type regional metamorphic zones.
- 650 (3) The plutons were successively emplaced in a shallow (< 14 km), deeper (~18–24 km) and
- shallow (~9–13 km) levels of the crust, with emplacement depths probably controlled by the
- 652 combination of thermal structural change of the crust and tectonics during granitoid intrusions.

653	(4) Estimates of the respective volume of magma added during each pulse are biased by the
654	present-day exposures; yet the 75-69 Ma pulse event clearly documents a voluminous
655	addition of granitic material to the arc crust through both plutonic and volcanic activities.

656

657 Acknowledgements

We are grateful to T. Okudaira and S. Endo for reviews and M. Scam	oerulli to	r editorial	efforts.
--	------------	-------------	----------

- 659 K. Tani, T. Nakajima and K. Suzuki are thanked for discussions on the granitoids of the Ryoke
- 660 belt. Thanks are also due to K. Horie, M. Takehara, T. Kogiso and Y. Monta for assisting sample
- 661 preparation and to F. Higashino for assistance in U-Pb zircon dating. This study was financially
- supported by JSPS KAKENHI Grant No. 26400513 and NIPR general collaboration project No.
- 663 28-25 to Kawakami, and by a JSPS postdoctoral fellowship to Skrzypek (Grant No. 25-03715 to
- 664 T. Hirajima).

665

```
666 References
```

```
667 Adachi, Y., Wallis, S. 2008. Ductile deformation and development of andalusite microstructures
```

- 668 in the Hongusan area: constraints on the metamorphism and tectonics of the Ryoke Belt. Island
- 669 Arc, 17, 41–56.
- 670 Akasaki, E., Owada, M., Kamei, A. 2015. Crustal differentiation due to partial melting of granitic

671	rocks in an active continental margin, the Ryoke Belt, Southwest Japan. Lithos, 230, 82-91.
672	Asami, M., Hoshino, M., Miyakawa, K., Suwa, K. 1982. Metamorphic conditions of staurolite
673	schists of the Ryoke metamorphic belt in the Hazu-Hongusan area, central Japan. Journal of
674	the Geological Society of Japan, 88, 437–450 (in Japanese with English abstract).
675	Bodorkos, S., Sandiford, M., Oliver, N.H.S., Cawood, P.A., 2002. High-T, low-P metamorphism
676	in the Palaeoproterozoic Halls Creek Orogen, northern Australia: the middle crustal response
677	to a mantle-related transient thermal pulse. Journal of Metamorphic Geology, 20, 217–237.
678	Bosse, V., Boulvais, P., Gautier, P., Tiepolo, M., Ruffet, G., Devidal, J.L., Cherneva, Z., Gerdjikov,
679	I., Paquette, J.L. 2009. Fluid-induced disturbance of the monazite Th-Pb chronometer: In situ
680	dating and element mapping in pegmatites from the Rhodope (Greece, Bulgaria). Chemical
681	Geology, 261, 286–302.
682	Brown, M. 1998. Unpairing metamorphic belts: P-T paths and a tectonic model for the Ryoke
683	Belt, southwest Japan. Journal of Metamorphic Geology, 16, 3-22.
684	Brown, M. 2013. Granite: from genesis to emplacement. GSA Bulletin, 125, 1079–1113.
685	Burov, E., Jaupart, C., Guillou-Frottier, L. 2003. Ascent and emplacement of buoyant magma
686	bodies in brittle-ductile upper crust. Journal of Geophysical Research, 108, 2177,
687	doi:10.1029/2002JB001904.

688 de Saint Blanquat, M., Horsman, E., Habert, G., Morgan, S., Vanderhaeghe, O., Law, R., Tikoff,

- B. 2011. Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical
 relationship between tectonism and plutonism in continental arcs. Tectonophysics, 500, 20–
- 691 **33**.
- 692 De Silva, S.L., Riggs, N.R., Barth, A.P. 2015. Quickening the pulse: Fractal tempos in continental
 693 arc magmatism. Elements, 11, 113–118.
- 694 Ducea, M., 2001. The California arc: Thick granitic batholiths, eclogitic residues, lithospheric-
- scale thrusting, and magmatic flare-ups. GSA Today, 11, 4–10.
- Ducea, M.N., Paterson, S.R., DeCelles, P.G., 2015, High-volume magmatic events in subduction
- 697 systems. Elements, 11, 99–104.
- Endo, S., Yamasaki, T. 2013. Geology of the Ryoke Plutono-Metamorphic Complex in the
- Tsukude area, central Japan. Bulletin of the Geological Survey of Japan, 64, 59-84 (in Japanese
- with English abstract).
- Fujiwara, O., Sanga, T., Ohmori, H. 1999. Regional distribution of erosion rates over the Japanese
- Islands. Japan Nuclear Cycle Technical Review, 5, 85–93 (in Japanese with English abstract).
- Geological Survey of Japan, 2015. Seamless digital geological map of Japan 1: 200,000. May 29,
- 2015 version. Geological Survey of Japan, National Institute of Advanced Industrial Science
- and Technology (Ed.).
- 706 Harayama, S., Koido, Y., Ishizawa, K., Nakai, Y., Kutsukake, T. 1985. Cretaceous to Paleogene

707 Magmatism in the Chubu District, Japan. Earth Science (Chikyu Kagaku), 39, 345–357 (in

Japanese with English abstract).

- 709 Hodges, K.V. 2005. Geochronology and thermochronology in orogenic systems. Treatise on
- Geochemistry, Vol. 3, The Crust, 263–292.
- 711 Hoshi, H., Iwano, H., Danhara, T., Sako, K. 2016. U-Pb evidence for rapid formation of the Nohi
- 712 Rhyolite at about 70 Ma. Abstracts, The 123rd Annual Meeting of the Geological Society of

713 Japan. 81.

- 714 Ikeda, T. 1998a. Phase equilibria and the pressure-temperature path of the highest-grade Ryoke
- 715 metamorphic rocks in the Yanai district, SW Japan. Contributions to Mineralogy and Petrology,

716 132, 321–335.

717 Ikeda, T. 1998b. Progressive sequence of reactions of the Ryoke metamorphism in the Yanai

district, southwest Japan: the formation of cordierite. Journal of Metamorphic Geology, 16,

719 39–52.

720 Ishihara, S., Chappell, B.W. 2007. Chemical compositions of the late Cretaceous Ryoke granitoids

of the Chubu District, central Japan-Revisited. Bulletin of the Geological Survey of Japan, 58,
323–350.

723 Ishihara, S., Terashima, S. 1977. Chemical variation of the Cretaceous granitoids across

southwestern Japan -Shirakawa-Toki-Okazaki transection-. Journal of the Geological Society

725 of Japan, 83, 1–18.

726 Jackson, S.E., Pearson, W.L., Griffin, W.L., Belousova, E.A. 2004. The application of laser

- ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology.
- 728 Chemical Geology, 211, 47–69.
- 729 Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentleyt, W.C., Essling, A.M. 1971. Precision
- measurement of half-lives and specific activities of ²³⁵U and ²³⁸U. Physical Review C, 4, 1889–
- 731 1906.
- 732 Jochum K.P., Brueckner, S.M. 2008. Reference materials in geoanalytical and environmental
- research Review for 2006 and 2007. Geostandards and Geoanalytical Research, 32, 405–452.
- Kasapoğlu, B., Ersoy, Y.E., Uysal, İ., Palmer, M. R., Zack, T., Koralay, E.O., Karlsson, A. 2016.
- The petrology of Paleogene volcanism in the Central Sakarya, Nallıhan Region: Implications
- for the initiation and evolution of post-collisional, slab break-off-related magmatic activity.
- 737 Lithos, 246-247, 81–98.
- 738 Kawakami, T. 2001. Tourmaline breakdown in the migmatite zone of the Ryoke metamorphic belt,
- 739 SW Japan. Journal of Metamorphic Geology, 19, 61–75.
- 740 Kawakami, T., Suzuki, K. 2011. CHIME monazite dating as a tool to detect polymetamorphism
- in high-temperature metamorphic terrane: Example from the Aoyama area, Ryoke
- metamorphic belt, Southwest Japan. Island Arc, 20, 439–453.

743 Kawakami, T., Yamaguchi, I., Miyake, A., Shibata, T., Maki, K., Yokoyama, T.D., H	irata, T. 2013
---	----------------

- Behavior of zircon in the upper-amphibolite to granulite facies schist/migmatite transition,
- Ryoke metamorphic belt, SW Japan: constraints from the melt inclusions in zircon.
- Contributions to Mineralogy and Petrology, 165, 575–591.
- 747 Kawakami, T., Nakano, N., Higashino, F., Hokada, T., Osanai, Y., Yuhara, M., Charusiri, P.,
- 748 Kamikubo, H., Yonemura, K., Hirata, T. 2014. U-Pb zircon and CHIME monazite dating of
- 749 granitoids and high-grade metamorphic rocks from the Eastern and Peninsular Thailand A
- new report of Early Paleozoic granite. Lithos, 200–201, 64–79.
- Kawano, Y., Ueda, Y., 1967. Periods of the igneous activities of the granitic rocks in Japan by K-
- A dating method. Tectonophysics, 4, 523–530.
- 753 Kinoshita, O., 1995. Migration of igneous activities related to ridge subduction in Southwest
- Japan and the East Asian continental margin from the Mesozoic to the Paleogene.
- 755 Tectonophysics, 245, 25–35.
- Kretz, R. 1983. Symbols for rock-forming minerals. American mineralogist 68, 277-9.
- 757 Kutsukake, T. (1993). An initial continental margin plutonism -Cretaceous Older Ryoke
- granitoids, southwest Japan. Geological Magazine, 130, 15–28.
- Ludwig, K. 2012. User's manual for Isoplot version 3.75-4.15: a geochronological toolkit for
- 760 Microsoft Excel. Berkley Geochronological Center Special Publication 5.

761	Lukács, R., Harangi, S., Bachmann, O., Guillong, M., Danišík, M., Buret, Y., von Quadt, A.,
762	Dunkl, I., Fodor, L., Sliwinski, J., Soós, I., Szepesi, J. 2015. Zircon geochronology and
763	geochemistry to constrain the youngest eruption events and magma evolution of the Mid-
764	Miocene ignimbrite flare-up in the Pannonian Basin, eastern central Europe. Contributions to
765	Mineralogy and Petrology, 170, 52. doi 10.1007/s00410-015-1206-8
766	Makimoto, H., Yamada, N., Mizuno, K., Takada, A., Komazawa, M., Sudo, S. 2004. Geological
767	map of Japan 1: 200,000, Toyohashi and Irago Misaki. Geological Survey of Japan (in
768	Japanese with English abstract).
769	Masumoto, Y., Enami, M., Tsuboi, M., Hong, M. 2014. Magmatic zoisite and epidote in tonalite
770	of the Ryoke belt, central Japan. European Journal of Mineralogy, 26, 279–291.
771	Miyake, A., Hirukawa, T., Sato, M., Taguchi, T., Suzuki, K., Nakai, Y. 2016. Large thermal

- aureole around the Inagawa Granodiorite in the southeastern area of Asuke, Aichi Prefecture.
- Journal of the Geological Society of Japan, 122, 173–191 (in Japanese with English abstract).
- 774 Miyake, A., Igarashi, Y., Inaishi, T., Taguchi, T. 2017, Finding of staurolite-bearing pelitic schists
- in the Ryoke metamorphic belt of the Dando-san area, Aichi Prefecture and its significance.
- Journal of the Geological Society of Japan, 123, 59–72 (in Japanese with English abstract).
- 777 Miyake, A., Murata, E., Morishita, O. 1992. Growth stages of andalusite in the Ryoke
- metamorphic rocks from the Nukata area, Aichi Prefecture. Journal of Mineralogy, Petrology

- and Economic Geology, 87, 475–480 (in Japanese with English abstract).
- 780 Miyake, A., Yokoe, K., Suzuki, B., Igarashi, Y. 2014. The thermal structures in the Ryoke
- 781 metamorphic belt of the Dando-san area, Aichi Prefecture. Journal of Geological Society of
- Japan, 120, 299–312 (in Japanese with English abstract).
- 783 Miyashiro, A. 1961. Evolution of metamorphic belts. Journal of Petrology, 2, 277–311.
- 784 Miyazaki, K. 2010. Development of migmatites and the role of viscous segregation in high-T
- 785 metamorphic complexes: Example from the Ryoke Metamorphic Complex, Mikawa Plateau,
- 786 Central Japan. Lithos, 116, 287–299.
- 787 Miyazaki, K., Nishioka, Y., Nakashima, R., Ozaki, M. 2008. Geology of the Goyu district.
- 788 Quadrangle Series, 1:50,000. Geological Survey of Japan (in Japanese with English abstract).
- 789 Morishita, T., Suzuki, K. 1993. XRF analyses of the Mitsuhashi Granite in the Shitara area, Aichi
- Prefecture. Bulletin of the Nagoya University Furukawa Museum, 9, 77–90 (in Japanese with
- The English abstract).
- 792 Morishita, T., Suzuki, K. 1995. CHIME ages of monazite from the Shinshiro Tonalite of the Ryoke
- belt in the Mikawa area, Aichi Prefecture. The Journal of earth and planetary sciences, Nagoya
 University, 42, 45–53.
- 795 Morishita, T., Suzuki, K., Nasu, T. 1996. CHIME ages of monazite from granitoids in the Mikawa-
- Tono area, central Japan. Geological Society of Japan The 103rd Annual Meeting, Abstract

- 797 Volume. p. 282 (in Japanese).
- 798 Murakami, M., Kosler, J., Takagi, H., Tagami, T. 2006. Dating pseudotachylyte of the Asuke
- Shear Zone using zircon fission-track and U–Pb methods. Tectonophysics, 424, 99–107.
- 800 Nakai, Y. 1976. Petrographical and petrochemical studies of the Ryoke granites in the Mikawa-
- Tono district, central Japan. Bulletin of Aichi University of Education (Natural Science), 25,
- 802 97–112.
- 803 Nakai, Y. 1982. The Busetsu granite in the Ryoke belt, Central Japan. Geological Society of Japan
- The 89th Annual Meeting, Abstract Volume. p. 404 (in Japanese).
- 805 Nakai, Y., Suzuki, K. 1996. CHIME monazite ages of the Kamihara Tonalite and the Tenryukyo
- 806 Granodiorite in the eastern Ryoke belt of central Japan. Journal of the Geological Society of
- 807 Japan, 102, 431–439.
- 808 Nakai, Y., Suzuki, K. 2003. Post-tectonic two-mica granite in the Okazaki area, central Japan: a
- field guide for the 2003 Hutton Symposium. Hutton Symposium, V, Field Guidebook,
- 810 Geological Survey of Japan, Interim-Report, 28, 115–124.
- 811 Nakajima, T. 1994. The Ryoke plutonometamorphic belt: crustal section of the Cretaceous
- Eurasian continental margin. Lithos, 33, 51–66.
- 813 Nakajima, T. 1996. Cretaceous granitoids in SW Japan and their bearing on the crust-forming
- 814 process in the eastern Eurasian margin. Transactions of the Royal Society of Edinburgh: Earth

815 Science, 87, 183–191.

```
816 Nakajima, T., Horie, K., Adachi, T., Miyazaki, K., Dunkley, D.J., Hokada, T. 2013. SHRIMP U-
```

- Pb ages of zircons from Ryoke metamorphic rocks. Geological Society of Japan The 120th
- 818 Annual Meeting, Abstract Volume. p. 51 (in Japanese).
- 819 Nakajima, T., Kamiyama, H., Williams, I.S., Tani, K. 2004. Mafic rocks from the Ryoke Belt,
- 820 southwest Japan: implications for Cretaceous Ryoke/San-yo granitic magma genesis.
- 621 Geological Society of America Special Papers, 389, 249–263.
- 822 Nakashima, R., Hori, N., Miyazaki, K., Nishioka, Y. 2008. Geology of the Toyohashi and Tahara
- districts. Quadrangle Series, 1:50,000. Geological Survey of Japan (in Japanese with English

abstract).

- Nozawa, T., 1975. Radiometric age map of Japan: Granite. Geological Map of Japan 1:2,000,000,
- 826 Map Series.
- 827 Ohtomo, Y. 1985. Zonal structure of the Shinshiro Tonalite pluton. MAGMA 73, 69–73 (in

S28 Japanese).

829 Okudaira, T., Hara, I., Sakurai, Y., Hayasaka, Y. 1993. Tectono-metamorphic processes of the

- 830 Ryoke belt in the Iwakuni-Yanai district, southwest Japan. Memoirs of the Geological Society
- 831 of Japan, 42, 91–120.

832 Okudaira, T. 1996. Thermal evolution of the Ryoke metamorphic belt, southwest Japan: Tectonic

- and numerical modeling. Island Arc, 5, 373–385.
- 834 Otamendi, J.E., Ducea, M.N., Bergantz, G.W. 2012. Geological, petrological and geochemical
- 835 evidence for progressive construction of an arc crustal section, Sierra de Valle Fertil,
- Famatinian Arc, Argentina. Journal of Petrology, 53, 761–800.
- 837 Ozima, M., Ueno, N., Shimizu, N., Kuno, H. 1967. Rb-Sr and K-Ar isotopic investigations of
- 838 Sidara granodiorites and the associated Ryoke metamorphic belt, central Japan. Japanese
- Journal of Geology and Geography, 38, 159–162.
- Paterson, S.R., Ducea, M.N., 2015, Arc magmatic tempos: Gathering the evidence. Elements, 11,
- 841 91–97.
- 842 Pearce, N.J., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R., Chenery, S.P.
- 843 1997. A compilation of new and published major and trace element data for NIST SRM 610
- and NIST SRM 612 glass reference materials. Geostandards newsletter, 21, 115–144.
- 845 Petri, B., Skrzypek, E., Mohn, G., Mateeva, T., Robion, P., Schulmann, K., Manatschal, G.,
- 846 Müntener, O. 2017. Mechanical anisotropies and mechanisms of mafic magma ascent in the
- 847 middle continental crust: The Sondalo magmatic system (N Italy). GSA Bulletin. in press.
- 848 Roberts, M.P., Finger, F., 1997. Do U-Pb zircon ages from granulites reflect peak metamorphic
- 849 conditions? Geology, 25, 319–322.
- 850 Rubatto, D. 2002. Zircon trace element geochemistry: partitioning with garnet and the link

851	between U-Pb ages and metamorphic	sm. Chemical geology,	184, 123–138.
			,

852	Ryoke Research Group. 1972. The mutual relations of the granitic rocks of the Ryoke
853	metamorphic belt in central Japan. Earth Science (Chikyu Kagaku), 26, 205-216 (in Japanese
854	with English abstract).
855	Sakata, S., Hattori, K., Iwano, H., Yokoyama, T.D., Danhara, T., Hirata, T. 2014. Determination
856	of U-Pb Ages for Young Zircons using Laser Ablation-ICP-Mass Spectrometry Coupled with
857	an Ion Detection Attenuator Device. Geostandards and Geoanalytical Research, 38, 409-420.
858	Sato, D., Matsuura, H., Yamamoto, T. 2016. Timing of the Late Cretaceous ignimbrite flare-up at
859	the eastern margin of the Eurasian Plate: New zircon U–Pb ages from the Aioi–Arima–Koto
860	region of SW Japan. Journal of Volcanology and Geothermal Research, 310, 89–97.
861	Schmidt, M.W. 1992. Amphibole composition in tonalite as a function of pressure: an
862	experimental calibration of the Al-in-hornblende barometer. Contributions to mineralogy and
863	petrology, 110, 304–310.
864	Schubert, M., Driesner, T., Gerya, T.V., Ulmer, P. 2013. Mafic injection as a trigger for felsic
865	magmatism: A numerical study, Goechemistry, Geophysics, Geosystematics, 14, 1910–1928,

- doi:10.1002/ggge.20124.
- 867 Seydoux-Guillaume, A.M., Paquette, J.L., Wiedenbeck, M., Montel, J.M., Heinrich, W. 2002.
- 868 Experimental resetting of the U–Th–Pb systems in monazite. Chemical Geology, 191, 165–

869 181.

- 870 Shibata, K., Ishihara, S. 1979a. Initial ⁸⁷Sr/⁸⁶Sr ratios of plutonic rocks from Japan. Contributions
- to Mineralogy and Petrology, 70, 381–390.
- 872 Shibata, K., Ishihara, S. 1979b. Rb-Sr whole-rock and K-Ar mineral ages of granitic rocks in
- Japan. Geochemical Journal, 13, 113–119.
- 874 Skrzypek, E., Kato, T., Kawakami, T., Sakata, S., Hattori, K., Hirata, T., Ikeda, T. 2018. Monazite
- behavior and time-scale of metamorphic processes along a low-pressure/high-temperature
- field gradient (Ryoke belt, SW Japan). Journal of Petrology, in press.
- 877 Skrzypek, E., Kawakami, T., Hirajima, T., Sakata, S., Hirata, T., Ikeda, T. 2016. Revisiting the
- high temperature metamorphic field gradient of the Ryoke Belt (SW Japan): New constraints
- from the Iwakuni-Yanai area. Lithos, 260, 9–27.
- 880 Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A.,
- 881 Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N.,
- 882 Whitehouse, M.J. 2008. Plešovice zircon A new natural reference material for U–Pb and Hf
- isotopic microanalysis. Chemical Geology, 249, 1–35.
- 884 Suzuki, K., Adachi, M., 1998. Denudation history of the high T/P Ryoke metamorphic belt,
- southwest Japan: constraints from CHIME monazite ages of gneisses and granitoids. Journal
- of Metamorphic Geology, 16, 23–37.

887	Suzuki, K., Adachi, M., Kajizuka, I., 1994a. Electron microprobe observations of Pb diffusion in
888	metamorphosed detrital monazites. Earth and Planetary Science Letters, 128, 391-405.
889	Suzuki, K., Morishita, T., Kajizuka, I., Nakai, Y., Adachi, M., Shibata, K., 1994b. CHIME ages
890	of monazites from the Ryoke metamorphic rocks and some granitoids in the Mikawa-Tono
891	area, central Japan. Bulletin of the Nagoya University Furukawa Museum, 10, 7-38 (in
892	Japanese with English abstract).
893	Tani, K., Horie, K., Dunkley, D., Ishihara, S., 2014. Pulsed granitic crust formation revealed by
894	comprehensive SHRIMP zircon dating of the SW Japan granitoids. Abstract of Japan
895	Geoscience Union Meeting. Yokohama, 2014.
896	Takatsuka, K., Kawakami, T., Skrzypek, E., Sakata, S., Obayashi, H., Hirata, T., 2018, Age gap
897	between the intrusion of gneissose granitoids and regional high-temperature metamorphism in
898	the Ryoke belt (Mikawa area, central Japan). Island Arc, 27, e12224. DOI: 10.1111/iar.12224.
899	Tibaldi, A.M., Otamendi, J.E., Cristofolini, E.A., Baliani, I., Walker, B.A., Bergantz, G.W., 2013.
900	Reconstruction of the Early Ordovician Famatinian arc through thermobarometry in lower and
901	middle crustal exposures, Sierra de Valle Fértil, Argentina. Tectonophysics, 589, 151–166.
902	Togashi, S., Imai, N., Okuyama-Kusunose, Y., Tanaka, T., Okai, T., Koma, T., Murata, Y., 2000.
903	Young upper crustal chemical composition of the orogenic Japan Arc. Geochemistry
904	Geophysics Geosystems, 1, 2000GC000083.

905	Tsuboi M Asahara	Y 2009	Initial	⁸⁷ Sr/ ⁸⁶ Sr ratio	heterogeneity	in Kamihara	Tonalite	Rvoke
000	154001, 111., 115411414,	1., 2007.	mmuu	DI/ DI Iulio	neterogeneity	III Ixuiiiiiuiu	ronance,	ryone

- 906 belt, southwest Japan: Evidence from strontium isotopic analysis of apatite. Journal of
- 907 Mineralogical and Petrological Sciences, 104, 226–233.
- 908 Tunheng, A., Hirata, T., 2004. Development of signal smoothing device for precise elemental
- 909 analysis using laser ablation-ICP-mass spectrometry. Journal of Analytical Atomic
 910 Spectrometry, 19, 932–934.
- 911 Uchiumi, S., Uto, K., Shibata, K., 1990. K–Ar age results 3 New data from the Geological
- Survey of Japan. Bulletin of the Geological Survey of Japan, 41, 567–575 (in Japanese with
 English abstract).
- 914 Ueno, N., Ozima, M., Ono, A., 1969. Geochronology of the Ryoke metamorphism-Rb-Sr, K-
- 915 Ar isotopic investigations of the metamorphic rocks in the Ryoke metamorphic belt—.
- 916 Geochemical Journal, 3, 35–44.
- 917 Vigneresse, J.-L., Clemens, J.D., 2000. Granitic magma ascent and emplacement: neither
- 918 diapirism nor neutral buoyancy. In: Vendeville, B., Mart, Y. & Vingeresse, J.-L. (eds) Salt,
- 919 Shale and Igneous Diapirs in and around Europe. Geological Society, London, Special
- 920 Publications, 174, 1–19.
- 921 Wakita, K., 1987. The occurrence of Latest Jurassic-Earliest Cretaceous radiolarians at the Hida-
- 922 Kanayama area in the Mino terrane, central Japan. Journal of the Geological Society of Japan,

923 93, 441–443 (in Japanese).

- 924 Waters, D.J., Lovegrove, D.P., 2002. Assessing the extent of disequilibrium and overstepping of
- 925 prograde metamorphic reactions in metapelites from the Bushveld Complex aureole, South
- 926 Africa. Journal of Metamorphic Geology, 20, 135–149.
- 927 Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., et al., 1995. Three natural zircon
- 928 standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostandards Newsletter,
- 929 19, 1–23.
- 930 Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., et al., 2004. Further
- 931 characterisation of the 91500 zircon crystal. Geostandards and Geoanalytical Research, 28, 9–
- 932 39.
- 933 Yamasaki, T., 2013. K-Ar ages of the Ryoke plutonic rocks in the Asuke area, Aichi prefecture,
- 934 central Japan. Journal of the Geological Society of Japan, 119, 421–431 (in Japanese with
- 935 English abstract).
- 936 Yamasaki, T., Ozaki, M., 2012. Geology of the Asuke district. Quadrangle Series, 1:50,000.
- 937 Geological Survey of Japan (in Japanese with English abstract).

938

939 Figure captions

940 Fig. 1. (a) Simplified geological map showing the location of the Ryoke belt across Japan. (b)

941	Geological map of the Ryoke belt in central Japan with metamorphic zones. Sample localities
942	of granitoids and a metamorphic rock (GY92A) are indicated. The geological map is
943	compiled and modified after Makimoto et al. (2004), Miyazaki et al. (2008), Nakashima et
944	al. (2008), Miyazaki (2010), Yamasaki and Ozaki (2012), Endo and Yamasaki (2013), the
945	Geological Survey of Japan (2015), Miyake et al. (2016) and Takatsuka et al. (2018). MTL;
946	Median Tectonic Line. ISTL; Itoigawa-Shizuoka Tectonic Line. Mineral abbreviations are
947	after Kretz (1983).
948	Fig. 2. Field occurrence and slab photographs of granitoid samples used for U-Pb zircon dating.
949	(a) Outcrop of the Shinshiro tonalite (GY50A) showing ellipsoidal mafic enclaves (dark
950	color) elongated parallel to the gneissose structure. Surface is partly green because of moss.
951	(b) Slab photograph of the Shinshiro tonalite (sample GY100A) showing a gneissose
952	structure defined by the arrangement of Hbl + Bt. (c) Slab photograph of the Mitsuhashi
953	granodiorite (sample GY99A) showing a gneissose structure defined by the arrangement of
954	Hbl + Bt. (d, e) Slab photographs of the Inagawa granite: sample GY86A from the gneissose
955	porphyritic facies and sample GY93A from the massive facies. (f, g) Field occurrence of the
956	Busetsu granite: (f) Xenolith of pelitic schist in garnet-bearing, fine-grained granite. (g)
957	Intrusion boundary of fine-grained granite and meta-sandstone. Foliation of the meta-
958	sandstone is oblique to the boundary. (h) Slab photograph of the Busetsu granite (sample

GY89A) showing a gneissose structure and K-feldspar megacrysts. (i) Field occurrence of
~20 cm thick leucosome (GY03D) subparallel to the migmatitic banding of the psammitic
metatexite. (j) Field occurrence of pegmatite sample GY47A (white). Mafic lens is present
above the pegmatite.

Fig. 3. Photomicrographs of granitoid and pelitic gneiss samples. (a, b) Samples GY50A and 963 GY100A from the Shinshiro tonalite showing the mode of occurrence of zircon and allanite 964 965 (plane polarized light, PPL). (c) Sample GY99A from the Mitsuhashi granodiorite showing 966 the mode of occurrence of zircon (PPL). (d, e) Samples GY86A and GY93A from the 967 Inagawa granite showing the mode of occurrence of zircon and allanite (PPL) (f, g) Samples GY51A and MK02M from the Busetsu granite (PPL) showing the mode of occurrence of 968 969 zircon. These samples are characterized by the presence of garnet and muscovite. (h) Sample 970 GY89A from the Busetsu granite (crossed polarized light, CPL) showing a gneissose structure defined by the arrangement of Bt + Ms, and dynamic recrystallization of quartz in 971 elongated layers. (i) Pelitic gneiss (sample GY92A1) from a km-wide band of 972 973 metasedimentary rocks in between the Kamihara and Busetsu plutons. Andalusite with a 974 chiastolite texture (partly transformed to sillimanite) is replaced by pinitized cordierite at the 975 rim. The main foliation defined by the arrangement of biotite and fibrolite is deflected around 976 the andalusite porphyroblast. See text for details. PPL. (i) CPL of (i). (k) Thin section photo

977 of leucosome sample GY03D. CPL. (1) Thin section photo of pegmatite sample GY47A.

978 Fine-grained myrmekite is abundant along grain boundaries of K-feldspar, where sillimanite

- and secondary muscovite is also common. CPL.
- 980 Fig. 4. Cathodoluminescence images of representative zircon grains showing analyzed spots and
- 981 results of U-Pb dating. Concordant and discordant data are shown in yellow and white
- 982 characters, respectively. Results are labeled with spot number, ${}^{206}Pb/{}^{238}Uage \pm 2\sigma error$ (Ma),
- and concordance in parenthesis (%). Scale bars represent 20 μm. (a–f) Shinshiro tonalite
 samples (GY50A and GY100A), (g, h) Mitsuhashi granodiorite sample (GY99A), (i–l)
- 985 Inagawa granite samples (GY86A and GY93A).

Fig. 5. Cathodoluminescence and BSE images of representative zircon grains from the Busetsu
granite (samples GY51A, MK02M and GY89A) with analyzed spots and results of U–Pb

- 988 dating. Concordant and discordant data are shown in yellow and white characters, 989 respectively. Results are labeled with spot number, ${}^{206}Pb/{}^{238}U$ age $\pm 2\sigma$ error (Ma), Th/U ratio,
- and concordance in parenthesis (%). Alphabets representing the domain name (B, C or D)
- are also added to (b-i). Scale bars represent 20 µm. (a) Zircon with domain A alone (b-d)
- 992 Zircons with inherited core, domain B and domain D. Red arrows indicate sillimanite
- 993 inclusions. (e-g) Zircons with domains B and C. (h, i) Zircons with domains C and D. (j-m)
- 2014 Zircons with domain D alone. See text for detailed explanation of the domains. A histogram

995

and relative probability diagram for ²⁰⁶Pb/²³⁸U ages obtained with all Busetsu granite samples

- 996 (GY51A, MK02M and GY89A, concordant data only) is also shown.
- 997 Fig. 6. Cathodoluminescence and BSE images of representative zircon grains from a migmatite
- 998 leucosome sample GY03D. Scale bars represent 20 μm.
- Fig. 7. Cathodoluminescence and BSE images of representative zircon grains from a pegmatite
 sample GY47A. Scale bars represent 20 μm.
- 1001 Fig. 8. Concordia diagrams for U–Pb zircon dating results for (a, b) Shinshiro tonalite (samples
- 1002 GY50A and GY100A), (c) Mitsuhashi granodiorite (sample GY99A), (d, e) Inagawa granite
- 1003 (samples GY86A and GY93A), and (f-h) Busetsu granite (samples GY51A, MK02M and
- 1004 GY89A). Concordant and discordant data are plotted together for each sample. Rejected data
- 1005 (See Table S2 and text for details) are not shown.
- 1006 Fig. 9. Relative probability diagrams, concordia diagrams and U-concentration vs age plot for
- 1007 U-Pb zircon dating of migmatites and a pegmatite. (a) Relative probability diagram for
- sample GY03D. (b) Concordia diagram for sample GY03D. (c) U-concentration (ppm) vs
- 1009 $^{206}\text{Pb}/^{238}\text{U}$ age $\pm 2\sigma$ error (Ma) plot for sample GY03D. (d) Th/U ratio vs $^{206}\text{Pb}/^{238}\text{U}$ age $\pm 2\sigma$
- 1010 error (Ma) plot for sample GY03D. (e) Concordia diagram for sample GY47A. (f) Relative
- 1011 probability diagram for sample GY47A.

1012 Fig. 10. Summary of U-Pb zircon ages and spatial distribution of plutonic rocks in the Mikawa

1013	area (This study; Takatsuka et al., 2018; Tani et al., 2014; Nakajima et al., 2004; Murakami
1014	et al., 2006). U–Pb zircon ages are shown as 206 Pb/ 238 U ages with 2σ uncertainties. Also
1015	shown are pressure estimates of granitoid crystallization by Al-in-hornblende barometry
1016	(This study; Masumoto et al., 2014) and $P-T$ estimates for contact metamorphism around
1017	the 75-69 Ma granitoids (Shinshiro tonalite, Mitsuhashi granodiorite, Inagawa granite and
1018	Busetsu granite) (This study; Adachi and Wallis, 2007; Endo and Yamasaki, 2013; Miyake
1019	et al., 1992; 2016).
1020	Fig. 11. Schematic drawings summarizing the plutono-metamorphic evolution of the Ryoke belt
1021	in the Mikawa area. Note that different colors of zircon illustrations in different phases of
1022	granitoids finally appears altogether in the Busetsu granite. (a) ca. 99-95Ma: Emplacement
1023	of granitoids in a shallow part of the accretionary complex. Zircon in the 99-95 Ma
1024	granitoids is shown in blue. (b) ca. 95-85 Ma: High-T regional metamorphism and partial
1025	melting at depth. Leucosomes and metamorphic zircon (shown in gray) form in the
1026	migmatitic Grt-Crd zone. (c) ca. 81 Ma: Emplacement of the gneissose granitoids in the
1027	middle crust. Zircon in 81-75 Ma granitoids is shown in orange. (d) ca. 75 Ma: Late-
1028	magmatic (and probably syn-tectonic) exhumation of the high-grade metamorphic zones; the
1029	regional metamorphic zonation is tilted toward the north. (e) ca. 75-69 Ma: emplacement of
1030	the 75-69 Ma granitoids at shallow crustal level. Inset shows the complex zircon record in

1031 the Busetsu granite. Zircon crystal shown by pink is a direct crystallization product from the Busetsu granite, and zircons sourced from other plutons and metamorphic rocks has pink 10321033rims representing the overgrowth during the crystallization of the Busetsu granite. 1034 Fig. 12. Relative probability diagram of surface exposure of granitoids plotted against U-Pb zircon ages for the Mikawa and Yanai areas (this study; Skrzypek et al., 2016; in press; 10351036Takatsuka et al., 2018). Note the scale difference between two areas. Time periods shaded in 1037 gray (HT) represent the duration of high-T metamorphism in each area, estimated based on the age range of metamorphic zircons (this study; Skrzypek et al., 2016). Although not shown 1038 1039in the figure, the central part of the Hiroshima Granite around Hiroshima and Kabe regions 1040(~40 km east of the Yanai area) are reported to give zircon U-Pb ages of 87.3 ± 0.9 to $85.6 \pm$ 1.0 Ma (Tani et al., 2014). See Table S5 for data and a detailed method used to construct this 1041 1042 figure. 1043Table 1. Summary of published geochronological data for granitoids in the Mikawa area. 1044 Table 2. Summary of U-Pb zircon dating results for granitoids, migmatite and pegmatite in the 1045Mikawa area obtained in this study. 1046 Table S1. Instrumentation and operational settings for LA-ICP-MS analyses.

- 1047 Table S2. Results of LA–ICP–MS U–Pb zircon dating.
- 1048 Table S3. Representative amphibole analyses from sample GY33A.

- 1049 Table S4. Representative amphibole analyses from sample GY81B.
- 1050 Table S5. Dataset used for constructing Fig. 8 and explanatory text of its construction method.

Migmatite and pegmatite

4 cm

Busetsu granite

4 cm

Exposed area (km²)

(b) ca. 95-84 Ma

(c) ca. 81 Ma

(d) after ca. 75 Ma

Table 1 Summary of published geochronological data for granitoids in the Mikawa area.

Summary of published geod	hronological dat	a for granitoids in	the Mikawa area.	
Name	Age (Ma)	Method	Mineral	Reference
"Older Ryoke granitoids"				
Kamihara tonalite	94.9 ± 4.9	CHIME	Mnz	Nakai & Suzuki (1996)
Kamihara tonalite	94.5 ± 3.1	CHIME	Mnz	Nakai & Suzuki (1996)
Kamihara tonalite	93.9 ± 2.0	CHIME	Mnz	Morishita et al. (1996)
Kamihara tonalite	97.1 ± 3.7	CHIME	Mnz	Morishita et al. (1996)
Kamihara tonalite	70.7 ± 3.6	K-Ar	Bt	Yamasaki (2013)
Tenryukyo granite ^a	89.7 ± 7.7	CHIME	Mnz	Nakai & Suzuki (1996)
Tenryukyo granite ^a	91.2 ± 3.5	CHIME	Mnz	Nakai & Suzuki (1996)
Tenryukyo granite ^b	92.6 ± 6.0	CHIME	Mnz	Morishita et al. (1996)
Tenryukyo granite ^b	92.2 ± 6.0	CHIME	Mnz	Suzuki & Adachi (1998)
Kiyosaki granodiorite	86.6 ± 3.2	CHIME	Mnz	Morishita et al. (1996)
Kiyosaki granodiorite	87.0 ± 2.6	CHIME	Mnz	Morishita et al. (1996)
Kiyosaki granodiorite	70.0	K-Ar	Bt	Ozima et al. (1967)
Kiyosaki granodiorite	69.5	K-Ar	Bt	Ozima et al. (1967)
"Younger Ryoke granitoids'	'			
Shinshiro tonalite	86.0 ± 4.7	CHIME	Mnz	Morishita & Suzuki (1995)
Shinshiro tonalite	85.2 ± 3.3	CHIME	Mnz	Morishita & Suzuki (1995)
Shinshiro tonalite	85.5 ± 5.5	CHIME	Mnz	Morishita & Suzuki (1995)
Shinshiro tonalite	73.3 ± 2.9	K-Ar	Hbl	Uchiumi et al. (1990)
Shinshiro tonalite	68.0 ± 2.1	K-Ar	Bt	Uchiumi et al. (1990)
Mitsuhashi granodiorite	84.1±3.1	CHIME	Mnz	Suzuki et al. (1994a)
Mitsuhashi granodiorite	83.8±1.3	CHIME	Mnz	Suzuki et al. (1994b)
Mitsuhashi granodiorite	71.0 ± 3.6	K-Ar	Bt	Yamasaki (2013)
Inagawa granite	81.9 ± 1.4	CHIME	Mnz	Suzuki & Adachi (1998)
Inagawa granite	82.6 ± 1.8	CHIME	Mnz	Suzuki & Adachi (1998)
Inagawa granite	83.5 ± 1.5	CHIME	Mnz	Miyake et al. (2016)
Inagawa granite	82.3 ± 3.6	CHIME	Mnz	Miyake et al. (2016)
Inagawa granite	70.1 ± 3.6	K-Ar	Bt	Yamasaki (2013)
Inagawa granite	66.7 ± 3.4	K-Ar	Bt	Yamasaki (2013)
Busetsu granite	76.3 ± 2.4	CHIME	Mnz	Suzuki et al. (1994b)
Busetsu granite	77.6 ± 3.7	CHIME	Mnz	Suzuki et al. (1994b)
Busetsu granite	78.1 ± 2.0	CHIME	Mnz	Suzuki et al. (1994b)
Busetsu granite	78.5 ± 2.6	CHIME	Mnz	Suzuki et al. (1994b)
Busetsu granite	75.0 ± 5.1	CHIME	Mnz	Suzuki et al. (1994b)
Busetsu granite	78.9 ± 5.3	CHIME	Mnz	Suzuki et al. (1994b)
Busetsu granite	77.2 ± 4.1	CHIME	Mnz	Nakai & Suzuki (2003)
Busetsu granite	75.9 ± 6.1	CHIME	Mnz	Nakai & Suzuki (2003)
Busetsu granite	75.3 ± 4.9	CHIME	Mnz	Nakai & Suzuki (2003)
Busetsu granite	66.0 ± 3.3	K-Ar	Bt	Nakai (1982)
Busetsu granite	71.1±3.6	K-Ar	Bt	Yamasaki (2013)

^a mapped as "78-75 Ma granite" in Fig. 1. ^b mapped as "81-75 Ma tonalite" in Fig. 1.

Table 2				
Granitoid name & lithology	Sample	Weighted average ²⁰⁶ Pb/ ²³⁸ U age (Ma)	Spot number & MSWD of weighted average	Older zircon domains (Ma)
Shinshiro tonalite				
Hbl-Bt tonalite	GY50A	69.5±0.3	n=32, MSWD=1.07	1880
Hbl-Bt tonalite	GY100A	70.6±1.0	n=9, MSWD=0.44	
Mitsuhashi granodiorite				
Hbl-Bt granodiorite	GY99A	73.2±0.7	n=11, MSWD=0.91	501
Inagawa granite				
Gneissose granite	GY86A	74.7±0.7	n=24, MSWD=0.61	296
Massive granite	GY93A	69.2±0.5	n=16, MSWD=1.02	
Busetsu granite				
Medium-grained granite	GY51A	69.5±0.4	n=37, MSWD=2.3	77-80 / 84-86 / 91-95 / 253 / 1896 / 2272
Fine-grained granite	MK02M	70.9±0.9	n=21, MSWD=1.5	77-79 / 89 / 1960
Mylonitized granite	GY89A	70.8±1.4	n=11, MSWD=1.6	96 / 191 / 270 / 1879-1905
Migmatite and Pegmatite				
Leucosome in a psammitic metatexite migmatite	GY03D	97.0±4.4 (inner rim) 88.5±2.5 (outer rim)	n=6, MSWD=3.8 n=12, MSWD=4.1	133 / 167-170 / 191-195 / 236 / 251 / 281 / 2352
Pegmatite	GY47A	90.1±1.2	n=8, MSWD=4.2	165 / 215 / 1876 / 2190

Table S1. Instrumentation and operational settings for LA-ICP-MS analyses

Kyoto University Analyzed sample	GY03D, GY47A, GY50A, GY51A, GY86A, GY89A, MK02M	Kyoto University Analyzed sample	GY50A, GY51A	Gakushuin University Analyzed sample	GY51A, GY93A, GY99A, GY100A
Laser ablation system Instrument Cell type Laser wave length Pulse duration	NWR193 Excimer ArF (ESI, Portland, USA) Two volume cell 193 nm 5 ns	Laser ablation system Instrument Cell type Laser wave length Pulse duration	NWR193 Excimer Arf (ESI, Portland, USA) Two volume cell 193 nm 5 ns	Laser ablation system Instrument Cell type Laser wave length Pulse duration	NWR213 Nd: YAG laser (ESI, Portland. U.S.A.) Two volume cell 213 nm <5 ns
Fluence Repetition rate Ablation pit size	2.8 - 5.4 J/cm ² 4, 5 Hz 10 um	Fluence Repetition rate Ablation oit size	5.3 - 5.5 J/cm ² 3 Hz 20 um	Fluence Repetition rate Ablation oit size	3.5 – 4.5 J/cm ² 5 Hz 10 or 20 um
Sampling mode Pre-cleaning Carrier gas	single hole drilling 1 shot with 15 μπ He gas and Ar make-up gas combined outside ablation cell	Sampling mode Pre-cleaning Carrier gas	c μτο Single hole drilling 1 shot with 25 μm He gas and Ar make-up gas combined outside ablation cell	Sampling mode Pre-cleaning Carrier gas	c so μo μaring Single hole drilling 1 shot with 15 or 35 μm He gas and Ar make-up gas combined outside ablation cell
He gas flow rate Ar make-up gas flow rate Ablation duration	0.60 //min 0.86 //min 20, 25 seconds	He gas flow rate Ar make-up gas flow rate Ablation duration	0.60 //min 0.86 //min 33 seconds	He gas flow rate Ar make-up gas flow rate Ablation duration	0.60 – 0.85 (/min 1.4 – 1.5 l/min 10 s
Signal smoothing device	Baffle type (Tunheng and Hirata, 2004)	Signal smoothing device	Baffle type (Tunheng and Hirata, 2004)	Signal smoothing device	Baffle type (volume: 120 ml)
ICP Mass Spectrometer Instrument RF power	Nu Plasmall HR-MC-ICP-MS (Nu Instruments, Wrexham, U.K.) 1300 W	ICP Mass Spectrometer Instrument RF power	Nu Plasmall HR-MC-ICP-MS (Nu Instruments, Wrexham, U.K.) 1300 W	ICP Mass Spectrometer Instrument RF power	Agilent8800 (Agileent Technology, Santa Clara, California, U.S.A.) 1310 W Internation of total ion country age single obtaine. Single obtained from first four
Data reduction	Integration of total ion counts per single ablation. Signals obtaind from first few seconds were not used for data reduction, and next signals obtained from 10 seconds were integrated for further calculations. Signal intensity of ²³¹ U was not	Data reduction	Integration of total ion counts per single ablation. Signals obtaind from first few seconds were not used for data reduction, and next signals obtained from 22 seconds were integrated for further calculations. Signal intensity of ^{zind} was not	Data reduction	Records down or roots user Contracting to unadvectoring against advectoring the contraction of the second
	monitored and ²⁰⁶ Pb/ ²³⁸ U is calculated assuming ²³⁸ U/ ²³⁵ U = 137.88 (Jaffey et al., 1971).		monitored and ²⁰⁶ Pb/ ²³⁸ U is calculated assuming ²³⁸ U/ ²³⁵ U = 137.88 (Jaffey et al., 1971).		monitored and Poy U is calculated assuming U/ U = 137.88 (Jattey et al., 1971). Oxide ions of Th and U (ThO' and UO') were monitored and used for further calculation instead of Th' and II'
Detection mode	(H) (H)	Detection mode	Multiple collector mode using six ion counters (iC and D) and a faraday collector (H)	Detection mode	Pulse counting mode by an ion counter
				Mass scan mode	MS/MS mode
				Collision/reaction gas and flow rate	mercurv (Kasapožlu et al 2016)
				Octapole bias	-1.9 V
				Energy discrimination	-12.5 V
Monitored isotopes	²⁰² Hg, ²⁰⁴ (Hg + Pb), ²⁰⁶ Pb, ²⁰⁷ Pb, ²⁰⁸ Pb, ²³² Th, ²³³ U	Monitored isotopes	²⁰² Hg, ²⁰⁴ (Hg + Pb), ²⁰⁶ Pb, ²⁰⁷ Pb, ²⁰⁸ Pb, ²³² Th, ²³² U	Monitored mass peak (amu) and permeable mass value for first	202 (Hg; Q1 = 202; Q2 = 202), 204 (Hg + Pb; Q1 = 204; Q2 = 204), 206 (Pb; Q1 =
Detector	IC4 for ²⁰² Hg, IC3 for ²⁰⁴ (Hg + Pb), D2 for ²⁰⁶ Pb, D1 or IC1 for ²⁰⁷ Pb, IC0 for ²⁰⁸ Pb, IC5 for ²³⁵ U, and H9 for ²³² Th	Detector	IC4 for ²⁰² Hg, IC3 for ²⁰⁴ (Hg + Pb), D2 for ²⁰⁶ Pb, IC1 for ²⁰⁷ Pb, IC0 for ²⁰⁸ Pb, IC5 for ²³⁵ U, and H9 for ²³² Th	quadrupole (Q1) and second quadrupole (Q2)	206; Q2 = 206), 207 (Pb; Q1 = 207; Q2 = 207), 248 (ThO; Q1 = 248; Q2 = 248), 254 (UO; Q1 = 254; Q2 = 254)
Integration time per peak	10 seconds for ²⁰² Hg, ²⁰⁴ (Hg + Pb), ²⁰⁸ Pb, ²⁰⁷ Pb, ²⁰⁸ Pb, ²⁰² Th, ²³⁵ U	Integration time per peak	22 seconds for ²⁰² Hg, ²⁰⁴ (Hg + Pb), ²⁰⁰ Pb, ²⁰⁷ Pb, ²⁰⁸ Pb, ²⁰² Th, ²³⁵ U	Integration time per mass peak Total integration time per reading	202 (5 ms), 204 (10 ms), 206 (50 ms), 207 (50 ms), 248 (20 ms), 254 (50 ms) 0 2047 s
Total integration time per reading	0.4 seconds	Total integration time per reading	0.4 seconds	Integration time per single ablation	15 s
Formation rate of Th oxide (²³² Th ¹⁶ O ⁺ / ²³² Th [*])	<0.3%	Formation rate of Th oxide (²³² Th ¹⁶ O ⁺ / ²³² Th ⁺)	<0.3%	$^{232} Th^{16} O^* /^{232} Th^*$	46.8
Data processing		Data processing		Data processing	
Gas blank	Gas blank counts [20 seconds] acquired before each single measurement and linearly subtracted with a step forward method 91500 zircon was used in correction for Pb/U and Th/U fractionation in all measurements. NIST SRM610 was used for correction of Pb/Pb fractionation. All	Gas blank	Gas blank counts [20 seconds] acquired before each single measurement and linearly subtracted with a step forward method 91500 zircon was used in correction for Pb/U and Th/U fractionation in all measurements. NIST SRM610 was used for correction of Pb/Pb fractionation. All	Gas blank	Gas blank counts were obtained for 15 s before each ablation pit and linearly subtracted with a step forward method. 91500 zircon was used in correction for Pb/J and Th/U fractionation in all measurements. NIST SRM610 was used for correction of Pb/Pb fractionation. All
Calibration strategy	correction factor for elemental and isotopic fractionation are determined by linear interpolation. Gi-1 (600.39 ± 0.65 Ma, Jackson et al., 2004), Plešovice (337.13 ± 0.37 Ma, Sláma et al., 2008) and OD-3 (32.853±0.016 Ma, Lukács et al., 2015) were used as cecondrav reference material for validation of accuracy	Calibration strategy	correction factor for elemental and isotopic fractionation are determined by linear interpolation. 61-1 (600.39 ± 0.65 Ma, Jackson et al., 2004) and PleSovice (337.13 ± 0.37 Ma, Sláma et al., 2008) were used as secondary reference material for validation of accuracy	Calibration strategy	correction factor for elemental and isotopic fractionation are determined by linear interpolation. Gi-1 (600.39 ± 0.65 Ma, Jackson et al., 2004) and PleSovice (337.13 ± 0.37 Ma, Sláma et al., 2008) were used as secondary reference material for validation of acruracy
Normalization values	$^{206}\text{Pb}_{2}^{238}\text{U} = 0.1792$, $^{208}\text{Pb}_{1}^{232}\text{Th} = 0.05374$, U concentration = 81.2 µg/g, Th concentration = 28.6 µg/g, Pb concentration = 14.8 µg/g (91500, Wiedenbeck et al., 1995), $^{207}\text{Pb}_{1}^{206}\text{Pb} = 0.9096$, $^{206}\text{Pb}_{1}^{207}\text{Pb} = 17.045$, $^{207}\text{Pb}_{1}^{207}\text{Pb} = 15.504$, $^{208}\text{Pb}_{1}^{208}$	Normalization values	206 Pb/ 238 U = 0.1792, 208 Pb/ 212 Th = 0.05374, U concentration = 81.2 µg/g, Th concentration = 28.6 µg/g, Pb concentration = 14.8 µg/g (91500, Wiedenbeck et al., 1995), 207 Pb/ 206 Pb = 0.9096, 206 Pb/ 206 Pb = 17.045, 207 Pb/ 206 Pb = 15.504, 208 Pb/ 208 Pb/ 208 Pb = 0.9096, 206 Pb/ 206 Pb = 17.045, 207 Pb/ 206 Pb = 15.504,	Normalization values	$^{206}Pb/^{228}U = 0.1792$, U concentration = 81.2 µg/g, Th concentration = 28.6 µg/g, Pb concentration = 14.8 µg/g (91500, Wiedenbeck et al., 1995), $^{207}Pb/^{206}Pb = 0.9096$, $^{506}Pb/^{206}Pb$ = 10.9096, $^{506}Pb/^{206}Pb$ = 15.504 for NIST SRM610 (Jochum
Common-Ph correction	P0/ P0 = 56.964 (NIST SKW 610, JOCHUM and Brueckner, 2006).	Common-Ph correction	PU/ PD = 56.964 (NIST SKW 610, Jochum and Brueckner, 2008).	Common-Ph correction	And Brueckner, 2006).
Uncertainties	Incertainties for ages and isotope ratios are quoted at 2 SD absolute, propagation is by quadratic addition. Reproducibility of primary reference material, counting statistics of measured isotope and background signal intensity are propagated Skakate at al. 2014).	Uncertainties	Incertainties for ages and isotope ratios are quoted at 2 SD absolute, propagation is by quadratic addition. Reproducibility of primary reference material, counting statistics of measured isotope and background signal intensity are propagated Skatate at al. 2014.	Uncertainties	Normale Uncertainties for ages and isotope ratios are quoted at 2 SD absolute, propagation is by quadratic addition. Reproducibility of primary reference material, counting statistics of measured isotope and background signal intensity are propagated (Sakate at al. 2014).
Quality control/validation	GL 1: Weighted are $^{200}\text{Pb}/^{110}$ Ugg = 603.8 ± 5.4 Ma (2 SD, MSWD = 1.03, n = 17, in 17 sessions), $^{207}\text{pb}/^{120}$ Ugg = 603.1 ± 4.9 Ma (2 SD, MSWD = 0.68, n = 17, in 17 sessions) Ple5vice : Weighted are. $^{226}\text{Pb}/^{121}$ Ugg = 341.7 ± 4.1 Ma (2 SD, MSWD = 0.66, n = 7, in 7 sessions), $^{207}\text{Pb}/^{121}$ Ugg = 342.4 ± 4.4 Ma (2 SD, MSWD = 0.60, n = 7, in 7 sessions) DO 3: Weighted are. $^{226}\text{Pb}/^{121}$ Ugg = 322.2 ± 0.5 Ma (2 SD, MSWD = 0.66, n = 10, in 10 sessions), $^{207}\text{Pb}/^{121}$ Ugg = 33.8 ± 1.1 Ma (2 SD, MSWD = 1.7, n = 10, in 10 service)	Quality control/validation	Gi-1: Weighted ave. ²⁸⁹ Pp/ ¹²⁸ U age = 598,6 ± 8.5 Ma (2 SD, MSWD = 2.5, n = 9, in 9 sessions), ²⁰⁹ Pp/ ¹²⁸ U age = 599,8 ± 5.5 Ma (2 SD, MSWD = 1.11, n = 9, in 9 sessions), ²⁰⁹ Pb/ ²⁸ U age = 342.3 ± 2.7 Ma (2 SD, MSWD = 0.87, n = 9, in 9 sessions), ²⁰⁹ Pb/ ²⁸ U age = 341.0 ± 3.5 Ma (2 SD, MSWD = 0.37, n = 9, in 9 sessions).	Quality control/validation	Gi-1: Weighted ave. ²⁰⁰ Pb/ ²¹¹ U age = 602.1 ± 5.8 Ma (2 5D, MSWD = 0.71, n = 9, in 9 sessiond), ²⁰¹ Pb/ ²¹³ U age = 602.7 ± 5.9 Ma (2 5D, MSWD = 0.28, n = 9, in 9 session), ²⁰¹ Pb/ ²¹³ U age = 338.1 ± 3.3 Ma (2 5D, MSWD = 0.50, n = 9, in 9 sessions), ²⁰¹ Pb/ ²¹³ U age = 337.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9 sessions), ²⁰¹ Pb/ ²¹³ U age = 337.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9 sessions), ²⁰¹ Pb/ ²¹³ U age = 337.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9 sessions), ²⁰¹ Pb/ ²¹³ U age = 337.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9 sessions), ²⁰¹ Pb/ ²¹³ U age = 337.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9 sessions), ²⁰¹ Pb/ ²¹³ U age = 337.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9 sessions), ²⁰¹ Pb/ ²¹³ U age = 337.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9 sessions), ²⁰¹ Pb/ ²¹³ U age = 337.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9 sessions), ²⁰¹ Pb/ ²¹³ U age = 337.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9 sessions), ²⁰¹ Pb/ ²¹⁴ U age = 337.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9 sessions), ²⁰¹ Pb/ ²¹⁴ U age = 337.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9 sessions), ²⁰¹ Pb/ ²¹⁴ U age = 307.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9 sessions), ²⁰¹ Pb/ ²¹⁴ U age = 307.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9 sessions), ²⁰¹ Pb/ ²¹⁴ U age = 307.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9 sessions), ²⁰¹ Pb/ ²¹⁴ U age = 307.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9 sessions), ²⁰¹ Pb/ ²¹⁴ U age = 307.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9 sessions), ²⁰¹ Pb/ ²¹⁴ U age = 307.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9 sessions), ²⁰¹ Pb/ ²¹⁴ U age = 307.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9 sessions), ²⁰¹ Pb/ ²¹⁴ U age = 307.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9 sessions), ²⁰¹ Pb/ ²¹⁴ U age = 307.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9 sessions), ²⁰¹ Pb/ ²¹⁴ U age = 307.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9, in 9 sessions), ²⁰¹ Pb/ ²¹⁴ U age = 307.9 ± 3.6 Ma (2 5D, MSWD = 0.40, n = 9, in 9, i

References

Jackson, S. E., Pearson, W. L., Griffin, W. L., Belousova, E. A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology 211, 47-69.

Jaffey A. H., Flynn K. F., Glendenin L. E., Bentleyt W. C., Essling A. M., 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review C 4, 1889-1906.

Jochum, K. P., Brueckner, S. M., 2008. Reference materials in geoanalytical and environmental research - Review for 2006 and 2007. Geostandards and Geoanalytical Research 32, 405-452.

Kasapoğlu, B., Ersoy, Y. E., Uysal, İ., Palmer, M. R., Zack, T., Koralay, E. O., Karlsson, A., 2016. The petrology of Paleogene volcanism in the Central Sakarya, Nallihan Region: Implications for the initiation and evolution of postcollisional, slab break-off-related magmatic activity. Lithos 246-247, 81-98.

Combinities, Sub Direactor Integrated under the during and activity. Unlike Server A correct A c

Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R., Chenery, S.P., 1997. A Complication of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostandards

and Geoanalytical Research 21, 115-144. Sakata, S., Hattori, K., Iwano, H., Yokoyama, T.D., Danhara, T., Hirata, T., 2014. Determination of U-Pb Ages for Young Zircons using Laser Ablation-ICP-Mass Spectrometry Coupled with an Ion Detection Attenuator Device. Geostandards and Geoanalytical

Research 38, 409-420. Sláma, J., Košler, J., Condon, D. J., Growley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., Whitehouse, M. J., 2008. Plešovice zircon - A new natural reference material for U-Pb and Hf totopic microanalysis. Chemical Geology 249, 1-35.

Tunheng, A., Hirata, T., 2004. Development of signal smoothing device for precise elemental analysis using laser ablation-ICP-mass spectrometry. Journal of Analytical Atomic Spectrometry 19, 932-934.

Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., van Quadt, A., Roddick, J. C., Spiegel, W., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter 19, 1-23.

Table S2. Results of LA-ICP-MS U-Pb zircon dating

GY50A (Shinshiro tonalite) Sequences: 1, 2, 12, 13, 14

									007		ls and	sotope ratios		207		005		Age (Ma)			
Spot no	o. Grain r	no. Position	U (ppm)	±	Th (ppm)	±	Th/U	±	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁶ Pb/ ²³⁸ U	±	ρ	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	% Conc.	
1.1	4	rim	50	9	23	9	0.46	0.20	0.0639	0.0099	0.0105	0.0005	0.30	0.0442	0.0065	67.2	3.1	62.9	9.5	106.8	
1.2	44	rim	15	3	5	2	0.37	0.16	0.0413	0.0140	0.0109	0.0007	0.19	0.0275	0.0091	70.0	4.6	41.1	13.8	170.2	
1.3	45	core	26	5	20	8	0.75	0.32	0.0412	0.0105	0.0099	0.0005	0.22	0.0301	0.0075	63.7	3.5	41.0	10.3	155.3	
1.4	12	rim	42	4	28	10	0.61	0.34	0.0658	0.0145	0.0108	0.0006	0.24	0.0409	0.0094	75.6	4.0	64.7	10.3	116.9	
1.6	57	core	46	9	38	14	0.83	0.35	0.0877	0.0100	0.0109	0.0005	0.33	0.0581	0.00077	70.2	3.2	85.4	11.6	82.2	
1.7	57	rim	34	6	16	6	0.47	0.20	0.0824	0.0136	0.0111	0.0006	0.30	0.0540	0.0085	70.9	3.5	80.4	12.9	88.2	
1.8	59	rim	40	7	19	7	0.47	0.20	0.0875	0.0132	0.0102	0.0005	0.32	0.0620	0.0088	65.6	3.2	85.1	12.4	77.0	
1.10	19	rim	21	4	6	2	0.45	0.13	0.1132	0.0205	0.0118	0.0008	0.30	0.0698	0.0132	75.5	4.0	108.9	18.8	69.3	
1.11	65	rim	63	12	28	11	0.45	0.19	0.0684	0.0092	0.0115	0.0005	0.32	0.0432	0.0055	73.6	3.1	67.2	8.8	109.5	
2.2	67	core	484	17	34	2	0.07	0.01	5.1980	0.1938	0.3279	0.0102	0.84	0.1150	0.0023	1828.0	49.9	1852.3	32.3	98.7	
2.3	25	rim	14	1	3	2	0.21	0.02	0.0562	0.0160	0.0117	0.0007	0.21	0.0347	0.0097	/5.2	4.6	55.5 69.2	15.5	135.4	
2.4	70	core	83	3	43	3	0.52	0.03	0.0821	0.0087	0.0111	0.0004	0.34	0.0536	0.0053	71.1	2.7	80.1	8.2	88.8	
2.6	70	core	121	4	88	6	0.72	0.06	0.0721	0.0068	0.0111	0.0004	0.38	0.0471	0.0041	71.1	2.6	70.7	6.5	100.6	
2.7	28	core	57	2	29	2	0.52	0.04	0.0789	0.0101	0.0113	0.0005	0.32	0.0505	0.0061	72.7	3.0	77.1	9.5	94.3	
2.8	31	core rim	148	5	9/	3	0.65	0.05	0.0831	0.0068	0.0116	0.0004	0.43	0.0518	0.0039	/4.6 70.6	2.6	81.0	6.4 7.1	92.0 95.5	
2.10	34	core	64	2	29	2	0.46	0.04	0.0669	0.0087	0.0105	0.0004	0.31	0.0460	0.0057	67.6	2.7	65.7	8.3	102.9	
2.11	34	rim	140	5	71	5	0.51	0.04	0.0657	0.0061	0.0110	0.0004	0.39	0.0434	0.0037	70.3	2.5	64.6	5.8	108.8	
12.1	4	rim	88	7	33	19	0.37	0.06	0.0725	0.0031	0.0110	0.0003	0.54	0.0477	0.0017	70.7	1.6	71.1	3.0	99.5	
12.2	12	rim	144	11	68	11	0.02	0.08	0.0692	0.0028	0.0110	0.0003	0.55	0.0470	0.0015	68.4	1.6	67.9	2.7	100.2	
12.4	12	core	106	8	69	11	0.65	0.11	0.0742	0.0031	0.0107	0.0002	0.56	0.0505	0.0018	68.4	1.6	72.7	3.0	94.1	
12.5	12	rim	134	10	52	8	0.39	0.07	0.0702	0.0029	0.0107	0.0002	0.57	0.0475	0.0016	68.7	1.6	68.9	2.7	99.7	
12.6	57 57	rim	192	15	92 40	14	0.48	0.08	0.0712	0.0028	0.0109	0.0003	0.59	0.0475	0.0015	69.6 70.0	1.6	69.8 68.9	2.7	99.7	
12.8	16	rim	1218	94	354	55	0.29	0.05	0.0801	0.0029	0.0123	0.0003	0.64	0.0471	0.0013	79.0	1.8	78.2	2.7	101.0	
12.9	16	core	613	47	527	81	0.86	0.15	0.0777	0.0028	0.0119	0.0003	0.63	0.0472	0.0013	76.5	1.7	76.0	2.7	100.7	
12.10	62	rim	1154	89	474	73	0.41	0.07	0.0795	0.0029	0.0121	0.0003	0.64	0.0478	0.0013	77.3	1.8	77.6	2.7	99.5	
12.12	65	rim	98	23	33	5	0.33	0.06	0.0707	0.0030	0.0120	0.0003	0.55	0.0468	0.0014	70.3	1.6	69.4	2.0	101.3	
13.1	67	core	348	24	20	3	0.06	0.01	4.9788	0.2123	0.3107	0.0102	0.77	0.1162	0.0032	1744.2	50.5	1815.7	36.7	96.1	
13.2	67	core	557	39	49	7	0.09	0.01	4.7862	0.2041	0.2958	0.0097	0.77	0.1173	0.0032	1670.6	48.6	1782.5	36.5	93.7	
13.3	24	rim	152	10	63	18	0.60	0.09	0.0703	0.0032	0.0107	0.0004	0.73	0.0477	0.0015	68.3	2.3	69.0	3.0	99.4 98.6	
13.5	24	rim	110	8	43	6	0.39	0.06	0.0719	0.0035	0.0109	0.0004	0.69	0.0477	0.0017	70.0	2.3	70.5	3.3	99.4	
13.6	25	rim	138	10	57	8	0.41	0.06	0.0697	0.0033	0.0108	0.0004	0.70	0.0468	0.0016	69.2	2.3	68.4	3.1	101.1	
13.7	25	rim	113	8	46	6	0.40	0.06	0.0703	0.0034	0.0107	0.0004	0.69	0.0475	0.0017	68.8	2.3	69.0	3.2	99.8	
13.8	25 70	rim	135	12	53 100	14	0.39	0.06	0.0712	0.0034	0.0109	0.0004	0.70	0.0474	0.0016	68.5	2.3	68.6	3.2	99.8	
13.10	70	core	161	11	82	11	0.51	0.08	0.0419	0.0020	0.0106	0.0004	0.68	0.0286	0.0010	68.0	2.2	41.6	2.0	163.2	
13.11	70	core	214	15	154	21	0.72	0.11	0.0767	0.0035	0.0111	0.0004	0.73	0.0501	0.0016	71.2	2.3	75.1	3.3	94.8	
13.12	71	rim	156	11	74	10	0.48	0.07	0.0693	0.0032	0.0108	0.0004	0.71	0.0467	0.0015	69.0	2.3	68.0 70.2	3.1	101.4	
14.1	72	rim	123	15	64	12	0.63	0.09	0.0717	0.0034	0.0108	0.0004	0.58	0.0462	0.0016	70.1	2.3	70.3	3.Z 2.7	96.0 98,9	
14.2	72	core	243	23	170	32	0.70	0.15	0.0701	0.0027	0.0107	0.0002	0.60	0.0477	0.0015	68.3	1.6	68.8	2.6	99.3	
14.3	72	rim	150	14	56	11	0.38	0.08	0.0712	0.0029	0.0107	0.0002	0.58	0.0484	0.0016	68.4	1.6	69.8	2.7	98.0	
14.4	73	rim	210	20	80	15	0.38	0.08	0.0710	0.0028	0.0109	0.0003	0.59	0.0472	0.0015	69.9 68 0	1.6	69.7 69.1	2.6	100.4	
14.6	73	rim	77	7	23	9 4	0.30	0.06	0.0695	0.0031	0.0108	0.0003	0.53	0.0475	0.0017	70.2	1.6	68.2	2.9	102.9	
14.7	29	rim	103	10	39	7	0.38	0.08	0.0682	0.0029	0.0107	0.0003	0.55	0.0462	0.0016	68.8	1.6	67.0	2.8	102.6	
14.8	29	rim	92	9	36	7	0.39	0.08	0.0699	0.0030	0.0107	0.0003	0.54	0.0472	0.0017	68.8	1.6	68.6	2.9	100.3	
14.9	30	core	92	9	61	12	0.67	0.14	0.0698	0.0030	0.0108	0.0003	0.54	0.0469	0.0017	69.1 69.1	1.6	68.5 68.9	2.9	100.9	
14.11	75	rim	154	15	45 64	12	0.43	0.09	0.0703	0.0029	0.0108	0.0003	0.58	0.0472	0.0015	71.3	1.6	70.0	2.0	101.8	
14.12	75	core	171	16	100	19	0.59	0.12	0.0710	0.0028	0.0109	0.0003	0.58	0.0471	0.0015	70.2	1.6	69.7	2.7	100.7	
14.13	75	rim	115	11	48	9	0.42	0.09	0.0700	0.0029	0.0110	0.0003	0.56	0.0461	0.0016	70.6	1.6	68.7	2.8	102.8	
Reject	ted spo	ts																			Remarks
2.1	67 67	rim	450	16	128	9	0.28	0.02	0.0996	0.0053	0.0127	0.0004	0.61	0.0567	0.0024	81.7	2.6	96.4	4.9	84.7	irregular sign
12.13	0/	rim	492	38	60	- 11	0.14	0.02	1.01/8	0.0575	0.1005	0.0024	U.04	0.1102	0.0030	002.5	14.2	977.1	22.0	8.00	irregular sign

GY100A (Shinshiro tonalite) Sequences: 71, 72, 73

											l:	sotope ratios						Age (Ma)		
Spot no	Grain no	. Position	U		Th		Th/U		²⁰⁷ Pb/		²⁰⁶ Pb/			²⁰⁷ Pb/		²⁰⁶ Pb/		²⁰⁷ Pb/		%
			(ppm)	±	(ppm)	±		±	²³⁵ U	±	²³⁸ U	±	ρ	²⁰⁶ Pb	±	²³⁸ U	±	²³⁵ U	±	Conc.
71.7	78	core	220	23	169	35	0.77	0.18	0.0734	0.0061	0.0110	0.0003	0.34	0.0482	0.0038	70.8	2.0	71.9	5.8	98.4
71.9	35	core	333	35	285	59	0.86	0.20	0.0694	0.0049	0.0111	0.0003	0.38	0.0454	0.0030	71.0	1.9	68.1	4.6	104.3
71.10	35	rim	174	18	45	9	0.26	0.06	0.0658	0.0067	0.0112	0.0003	0.29	0.0426	0.0041	71.9	2.1	64.7	6.4	111.0
71.11	33	core	287	30	141	29	0.49	0.11	0.0762	0.0055	0.0108	0.0003	0.38	0.0510	0.0034	69.5	1.9	74.6	5.2	93.2
71.12	33	core	340	35	148	31	0.44	0.10	0.0774	0.0051	0.0112	0.0003	0.40	0.0501	0.0030	71.9	1.9	75.7	4.8	95.0
71.13	33	rim	112	12	44	9	0.40	0.09	0.0833	0.0094	0.0112	0.0004	0.30	0.0540	0.0058	71.8	2.4	81.3	8.8	88.3
72.1	74	rim	162	11	76	11	0.47	0.07	0.0837	0.0082	0.0108	0.0005	0.47	0.0564	0.0049	69.0	3.2	81.6	7.7	84.5
72.2	74	rim	133	9	57	8	0.42	0.07	0.0684	0.0082	0.0111	0.0005	0.39	0.0446	0.0049	71.3	3.3	67.2	7.8	106.2
72.3	73	rim	254	18	63	9	0.25	0.04	0.0684	0.0060	0.0109	0.0005	0.50	0.0457	0.0035	69.6	3.1	67.2	5.7	103.6
72.4	73	core	157	11	66	9	0.42	0.07	0.0713	0.0077	0.0110	0.0005	0.43	0.0472	0.0046	70.2	3.2	70.0	7.3	100.4
72.5	73	core	110	8	57	8	0.51	0.08	0.0889	0.0104	0.0107	0.0005	0.42	0.0603	0.0064	68.7	3.3	86.5	9.7	79.3
72.6	71	rim	150	10	89	12	0.59	0.09	0.0693	0.0078	0.0111	0.0005	0.42	0.0454	0.0046	71.0	3.3	68.0	7.4	104.4
72.7	71	core	125	9	50	7	0.40	0.06	0.0679	0.0083	0.0110	0.0005	0.39	0.0447	0.0051	70.6	3.3	66.7	7.9	105.8
72.8	31	core	209	14	149	21	0.71	0.11	0.0718	0.0068	0.0109	0.0005	0.48	0.0478	0.0039	69.8	3.1	70.4	6.4	99.2
72.9	31	rim	181	13	75	10	0.42	0.06	0.0675	0.0070	0.0108	0.0005	0.44	0.0454	0.0042	69.2	3.2	66.3	6.7	104.3
72.10	29	rim	247	17	108	15	0.44	0.07	0.0673	0.0061	0.0110	0.0005	0.49	0.0442	0.0035	70.8	3.1	66.1	5.8	107.0
72.11	29	core	260	18	155	21	0.60	0.09	0.0789	0.0066	0.0112	0.0005	0.53	0.0510	0.0036	71.9	3.2	77.1	6.2	93.2
72.12	29	rim	108	8	26	4	0.24	0.04	0.0650	0.0090	0.0109	0.0005	0.35	0.0433	0.0056	69.7	3.4	63.9	8.6	109.1
72.13	68	rim	146	10	88	12	0.60	0.09	0.0721	0.0081	0.0111	0.0005	0.42	0.0469	0.0048	71.4	3.3	70.7	7.7	101.1
73.1	28	rim	156	8	49	5	0.31	0.03	0.0737	0.0081	0.0105	0.0006	0.49	0.0510	0.0049	67.2	3.6	72.2	7.6	93.0
73.2	28	core	88	4	41	4	0.46	0.05	0.0773	0.0111	0.0108	0.0006	0.40	0.0517	0.0068	69.5	3.9	75.6	10.4	92.0
73.3	27	core	114	6	72	7	0.63	0.07	0.0675	0.0091	0.0107	0.0006	0.41	0.0459	0.0057	68.4	3.7	66.4	8.7	103.1
73.4	27	core	110	6	56	6	0.50	0.06	0.0798	0.0100	0.0110	0.0006	0.44	0.0526	0.0059	70.6	3.9	78.0	9.4	90.5
73.5	27	rim	206	10	97	10	0.47	0.05	0.0745	0.0072	0.0114	0.0006	0.54	0.0476	0.0039	72.8	3.8	73.0	6.8	99.8
73.6	24	core	110	6	70	7	0.63	0.07	0.0628	0.0089	0.0106	0.0006	0.39	0.0428	0.0056	68.1	3.7	61.8	8.5	110.3
73.7	24	core	115	6	71	7	0.62	0.07	0.0757	0.0095	0.0105	0.0006	0.44	0.0521	0.0058	67.6	3.7	74.1	8.9	91.3
73.8	24	rim	154	8	54	5	0.35	0.04	0.0691	0.0077	0.0109	0.0006	0.48	0.0461	0.0045	69.7	3.7	67.8	7.3	102.7
73.9	64	rim	125	6	36	4	0.29	0.03	0.0718	0.0089	0.0107	0.0006	0.44	0.0487	0.0054	68.5	3.7	70.4	8.4	97.4
73.10	64	core	173	9	79	8	0.46	0.05	0.0765	0.0079	0.0113	0.0006	0.51	0.0491	0.0044	72.3	3.8	74.8	7.5	96.7
73.11	64	rim	110	6	33	3	0.30	0.03	0.0806	0.0100	0.0111	0.0006	0.44	0.0526	0.0058	71.2	3.9	78.7	9.4	90.5
73.12	62	rim	248	12	62	6	0.25	0.03	0.0710	0.0065	0.0111	0.0006	0.57	0.0466	0.0035	70.9	3.6	69.6	6.1	101.8
73.13	62	core	222	11	171	17	0.77	0.09	0.0709	0.0068	0.0110	0.0006	0.54	0.0466	0.0038	70.8	3.7	69.5	6.5	101.8
Reject	ed spots																			
71.8	78	core	115	12	62	13	0.54	0.13	0.1585	0.0131	0.0130	0.0004	0.39	0.0887	0.0067	83.0	2.6	149.4	11.5	55.6

GY99A (Mitsuhashi granodiorite) Sequences: 69, 70, 71

											Is	otope ratios						Age (Ma)		
Spot no	. Grain n	o. Position	U		Th		Th/U		²⁰⁷ Pb/		²⁰⁶ Pb/			²⁰⁷ Pb/		²⁰⁶ Pb/		²⁰⁷ Pb/		%
			(ppm)	±	(ppm)	±		±	235U	±	²³⁸ U	±	ρ	²⁰⁶ Pb	±	²³⁸ U	±	²³⁵ U	±	Conc.
69.1	41	core	202	27	155	41	0.77	0.23	0.0807	0.0068	0.0113	0.0004	0.42	0.0518	0.0040	72.4	2.5	78.8	6.4	92.0
69.2	41	rim	114	15	64	17	0.56	0.17	0.0694	0.0086	0.0117	0.0005	0.31	0.0429	0.0050	75.3	2.9	68.1	8.2	110.5
69.3	38	rim	147	20	83	22	0.57	0.17	0.1243	0.0102	0.0118	0.0004	0.45	0.0761	0.0056	75.9	2.8	119.0	9.2	63.8
69.4	38	core	291	39	197	53	0.68	0.20	0.0999	0.0067	0.0114	0.0004	0.51	0.0634	0.0036	73.3	2.5	96.7	6.2	75.8
69.5	37	core	186	25	87	23	0.47	0.14	0.0741	0.0068	0.0114	0.0004	0.39	0.0469	0.0039	73.3	2.6	72.6	6.4	101.1
69.6	37	rim	150	20	59	16	0.39	0.12	0.0730	0.0075	0.0116	0.0004	0.36	0.0458	0.0044	74.2	2.7	71.5	7.1	103.7
69.7	72	core	112	15	34	9	0.31	0.09	0.0750	0.0087	0.0116	0.0004	0.33	0.0471	0.0052	74.0	2.8	73.5	8.3	100.8
69.9	32	rim	101	14	47	13	0.47	0.14	0.0829	0.0098	0.0114	0.0005	0.33	0.0527	0.0059	73.1	2.9	80.9	9.2	90.4
69.10	32	core	189	25	79	21	0.42	0.13	0.0761	0.0068	0.0113	0.0004	0.40	0.0489	0.0040	72.3	2.6	74.4	6.5	97.2
69.11	29	rim	192	26	101	27	0.53	0.16	0.0847	0.0072	0.0120	0.0004	0.42	0.0511	0.0039	77.0	2.7	82.6	6.7	93.3
69.12	29	core	221	30	183	49	0.83	0.25	0.0756	0.0064	0.0115	0.0004	0.41	0.0477	0.0037	73.7	2.6	74.0	6.0	99.5
69 13	29	rim	242	32	123	33	0.51	0.15	0.0736	0.0060	0.0115	0.0004	0.42	0.0466	0.0034	73.5	2.5	72.1	5.7	101.8
70.1	70	rim	143	4	85	5	0.59	0.04	0.0754	0.0080	0.0114	0.0005	0.40	0.0480	0.0047	73.1	3.1	73.8	7.5	99.0
70.2	70	core	961	27	474	27	0.49	0.03	0.0811	0.0042	0.0114	0.0004	0.72	0.0514	0.0018	73.4	27	79.2	3.9	92.6
70.3	70	rim	106	- 3	58	4	0.55	0.04	0.0819	0.0097	0.0115	0.0005	0.37	0.0517	0.0057	73.6	3.2	79.9	9.2	92.1
70.4	69	core	257	7	305	18	1 1 9	0.08	0.0742	0.0061	0.0118	0.0005	0.48	0.0455	0.0033	75.9	3.0	72.7	5.8	104.4
70.5	69	rim	102	3	42	3	0.41	0.03	0.0778	0.0098	0.0114	0.0005	0.35	0.0497	0.0058	72.8	3.2	76.1	9.2	95.7
70.6	68	rim	240	7	147	9	0.61	0.04	0.0738	0.0063	0.0111	0.0004	0.47	0.0481	0.0036	71.4	2.8	72.3	5.9	98.7
70.7	68	rim	134	4	47	3	0.35	0.02	0.0751	0.0084	0.0109	0.0005	0.38	0.0498	0.0052	70.1	3.0	73.5	7.9	95.4
70.8	67	rim	137	4	44	3	0.32	0.02	0.0798	0.0085	0.0113	0.0005	0.40	0.0512	0.0050	72.5	3.1	78.0	8.0	93.0
70.9	67	core	234	7	140	8	0.60	0.04	0 1 1 9 7	0.0086	0.0118	0.0005	0.55	0.0735	0.0044	75.7	3.0	114.8	7.8	66.0
70 10	65	rim	140	4	55	3	0.39	0.03	0.0742	0.0081	0.0115	0.0005	0.39	0.0468	0.0047	73.7	3.1	72.7	7.6	101.4
70 11	65	core	183	5	99	6	0.54	0.04	0.0678	0.0068	0.0114	0.0005	0.41	0.0432	0.0040	73.0	3.0	66.6	6.5	109.6
70.12	64	core	376	11	259	15	0.69	0.04	0.6410	0.0278	0.0809	0.0030	0.85	0.0575	0.0013	501.3	17.8	502.9	17.2	99.7
70.13	64	rim	128	4	62	4	0.48	0.03	0.0675	0.0081	0.0118	0.0005	0.35	0.0414	0.0046	75.8	3.2	66.3	7.7	114.3
71.1	63	rim	72	8	26	5	0.36	0.08	0.0803	0.0121	0.0114	0.0004	0.25	0.0513	0.0075	72.8	2.8	78.4	11.4	92.9
71.2	63	core	150	16	129	27	0.86	0.20	0.0767	0.0077	0.0118	0.0004	0.30	0.0472	0.0045	75.6	2.3	75.1	7.3	100.7
71.3	23	core	161	17	125	26	0.78	0.18	0.0772	0.0075	0.0114	0.0003	0.31	0.0492	0.0045	72.9	2.2	75.5	7.0	96.5
71.4	23	rim	107	11	50	10	0.47	0.11	0.0850	0.0096	0.0117	0.0004	0.30	0.0525	0.0056	75.2	2.5	82.8	9.0	90.8
71.5	62	core	186	19	105	22	0.56	0.13	0.0718	0.0067	0.0112	0.0003	0.32	0.0465	0.0041	71.9	2.1	70.4	6.3	102.1
71.6	62	rim	298	31	241	50	0.81	0.19	0.0738	0.0053	0.0114	0.0003	0.37	0.0471	0.0032	72.8	1.9	72.3	5.0	100.8
Reject		•	200				2.01	2.10	0.0700				5.07			72.0	1.0	. 2.0	0.0	
60.0	70	• rim	02	12	56	15	0.61	0 1 9	0.2570	0.0100	0.0122	0.0005	0.51	0 1 4 1 5	0.0004	947	22	222.0	16.1	26.2

GY86A (Inagawa granite) Sequences: 33, 34, 35

											ls	otope ratios						Age (Ma)		
Spot no	. Grain no	b. Position	U		Th		Th/U		²⁰⁷ Pb/ 235		²⁰⁶ Pb/ 238			²⁰⁷ Pb/ ²⁰⁶ Db		²⁰⁶ Pb/		²⁰⁷ Pb/ 235		%
			(ppm)	±	(ppm)	±		±		±	0	±	ρ	PD	±	0	±	U	±	Conc.
33.1	2	core	448	38	215	37	0.48	0.09	0.0766	0.0043	0.0117	0.0005	0.80	0.0476	0.0016	74.9	3.4	75.0	4.1	99.9
33.2	2	rim	339	29	153	26	0.45	0.09	0.0754	0.0045	0.0114	0.0005	0.77	0.0481	0.0018	72.8	3.3	73.8	4.3	98.6
33.3	2	rim	156	13	97	16	0.62	0.12	0.0767	0.0055	0.0115	0.0005	0.65	0.0484	0.0026	73.7	3.4	75.1	5.2	98.1
33.4	5	rim	188	16	99	17	0.53	0.10	0.0787	0.0053	0.0114	0.0005	0.69	0.0499	0.0024	73.3	3.4	76.9	5.0	95.4
33.5	5	core	195	17	169	29	0.87	0.16	0.0776	0.0052	0.0114	0.0005	0.69	0.0495	0.0024	72.9	3.4	75.9	4.9	96.0
33.6	53	core	868	74	527	89	0.61	0.12	0.0753	0.0039	0.0113	0.0005	0.86	0.0485	0.0013	72.2	3.2	73.7	3.7	97.9
33.7	53	core	63	5	34	6	0.55	0.10	0.0807	0.0077	0.0116	0.0006	0.52	0.0505	0.0041	74.3	3.6	78.8	7.3	94.3
33.8	53	rim	243	21	107	18	0.44	0.08	0.0788	0.0050	0.0115	0.0005	0.73	0.0496	0.0022	73.8	3.4	77.0	4.7	95.9
33.9	54	rim	141	12	104	18	0.74	0.14	0.0753	0.0056	0.0115	0.0005	0.63	0.0476	0.0027	73.5	3.4	73.7	5.3	99.7
33.10	54	rim	81	7	46	8	0.57	0.11	0.0675	0.0062	0.0118	0.0006	0.52	0.0415	0.0032	75.5	3.6	66.3	5.9	113.9
33.11	55	core	556	47	386	65	0.69	0.13	0.3419	0.0167	0.0470	0.0021	0.92	0.0528	0.0010	295.8	13.0	298.6	12.7	99.1
33.12	55	rim	233	20	173	29	0.74	0.14	0.0751	0.0048	0.0118	0.0005	0.71	0.0460	0.0021	75.9	3.5	73.6	4.6	103.1
33.13	55	rim	234	20	123	21	0.52	0.10	0.0763	0.0049	0.0115	0.0005	0.72	0.0482	0.0022	73.7	3.4	74.7	4.6	98.7
34.1	8	rim	128	7	74	8	0.58	0.07	0.0809	0.0059	0.0121	0.0006	0.64	0.0483	0.0027	77.8	3.6	79.0	5.6	98.5
34.2	8	core	1402	77	630	69	0.45	0.06	0.0811	0.0040	0.0117	0.0005	0.92	0.0502	0.0010	75.0	3.4	79.2	3.7	94.8
34.3	8	rim	116	6	69	8	0.60	0.07	0.0783	0.0060	0.0119	0.0006	0.62	0.0477	0.0029	76.3	3.6	76.5	5.7	99.7
34.4	12	rim	517	28	258	28	0.50	0.06	0.0774	0.0042	0.0117	0.0005	0.83	0.0479	0.0014	75.2	3.4	75.7	4.0	99.2
34.5	14	rim	70	4	37	4	0.54	0.07	0.0801	0.0072	0.0119	0.0006	0.54	0.0490	0.0037	76.0	3.7	78.3	6.8	97.1
34.6	14	core	82	4	57	6	0.70	0.09	0.0853	0.0072	0.0115	0.0006	0.57	0.0536	0.0037	74.0	3.5	83.1	6.7	89.0
34.7	14	rim	162	9	119	13	0.74	0.09	0.0768	0.0053	0.0116	0.0005	0.67	0.0481	0.0025	74.2	3.4	75.1	5.0	98.7
34.8	20	rim	169	9	14	2	0.09	0.01	0.0711	0.0050	0.0114	0.0005	0.66	0.0454	0.0024	72.8	3.4	69.7	4.7	104.5
34.9	20	core	118	6	95	10	0.81	0.10	0.0744	0.0057	0.0116	0.0005	0.61	0.0466	0.0028	74.2	3.5	72.9	5.4	101.9
34.10	20	rim	232	13	131	14	0.56	0.07	0.0733	0.0047	0.0114	0.0005	0.72	0.0465	0.0021	73.2	3.4	71.8	4.4	101.9
34.11	21	rim	205	11	18	2	0.09	0.01	0.0849	0.0054	0.0115	0.0005	0.72	0.0537	0.0024	73.6	3.4	82.8	5.1	88.9
34.12	21	core	268	15	229	25	0.86	0.11	0.0771	0.0047	0.0115	0.0005	0.75	0.0485	0.0020	73.9	3.4	75.4	4.5	98.0
34.13	23	rim	177	10	104	11	0.59	0.07	0.0792	0.0053	0.0119	0.0005	0.69	0.0484	0.0024	76.0	3.5	77.4	5.0	98.2
35.1	74b	rim	58	4	30	5	0.53	0.09	0.0690	0.0071	0.0121	0.0006	0.48	0.0414	0.0038	77.5	3.8	67.7	6.8	114.4
35.2	74b	core	201	16	183	28	0.91	0.16	0.0762	0.0050	0.0116	0.0005	0.70	0.0475	0.0022	74.6	3.4	74.6	4.8	100.0
35.3	75	rim	122	9	65	10	0.53	0.09	0.0764	0.0058	0.0118	0.0006	0.62	0.0470	0.0028	75.7	3.5	74.8	5.5	101.2
35.4	75	core	143	11	76	12	0.53	0.09	0.0756	0.0055	0.0117	0.0005	0.64	0.0467	0.0026	75.2	3.5	74.0	5.2	101.7
35.5	75	rim	102	8	54	8	0.53	0.09	0.0740	0.0061	0.0117	0.0006	0.58	0.0458	0.0030	75.2	3.5	72.5	5.7	103.7
35.6	78	rim	236	18	125	19	0.53	0.09	0.0786	0.0050	0.0120	0.0006	0.73	0.0474	0.0020	77.1	3.5	76.8	4.7	100.4
35.7	78	core	137	11	60	9	0.44	0.08	0.0794	0.0058	0.0114	0.0005	0.64	0.0507	0.0028	72.8	3.4	77.6	5.5	93.9
35.8	79	rim	204	16	75	12	0.37	0.06	0.0759	0.0050	0.0118	0.0005	0.70	0.0466	0.0022	75.7	3.5	74.3	4.7	101.9
35.9	79	core	5334	414	1414	220	0.27	0.05	0.0775	0.0036	0.0115	0.0005	0.96	0.0488	0.0007	73.8	3.3	75.8	3.4	97.4
35.10	79	core	455	35	211	33	0.46	0.08	0.0764	0.0043	0.0117	0.0005	0.81	0.0472	0.0015	75.3	3.4	74.7	4.0	100.7
35.11	31	core	77	6	58	9	0.76	0.13	0.0752	0.0068	0.0117	0.0006	0.54	0.0465	0.0035	75.2	3.6	73.6	6.4	102.2
35.12	32	rim	176	14	68	11	0.39	0.07	0.0762	0.0052	0.0117	0.0005	0.68	0.0473	0.0024	74.9	3.5	74.6	4.9	100.4
35.13	32	core	226	18	169	26	0.75	0.13	0.0749	0.0048	0.0118	0.0005	0.71	0.0461	0.0021	75.6	3.5	73.4	4.6	103.1

GY93A (Inagawa granite) Sequences: 64, 65, 66

											Is	otope ratios						Age (Ma)		
Spot no	. Grain no	o. Position	U		Th		Th/U		²⁰⁷ Pb/		²⁰⁶ Pb/			²⁰⁷ Pb/		²⁰⁶ Pb/		²⁰⁷ Pb/		%
			(ppm)	±	(ppm)	±		±	²³⁵ U	±	²³⁸ U	±	ρ	²⁰⁶ Pb	±	²³⁸ U	±	²³⁵ U	±	Conc.
64.1	35	rim	347	19	136	15	0.39	0.05	0.0707	0.0045	0.0107	0.0003	0.38	0.0478	0.0028	68.7	1.7	69.4	4.3	99.1
64.2	35	core	235	13	154	17	0.65	0.08	0.0606	0.0051	0.0106	0.0003	0.31	0.0416	0.0033	67.7	1.7	59.7	4.9	113.4
64.3	71	core	169	9	118	13	0.70	0.09	0.0687	0.0064	0.0107	0.0003	0.30	0.0467	0.0041	68.4	1.9	67.4	6.0	101.4
64.4	71	core	178	10	119	13	0.67	0.08	0.0677	0.0062	0.0106	0.0003	0.30	0.0464	0.0040	67.9	1.9	66.5	5.9	102.0
64.5	69	rim	363	20	123	14	0.34	0.04	0.0691	0.0044	0.0106	0.0003	0.38	0.0473	0.0028	67.9	1.6	67.8	4.2	100.1
64.6	69	core	256	14	189	21	0.74	0.09	0.0767	0.0055	0.0109	0.0003	0.36	0.0511	0.0034	69.7	1.8	75.0	5.2	93.0
64.7	69	rim	513	28	271	30	0.53	0.07	0.0700	0.0038	0.0108	0.0002	0.42	0.0471	0.0023	69.0	1.6	68.7	3.6	100.5
64.8	68	core	590	33	322	36	0.55	0.07	0.0747	0.0037	0.0109	0.0002	0.46	0.0497	0.0022	70.0	1.6	73.2	3.5	95.6
64.9	68	rim	404	22	186	21	0.46	0.06	0.0731	0.0043	0.0109	0.0003	0.40	0.0488	0.0026	69.6	1.6	71.6	4.1	97.1
64.10	30	rim	260	14	84	9	0.32	0.04	0.0659	0.0050	0.0107	0.0003	0.34	0.0448	0.0032	68.4	1.7	64.8	4.8	105.5
64.11	30	core	620	34	325	36	0.52	0.06	0.0734	0.0036	0.0109	0.0002	0.46	0.0489	0.0021	69.7	1.6	71.9	3.4	97.0
64.12	66	rim	296	16	192	21	0.65	0.08	0.0660	0.0047	0.0106	0.0003	0.35	0.0452	0.0030	67.9	1.7	64.9	4.5	104.6
64.13	66	core	428	24	212	24	0.50	0.06	0.0701	0.0041	0.0107	0.0003	0.40	0.0475	0.0025	68.6	1.6	68.7	3.9	99.8
65.1	64	rim	319	30	100	19	0.31	0.07	0.0680	0.0047	0.0107	0.0003	0.42	0.0459	0.0029	68.9	2.0	66.8	4.4	103.2
65.2	64	core	688	64	1113	207	1.62	0.34	0.0682	0.0034	0.0109	0.0003	0.54	0.0452	0.0019	70.2	1.9	67.0	3.2	104.7
65.3	61	core	5920	552	3457	644	0.58	0.12	0.1382	0.0041	0.0108	0.0003	0.87	0.0926	0.0014	69.4	1.8	131.4	3.6	52.8
65.4	61	rim	301	28	70	13	0.23	0.05	0.0729	0.0050	0.0109	0.0003	0.42	0.0486	0.0030	69.8	2.0	71.5	4.7	97.7
65.5	24	rim	324	30	121	23	0.37	0.08	0.1066	0.0061	0.0112	0.0003	0.50	0.0689	0.0034	72.0	2.0	102.8	5.6	70.0
65.6	24	core	338	31	115	22	0.34	0.07	0.0679	0.0046	0.0109	0.0003	0.42	0.0453	0.0028	69.6	2.0	66.7	4.3	104.5
65.7	24	rim	423	39	149	28	0.35	0.07	0.0698	0.0042	0.0109	0.0003	0.46	0.0466	0.0025	69.6	1.9	68.5	4.0	101.7
65.8	22	rim	309	29	242	45	0.78	0.16	0.0726	0.0049	0.0109	0.0003	0.43	0.0483	0.0029	69.8	2.0	71.2	4.6	98.2
65.9	22	core	244	23	180	34	0.74	0.15	0.0687	0.0053	0.0110	0.0003	0.38	0.0455	0.0033	70.2	2.1	67.5	5.1	104.1
65.10	21	core	731	68	781	146	1.07	0.22	0.0742	0.0035	0.0109	0.0003	0.56	0.0494	0.0019	69.8	1.9	72.6	3.3	96.1
65.11	21	rim	246	23	141	26	0.57	0.12	0.0714	0.0054	0.0108	0.0003	0.39	0.0480	0.0033	69.1	2.0	70.0	5.1	98.7
65.12	59	core	432	40	262	49	0.61	0.13	0.0699	0.0041	0.0110	0.0003	0.47	0.0461	0.0024	70.5	1.9	68.6	3.9	102.9
65.13	59	rim	356	33	177	33	0.50	0.10	0.0736	0.0046	0.0109	0.0003	0.45	0.0489	0.0028	70.0	2.0	72.1	4.4	97.2
66.1	58	rim	334	13	184	14	0.55	0.05	0.0716	0.0052	0.0111	0.0005	0.58	0.0468	0.0028	71.1	3.0	70.2	5.0	101.4
66.2	58	core	743	28	205	15	0.28	0.02	0.0744	0.0042	0.0110	0.0005	0.73	0.0490	0.0019	70.6	2.9	72.8	4.0	96.9
66.3	58	rim	200	8	80	6	0.40	0.03	0.0724	0.0066	0.0112	0.0005	0.48	0.0467	0.0037	72.1	3.1	71.0	6.2	101.6
66.4	57	rim	221	8	117	9	0.53	0.04	0.0734	0.0063	0.0108	0.0005	0.51	0.0494	0.0037	69.1	3.0	72.0	6.0	96.0
66.5	57	core	341	13	260	20	0.76	0.06	0.0738	0.0053	0.0108	0.0005	0.59	0.0495	0.0029	69.4	2.9	72.3	5.1	95.9
66.6	20	core	356	13	182	14	0.51	0.04	0.0731	0.0052	0.0109	0.0005	0.59	0.0486	0.0028	70.0	3.0	71.6	5.0	97.7
66.7	20	rim	323	12	135	10	0.42	0.04	0.0663	0.0051	0.0107	0.0005	0.56	0.0449	0.0029	68.7	2.9	65.2	4.8	105.3

GY51A (Busetsu granite) Sequences: 4, 5, 6, 15, 16, 17, 18, 19, 20, 63

Image Image <th< th=""><th>Spot n</th><th>o Grain no</th><th>Position</th><th>U</th><th></th><th>Th</th><th></th><th>Th/U</th><th></th><th>²⁰⁷Pb/</th><th></th><th>²⁰⁶Pb/</th><th>sotope ratios</th><th></th><th>²⁰⁷Pb/</th><th></th><th>²⁰⁶Ph/</th><th></th><th>Age (Ma) 207 Pb/</th><th></th><th>%</th><th></th></th<>	Spot n	o Grain no	Position	U		Th		Th/U		²⁰⁷ Pb/		²⁰⁶ Pb/	sotope ratios		²⁰⁷ Pb/		²⁰⁶ Ph/		Age (Ma) 207 Pb/		%		
14. 15. <td></td> <td></td> <td></td> <td>(ppm)</td> <td>±</td> <td>(ppm)</td> <td>±</td> <td></td> <td>±</td> <td>²³⁵U</td> <td>±</td> <td>²³⁸U</td> <td>±</td> <td>ρ</td> <td>²⁰⁶Pb</td> <td>±</td> <td>²³⁸U</td> <td>±</td> <td>²³⁵U</td> <td>±</td> <td>Conc.</td> <td></td>				(ppm)	±	(ppm)	±		±	²³⁵ U	±	²³⁸ U	±	ρ	²⁰⁶ Pb	±	²³⁸ U	±	²³⁵ U	±	Conc.		
12 14 15<	4.11	53s	rim	168	9	124	14	0.74	0.09	0.0633	0.0055	0.0105	0.0004	0.40	0.0439	0.0035	67.0	2.3	62.4	5.2	107.5		
S1 S	4.12 4.13	54s 56s	rim rim	90 127	5	142 113	15 12	1.57 0.89	0.19	0.0689 0.0800	0.0075	0.0109 0.0110	0.0004 0.0004	0.35	0.0460 0.0528	0.0047 0.0043	69.7 70.5	2.6 2.5	67.7 78.2	7.2	103.0 90.2		
1 1	5.3	6s	mantle	107	10	13	2	0.12	0.03	0.1124	0.0092	0.0154	0.0005	0.42	0.0528	0.0039	98.7	3.4	108.2	8.5	91.3		
0 1	5.4 5.5	os 7s	rim	59	5	49	9	0.11	0.02	0.0530	0.0077	0.0147	0.0005	0.43	0.0481	0.0034	94.4 70.3	2.8	94.8 52.4	7.5	99.5 134.1		
	5.6 5.7	61s	mantle	359	33	5 10	1	0.02	0.00	0.0928	0.0053	0.0149	0.0005	0.56	0.0452	0.0021	95.4 71.1	3.0	90.1 73.0	4.9	105.8		
1 1	5.8	63s	rim	97	9	199	36	2.05	0.42	0.0871	0.0083	0.0114	0.0004	0.39	0.0554	0.0049	73.1	2.7	84.8	7.8	86.2		
11 12 14<	5.9 5.10	65s 65s	rim rim	44 54	4 5	46 59	8 11	1.06 1.09	0.22	0.0590 0.0635	0.0095	0.0115	0.0005	0.27	0.0372 0.0423	0.0058 0.0057	73.8 69.8	3.2 2.9	58.2 62.5	9.2 8.6	126.7 111.6		
12 15 16 16 16 160 160 160 <	5.11	70s	rim	141	13	45	8	0.32	0.06	0.0722	0.0063	0.0109	0.0004	0.40	0.0479	0.0038	70.1	2.5	70.8	6.0	99.1		
1 1 1 1 2 3	5.12	17s	mantle	181	16	91	17	0.00	0.10	0.0830	0.0062	0.0120	0.0005	0.85	0.0500	0.0025	77.1	2.6	80.9	29.7	95.3		
1 1	6.1 6.2	17s 75e	rim	42 514	3	56 76	7 9	1.35	0.19	0.0468	0.0085	0.0113	0.0005	0.26	0.0300	0.0053	72.6	3.4	46.4	8.3 38.2	156.4		
1 1	6.3	34s	core	308	19	108	13	0.35	0.05	5.2917	0.2212	0.3307	0.0140	0.87	0.1160	0.0023	1841.9	58.5	1867.5	36.3	98.6		
64 65 75 75 </td <td>6.4 6.5</td> <td>34s 38s</td> <td>rim rim</td> <td>357 118</td> <td>22 7</td> <td>16 170</td> <td>2 21</td> <td>0.04 1.43</td> <td>0.01 0.20</td> <td>0.0677 0.0731</td> <td>0.0044 0.0070</td> <td>0.0110</td> <td>0.0004 0.0005</td> <td>0.57</td> <td>0.0445 0.0479</td> <td>0.0024 0.0041</td> <td>70.7 71.0</td> <td>2.7 2.9</td> <td>66.5 71.6</td> <td>4.2 6.6</td> <td>106.4 99.1</td> <td></td>	6.4 6.5	34s 38s	rim rim	357 118	22 7	16 170	2 21	0.04 1.43	0.01 0.20	0.0677 0.0731	0.0044 0.0070	0.0110	0.0004 0.0005	0.57	0.0445 0.0479	0.0024 0.0041	70.7 71.0	2.7 2.9	66.5 71.6	4.2 6.6	106.4 99.1		
dia dia manue lia j. dia lia dia dia <td>6.6</td> <td>38s</td> <td>rim</td> <td>128</td> <td>8</td> <td>180</td> <td>22</td> <td>1.40</td> <td>0.19</td> <td>0.0693</td> <td>0.0065</td> <td>0.0105</td> <td>0.0004</td> <td>0.43</td> <td>0.0478</td> <td>0.0041</td> <td>67.4</td> <td>2.7</td> <td>68.0 56.1</td> <td>6.2</td> <td>99.1 125.6</td> <td></td>	6.6	38s	rim	128	8	180	22	1.40	0.19	0.0693	0.0065	0.0105	0.0004	0.43	0.0478	0.0041	67.4	2.7	68.0 56.1	6.2	99.1 125.6		
dia dia mark Dia Dia <td>6.8</td> <td>41s</td> <td>mantle</td> <td>110</td> <td>7</td> <td>45</td> <td>6</td> <td>0.41</td> <td>0.06</td> <td>0.0812</td> <td>0.0077</td> <td>0.0117</td> <td>0.0005</td> <td>0.43</td> <td>0.0501</td> <td>0.0043</td> <td>75.3</td> <td>3.1</td> <td>79.3</td> <td>7.2</td> <td>94.9</td> <td></td>	6.8	41s	mantle	110	7	45	6	0.41	0.06	0.0812	0.0077	0.0117	0.0005	0.43	0.0501	0.0043	75.3	3.1	79.3	7.2	94.9		
1 4 5 m 10 7 10	6.9 6.10	41s 44s	mantle rim	120 91	7	47 96	6 12	0.39 1.06	0.05	0.0801 0.0805	0.0073	0.0122	0.0005	0.44	0.0476 0.0533	0.0039 0.0050	78.1 70.3	3.1 2.9	78.2 78.6	6.9 7.8	99.9 89.4		
1 1 0	6.11	44s	rim	112	7	121	15	1.09	0.15	0.0787	0.0075	0.0108	0.0004	0.43	0.0528	0.0045	69.4	2.8	76.9	7.1	90.2		
10 2 r 60 5 60 7 80 7 <th7< th=""> 7 7 7</th7<>	6.12	47 50s	rim	58	4	105	13	1.81	0.22	0.0818	0.0082	0.0109	0.0005	0.40	0.0546	0.0049	69.7	3.0	79.8	9.5	87.3		
100 7 No. 60 8 8 8 0 <td>15.1</td> <td>2</td> <td>core</td> <td>65 69</td> <td>5</td> <td>42 30</td> <td>7</td> <td>0.66</td> <td>0.11</td> <td>0.0708</td> <td>0.0032</td> <td>0.0105</td> <td>0.0002</td> <td>0.52</td> <td>0.0491</td> <td>0.0019</td> <td>67.0 72.0</td> <td>1.6</td> <td>69.5 70.9</td> <td>3.1</td> <td>96.5 101.5</td> <td></td>	15.1	2	core	65 69	5	42 30	7	0.66	0.11	0.0708	0.0032	0.0105	0.0002	0.52	0.0491	0.0019	67.0 72.0	1.6	69.5 70.9	3.1	96.5 101.5		
10 1 m 3 4 4 7 0	15.3	7	rim	60	5	52	8	0.88	0.15	0.0700	0.0032	0.0109	0.0003	0.51	0.0467	0.0019	69.8	1.6	68.7	3.1	101.6		
10 1 arr 20 2 2 4 0 <td>15.4 15.5</td> <td>7</td> <td>core rim</td> <td>30 52</td> <td>2</td> <td>28 47</td> <td>4</td> <td>0.93</td> <td>0.16</td> <td>0.0703</td> <td>0.0039</td> <td>0.0107</td> <td>0.0003</td> <td>0.44</td> <td>0.0477 0.0484</td> <td>0.0023</td> <td>68.4 69.3</td> <td>1.7</td> <td>69.0 70.7</td> <td>3.7</td> <td>99.3 97.9</td> <td></td>	15.4 15.5	7	core rim	30 52	2	28 47	4	0.93	0.16	0.0703	0.0039	0.0107	0.0003	0.44	0.0477 0.0484	0.0023	68.4 69.3	1.7	69.0 70.7	3.7	99.3 97.9		
Ter monthe into into into into into into into into	15.6	8	core	283	22	26	4	0.09	0.02	0.0908	0.0034	0.0135	0.0003	0.61	0.0488	0.0014	86.3 84.0	2.0	88.2	3.2	97.8 101.7		
19/10 10/2 mm 43/2 3 3 44/2 7 5 7 6 7 6 7 7 8 8	15.8	8	mantle	139	11	31	5	0.03	0.02	0.0809	0.0032	0.0124	0.0003	0.58	0.0403	0.0014	79.6	1.8	79.0	3.0	100.8		
10:1 1 r n 3 3 3 3 7 0.3 0.000	15.9 15.10	12 12	rim core	42 33	3	26 24	4	0.63 0.72	0.11 0.12	0.0696 0.0671	0.0035	0.0105	0.0003	0.48 0.45	0.0481 0.0457	0.0021 0.0022	67.3 68.3	1.6 1.6	68.3 65.9	3.3 3.5	98.6 103.6		
10 10 m 10<	15.11	12	rim	33	3	26	4	0.77	0.13	0.0678	0.0036	0.0109	0.0003	0.45	0.0452	0.0022	69.8	1.7	66.6	3.5	104.8		
110 5. mm 16 7 16 9.00 0.0000 0.0000	15.12	14	rim rim	102	10	166	20	1.29	0.22	0.0681	0.0029	0.0106	0.0002	0.55	0.0466	0.0016	68.0	1.6	67.8	2.7	101.7		
111 112 1	16.1 16.2	54s	rim	95 95	7	195 226	30 35	2.05	0.36	0.0739	0.0032	0.0108	0.0003	0.58	0.0496	0.0018	69.4 68.2	1.7	72.4	3.0 2.9	95.8 101.1		
10 5 7	16.3	56s	rim	85	7	96	15	1.12	0.19	0.0704	0.0031	0.0112	0.0003	0.57	0.0457	0.0017	71.7	1.8	69.0	3.0	103.8		
16 5 corr 163 4 328 6 0	16.4 16.5	56s 3s	rım mantle	257	6 20	/3	1	0.02	0.17	0.0688	0.0032	0.0105	0.0003	0.55	0.0474 0.0523	0.0018	67.5 88.0	1./	67.6 95.8	3.0	99.8 91.8		
10% 6 mm 77 6 2 2 0 000000 000000 000000 000000 00000 00	16.6 16.8	3s 6s	core mantle	563 136	44 11	336 15	52 2	0.60	0.10	0.2822	0.0105	0.0401	0.0010	0.67	0.0510	0.0014	253.5 95.2	6.2 2.4	252.4 95.5	8.3 3.7	100.4		
10.11 20 10.11 10.11 <td>16.9</td> <td>6s</td> <td>rim</td> <td>77</td> <td>6</td> <td>22</td> <td>3</td> <td>0.29</td> <td>0.05</td> <td>0.0845</td> <td>0.0037</td> <td>0.0124</td> <td>0.0003</td> <td>0.57</td> <td>0.0494</td> <td>0.0018</td> <td>79.5</td> <td>2.0</td> <td>82.4</td> <td>3.5</td> <td>96.5</td> <td></td>	16.9	6s	rim	77	6	22	3	0.29	0.05	0.0845	0.0037	0.0124	0.0003	0.57	0.0494	0.0018	79.5	2.0	82.4	3.5	96.5		
11/10 11/10 mm 40 2 2 5 0.073 0.033 0.030 0.001 0.0000 0.050 0.042 7.04 1.10 <t< td=""><td>16.10</td><td>8s 8s</td><td>rim rim</td><td>46 39</td><td>4</td><td>64 47</td><td>10</td><td>1.39</td><td>0.24 0.21</td><td>0.0717</td><td>0.0036</td><td>0.0108</td><td>0.0003</td><td>0.51</td><td>0.0481 0.0484</td><td>0.0021</td><td>69.3 69.7</td><td>1.8</td><td>70.3</td><td>3.4 3.6</td><td>98.6 98.1</td><td></td></t<>	16.10	8s 8s	rim rim	46 39	4	64 47	10	1.39	0.24 0.21	0.0717	0.0036	0.0108	0.0003	0.51	0.0481 0.0484	0.0021	69.3 69.7	1.8	70.3	3.4 3.6	98.6 98.1		
17.1 12.5 rm 30 4 52 0 1.05 0.05 0.054 0.050 0.024 0.024 7.10 2.2 81.7 4.5 94.7 17.1 12.5 rm 34 8 10 0.057 0.0044 0.0019 0.010 0.0014 0.0019 0.01 0.011 0.0017 7.15 2.1 0.05 3.1 0.57 17.1 13.5 res 84 14 44 10 0.017 0.0018 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.001 0.011 0.001 0.011 0.0019 0.0019 0.0019 0.0019 0.011 0.0019	16.12	11s 11e	rim rim	40	3	35	5	0.89	0.15	0.0733	0.0038	0.0110	0.0003	0.50	0.0483	0.0022	70.6	1.8	71.8	3.6	98.3 95.2		
1/2 1	17.1	12s	rim	30	4	32	9	1.05	0.33	0.0838	0.0048	0.0121	0.0004	0.53	0.0503	0.0024	77.3	2.3	81.7	4.5	94.7		
17.4 13.5 rm 74.4 10.0 84 24.0 10.0 0.024 0.003 0.64 0.640 0.019 70.1 2.1 70.9 3.3 967 17.8 65.5 rm 44 7 44 7.4 10.0 0.024 0.003 0.640 0.0019 70.1 2.1 70.9 2.1 70.3 2.1 61.2 10.1 2.1 70.3 70.0 <td>17.2</td> <td>12s 12s</td> <td>rim rim</td> <td>33 54</td> <td>5</td> <td>18 50</td> <td>5 14</td> <td>0.55</td> <td>0.17</td> <td>0.0775</td> <td>0.0044</td> <td>0.0114</td> <td>0.0003</td> <td>0.53</td> <td>0.0491 0.0457</td> <td>0.0024 0.0019</td> <td>73.4 72.0</td> <td>2.2</td> <td>75.8 69.4</td> <td>4.2</td> <td>96.8 103.7</td> <td></td>	17.2	12s 12s	rim rim	33 54	5	18 50	5 14	0.55	0.17	0.0775	0.0044	0.0114	0.0003	0.53	0.0491 0.0457	0.0024 0.0019	73.4 72.0	2.2	75.8 69.4	4.2	96.8 103.7		
178 155 178 156 178 156 178 156 178 178 156 178 178 156 178 178 156 178 1	17.4	13s	rim	74	10	86 48	24	1.16	0.36	0.0724	0.0035	0.0109	0.0003	0.61	0.0480	0.0019	70.1	2.1	70.9	3.3	98.7 102.3		
1719 Biss rm 49 7 49 7 49 13 20 0000	17.6	13s	rim	81	11	88	24	1.09	0.34	0.0725	0.0035	0.0108	0.0003	0.61	0.0486	0.0018	69.3	2.0	71.1	3.3	97.5		
17.10 80s cm 35 5 38 1 109 0.044 0.0442 0.0449 0.0440 <th< td=""><td>17.8 17.9</td><td>65s 65s</td><td>rim rim</td><td>49 138</td><td>7 19</td><td>48 84</td><td>13 23</td><td>0.97 0.61</td><td>0.30</td><td>0.0695 0.0728</td><td>0.0037</td><td>0.0111 0.0113</td><td>0.0003</td><td>0.56</td><td>0.0453 0.0469</td><td>0.0020 0.0016</td><td>71.3 72.1</td><td>2.1 2.1</td><td>68.2 71.3</td><td>3.5 3.1</td><td>104.5 101.1</td><td></td></th<>	17.8 17.9	65s 65s	rim rim	49 138	7 19	48 84	13 23	0.97 0.61	0.30	0.0695 0.0728	0.0037	0.0111 0.0113	0.0003	0.56	0.0453 0.0469	0.0020 0.0016	71.3 72.1	2.1 2.1	68.2 71.3	3.5 3.1	104.5 101.1		
11 12 25 15 17 2 48 14 13 0073 0.0074 0.0074 </td <td>17.10</td> <td>69s 70e</td> <td>rim</td> <td>35</td> <td>5 38</td> <td>39 40</td> <td>11</td> <td>1.09</td> <td>0.34</td> <td>0.0746</td> <td>0.0042</td> <td>0.0109</td> <td>0.0003</td> <td>0.53</td> <td>0.0499</td> <td>0.0024</td> <td>69.6 1528.7</td> <td>2.1</td> <td>73.1</td> <td>4.0</td> <td>95.2 84.9</td> <td></td>	17.10	69s 70e	rim	35	5 38	39 40	11	1.09	0.34	0.0746	0.0042	0.0109	0.0003	0.53	0.0499	0.0024	69.6 1528.7	2.1	73.1	4.0	95.2 84.9		
18.2 2.1 10 core 41 2.2 14 4 10.0 00000 0.040 0.047 0.0022 7.1.3 1.7 7.1.7 3.7 3.9 4.9 15.5 75.5 martle 676 3.5 1.5 2.004 0.003 0.582 0.014 0.003 1.449 2.01 1.54 7.6 0.004 0.014 0.003 0.640 0.014 0.003 1.646 0.014 <	18.1	21s	rim	71	4	80	8	1.14	0.13	0.0735	0.0034	0.0108	0.0003	0.51	0.0493	0.0020	69.3	1.6	72.0	3.2	96.2		
18.4 5.5 core 4.16 2.2 1.44 1.7 out 0.23 0.244 0.088 0.085 0.133 0.042 2.05.1 1.40 2.22.4 2.5 0.2.3 18.5 7.5 out 0.033 1.24 0.033 0.144 0.033 0.144 0.033 1.244 0.031 0.034 0.014 0.038 0.01 0.038 0.01 0.038 0.01 0.038 0.01 0.038 0.01 0.038 0.01 0.038 0.01 0.038 0.01 0.038 0.01 0.014 0.05 1.6 0.6 1.3 0.01 0.018 0.003 0.01 0.014 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	18.2 18.3	21s 21s	core rim	41 63	2	41 63	4	1.00 0.99	0.12 0.12	0.0732 0.0716	0.0039 0.0034	0.0111 0.0108	0.0003	0.46	0.0477 0.0480	0.0022 0.0020	71.3 69.4	1.7 1.6	71.7	3.7 3.2	99.4 98.8		
108 778 core 332 0.77 21 2 0.06 0.034 0.0014 CB34	18.4	75s	core	416	22	164	17	0.39	0.05	7.9237	0.2814	0.3748	0.0086	0.65	0.1533	0.0042	2052.1	40.4	2222.4	32.5	92.3		
18.1 7.7 membre 220 17 12 1 0.043 0.012 0.003 0.01 0.049 0.014 67.8 1.8 7.8 2.9 98.1 18.1 25.5 core 3 3.2 5 0.089 0.002 0.0003 0.50 0.0574 0.0012 0.011 65.9 0.65 0.002 0.017 65.9 1.6 68.4 2.8 0.002 18.1 25.6 core 1.0 4 1.9 1.3 0.0 0.003 0.54 0.0499 0.0021 0.001 7.8 1.8 1.8 4.8 1.8 0.1 0.0033 0.0168 0.0003 0.54 0.0499 0.0021 7.0 7.3 3.4 9.2 1.5 1.8 1.6 7.2 2.9 9.7 1.4 1.7 7.8 1.8 1.6 7.2 2.9 9.7 1.4 1.7 7.6 3.8 9.7 9.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	18.6	77s	core	332	17	21	2	0.02	0.01	0.0894	0.0034	0.0134	0.0003	0.61	0.0484	0.0014	85.8	2.0	86.9	3.1	98.7		
11.11 25. core 37 2 3 0.80 0.010 0.0318 0.022 0.0104 0.0014 0.67. 1.7 7.8 2.2 2.12 2.12 18.13 26. rrm 1.25 7 1.64 1.7 1.33 0.65 0.0473 0.0017 0.685 1.6 0.684 2.2 1.61 2.5 1.61 2.5 1.6 7.6 8.8 2.2 1.62 3.6 2.6 1.6 7.6 8.8 1.6 7.6 3.8 2.2 1.61 1.33 1.6 7.13 3.1 9.71 1.7 7.8 1.7 7.8 3.8 2.2 9.8 1.7 7.8 3.8 2.2 9.8 1.7 7.8 3.8 2.2 9.8 1.7 3.8 2.2 9.8 1.7 7.8 3.8 1.7 7.8 3.8 1.7 7.8 3.8 2.2 9.8 1.7 7.8 3.8 2.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.	18.7 18.10	77s 25s	mantle core	320 70	17	12 76	1	0.04	0.004 0.13	0.0803	0.0030	0.0121 0.0108	0.0003	0.61	0.0480 0.0477	0.0014 0.0019	77.8 69.5	1.8 1.6	78.4 69.9	2.9 3.2	99.1 99.4		
18.11 28.2 rim 125 7 16.4 17 13.2 0.0697 0.0097 0.003 0.017 0.0017<	18.11	25s	core	37	2	32	3	0.86	0.10	0.0318	0.0022	0.0109	0.0003	0.34	0.0212	0.0014	69.7 70.1	1.7	31.8 78.6	2.2	219.2		
18.1 30 core 10 4 193 13 0012 0.0188 0.00485 0.00485 0.00485 0.0011 68.9 1.6 70.8 2.9 97.7 194 31s cm 37 2 1.6 0.13 0.0168 0.0003 0.02 0.0148 0.0011 6.03 1.6 71.3 3.4 65.2 97.7 194 31s cm 73 3.4 6.01 0.003 0.02 0.0148 0.0019 6.033 0.02 0.0448 0.0019 6.03 1.6 71.2 2.2 96.8 6.3 1.6 71.2 77.6 3.8 8.9 71 1.7 77.6 3.8 97.1 1.7 77.6 3.8 97.1 1.7 77.6 3.8 97.1 1.7 77.6 3.8 97.1 1.7 77.6 3.8 97.1 1.7 77.6 3.8 97.1 1.7 77.6 3.8 97.1 1.5 3.8 97.1 1.5 3.8 97.1 1.5 3.8 97.1 1.5 3.8 <td>18.13</td> <td>26s</td> <td>rim</td> <td>125</td> <td>7</td> <td>164</td> <td>17</td> <td>1.32</td> <td>0.15</td> <td>0.0697</td> <td>0.0029</td> <td>0.0107</td> <td>0.0002</td> <td>0.55</td> <td>0.0473</td> <td>0.0017</td> <td>68.5</td> <td>1.6</td> <td>68.4</td> <td>2.8</td> <td>100.2</td> <td></td>	18.13	26s	rim	125	7	164	17	1.32	0.15	0.0697	0.0029	0.0107	0.0002	0.55	0.0473	0.0017	68.5	1.6	68.4	2.8	100.2		
13.3 31s core 33 6 18 1 0.48 0.048 0.0045 0.0122 0.003 0.013 0.0013 0.0013 0.0123 7.4.4 1.9 8.4.3 4.2 9.3.1 19.5 32s rim 6 0.8 1.6 7.2.3 3.1 9.7.1 19.5 32s rim 79 3 81 7 1.02 0.09 0.073 0.003 0.052 0.048 0.0019 69.3 1.6 7.2.2 3.2 9.8 9.7 19.7 38 core 38 0.7 0.08 0.073 0.0044 0.0112 0.003 0.448 0.0428 0.0042 7.001 7.7 7.18 3.8 8.1 19.9 41.8 rmarrite 44 4 21 2.8 0.08 0.073 0.003 0.013 0.042 0.043 0.042 0.044 0.014 0.043 0.044 0.0142 0.0043 0.042 0.014 0.0043 0.043 0.044 0.0015 7.0 1.4 1.4	19.1 19.2	30s 31s	core rim	110 60	4	159 47	13	1.45 0.79	0.13 0.07	0.0720	0.0031 0.0036	0.0108	0.0003	0.54	0.0485 0.0499	0.0017 0.0021	68.9 70.0	1.6 1.7	70.6 73.5	2.9 3.4	97.7 95.2		
15.5 322 trim 70 3 81 7 102 0.003 0.003 0.0049 0.0019 89.9 1.6 72.2 3.2 95.6 18.7 38. core 36 1 35 30.074 0.0030 0.040 0.0019 69.9 1.7 70.0 1.7 71.6 3.8 97.7 18.7 38. core 38.0 0.97 0.09 0.0731 0.0040 0.0030 0.44 0.0455 0.0024 70.0 1.7 71.6 3.8 97.8 18.9 41.5 mantle 94 4 27 2 0.20 0.033 0.044 0.0042 0.018 78.6 1.8 78.6 3.3 98.1 18.1 44.5 rim 32 1.2 2.8 0.040 0.0112 0.003 0.52 0.0440 0.0019 70.3 1.8 73.3 3.0 97.3 1.8 73.8 3.2 95.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 <td< td=""><td>19.3</td><td>31s</td><td>core</td><td>38</td><td>2</td><td>18</td><td>1</td><td>0.48</td><td>0.04</td><td>0.0865</td><td>0.0045</td><td>0.0122</td><td>0.0003</td><td>0.47</td><td>0.0513</td><td>0.0023</td><td>78.4</td><td>1.9</td><td>84.3</td><td>4.2</td><td>93.1</td><td></td></td<>	19.3	31s	core	38	2	18	1	0.48	0.04	0.0865	0.0045	0.0122	0.0003	0.47	0.0513	0.0023	78.4	1.9	84.3	4.2	93.1		
18.6 8.8 rm 56 2 48 4 0.0794 0.0003 0.0109 0.0001 0.01017 0.0022 71.4 1.7 71.6 3.8 92.1 18.7 38.8 rim 47 2 33 3 0.83 0.0023 0.0013 0.044 0.00157 0.00023 72.0 1.7 71.6 3.8 92.1 18.8 38.8 rim 41 core 168 78.6 0.003 0.041 0.0103 0.044 0.0035 0.0023 72.0 1.7 71.6 33.8 92.1 18.10 41.5 core 168 7.6 0.03 0.0357 0.0003 0.54 0.0448 0.0015 64.1 2.0 83.3 38.1 18.11 44.5 rim 90 3 82.7 1 0.00 0.0174 0.0033 0.0101 0.0003 0.652 0.0490 0.0116 70.3 1.6 70.3 1.6 70.3 1.6 70.3 1.6 70.3 1.6 70.3 1.6 70.2	19.5	32s	rim	79	3	81	7	1.02	0.09	0.0737	0.0033	0.0109	0.0003	0.52	0.0490	0.0019	69.9	1.6	72.2	3.2	96.8		
18.8 38.a rim 47 2 39 3.0.3 0.80 0.029 0.0041 0.0112 0.0003 0.48 0.0535 0.0023 72.0 1.7 80.9 3.9 89.1 19.10 41s core 169 7 10 1 0.06 0.016 0.035 0.0133 0.0003 0.58 0.0480 0.0015 78.6 1.8 78.6 3.3 29.7 19.10 44s rim 80 3 86 7 1.08 0.0748 0.0033 0.0103 0.52 0.0480 0.0016 69.7 1.8 70.4 3.1 89.9 1.8 19.12 44s rim 80 3 86 77 1.08 0.0715 0.0033 0.0109 0.0033 0.0403 0.0419 0.0015 70.0 1.8 77.1 2.4 3.1 89.1 20.2 45s rim 37 5 3.9 0.0479 0.0033 0.0417 0.0018 71.8 1.7 78.3 3.8 89.1 20.3	19.6 19.7	38s 38s	rim core	56 36	2	48 35	4	0.86	0.08	0.0794	0.0038	0.0111	0.0003	0.50	0.0517 0.0485	0.0022	/1.4 70.0	1.7	71.6	3.6	92.1 97.8		
10.50 415 Inditize 199 7 2 2 0.66 0.001 0.013 0.00480 0.0015 6.09 1.0 6.23 3.2 90.5 18.11 424 rim 30 1 2 0.66 0.001 0.0014 0.0019 0.0003 0.426 0.0440 0.0019 7.13 1.7 7.13 4.0 90.5 18.11 442 rim 80 3 82 7 1.08 0.0019 0.003 0.025 0.0440 0.0019 7.0 1.6 7.04 3.1 98.5 18.13 445 rim 80 3 82 7 1.09 0.05 0.0715 0.0023 0.019 0.0033 0.0475 0.0015 7.0 1.8 7.1 2.5 4.94 98.1 20.2 456 rim 7.1 2.5 1.0 0.05 0.0737 0.0033 0.0410 0.00422 0.0011 0.0033 0.041 0.0016 7.0 7.3 3.6 98.9 7.7 7.23 8.0 9.0	19.8	38s	rim montlo	47	2	39	3	0.83	0.08	0.0829	0.0041	0.0112	0.0003	0.48	0.0535	0.0023	72.0	1.7	80.9	3.9	89.1		
19.11 42s rim 32 1 28 2 0.86 0.0748 0.0003 0.043 0.0448 0.0025 71.3 1.7 73.3 4.0 97.3 19.12 44s rim 80 3 82 7 1.02 0.003 0.003 0.003 0.0049 0.0019 70.3 1.6 70.4 3.1 98.9 19.13 44s rim 80 3 82 7 1.02 0.09 0.0754 0.0023 0.0110 0.0003 0.52 0.0449 0.0019 70.3 1.6 70.4 3.1 99.9 20.2 45s rim 91 2 32 1 0.35 0.026 0.0716 0.0003 0.448 0.0456 0.0001 1.16 70.1 2.6 99.8 97.7 20.4 45s rim 45 1 40 2 0.88 0.047 0.0016 0.0022 0.683 1.6 70.3 3.6 98.9 97.7 20.4 45s <thrim< th=""> 41 41</thrim<>	19.10	41s	core	169	7	10	1	0.25	0.01	0.0876	0.0035	0.0123	0.0003	0.54	0.0482	0.0015	84.9	2.0	85.3	3.2	99.5		
19.13 44s rim 80 3 82 7 10.2 0.0754 0.0018 0.0110 0.0003 0.62 0.0495 0.0019 70.3 1.6 73.8 3.2 95.2 20.1 45s rim 91 2 32 1 0.35 0.02 0.0740 0.0003 0.051 0.0018 71.8 1.7 72.4 3.1 99.1 20.4 46s rim 45 1 40 2 0.88 0.012 0.0003 0.049 0.0018 71.8 1.7 72.4 3.1 99.1 20.4 46s rim 45 1 40 2 0.88 0.0019 0.003 0.46 0.0452 0.0022 68.3 1.6 69.5 3.5 97.7 20.6 48s rim 41 1 41 2 0.99 0.05 0.0017 0.0003 0.45 0.0474 0.0023 65.5 1.7 7.6 4.0 94.6 20.1 80s rim 36 1 47.7 <	19.11 19.12	42s 44s	rim rim	32 80	1	28 86	2	0.86 1.08	0.08	0.0748 0.0718	0.0042 0.0033	0.0111 0.0109	0.0003	0.43	0.0488 0.0480	0.0025 0.0019	71.3 69.7	1.7 1.6	73.3 70.4	4.0 3.1	97.3 98.9		
211 +35 core 263 9 232 12 0.90 0.0713 0.003 0.0013 70.0 10 71.1 2.5 98.1 202 455 rim 57 1 55 3 0.98 0.015 0.0033 0.0110 0.0003 0.0473 0.0013 71.0 1.6 72.2 3.4 98.1 20.3 465 rim 57 1 55 3 0.98 0.04 0.0073 0.0106 0.0003 0.445 0.0022 68.3 1.6 72.2 3.4 98.1 20.5 48 rim 21 1 0.88 0.04 0.0775 0.0013 0.003 0.0147 0.0032 69.5 1.7 70.3 3.8 98.9 9.7 20.6 48 rim 11 14 12 0.09 0.057 0.0018 0.0003 0.45 0.0642 0.019 68.6 1.6 68.5 3.1 100.1 20.8 stim rim 14 14 0.28 0.011 0.00	19.13	44s	rim	80	3	82	7	1.02	0.09	0.0754	0.0034	0.0110	0.0003	0.52	0.0499	0.0019	70.3	1.6	73.8	3.2	95.2		
20.3 46s rim 57 1 55 3 0.98 0.0736 0.0033 0.0106 0.0002 0.642 0.0502 0.0021 68.3 1.6 72.2 3.4 94.6 20.5 48s rim 21 1 0.88 0.04 0.0075 0.0016 0.0003 0.446 0.0032 68.3 1.6 69.9 3.5 97.7 20.5 48s rim 14 1 0.083 0.04 0.0075 0.0017 0.0003 0.45 0.00479 0.0023 69.5 1.7 70.3 3.6 98.9 9.4 20.7 49sa core 77 2 87 4 1.4 0.6 0.0698 0.0017 0.0018 0.0031 1154.8 24.3 1430.9 27.7 80.7 20.8 49sa rim 41 1 44 23 0.01 30926 0.0110 0.0003 0.46 0.0017 1.4 1.7 75.4 3.8 93.3 20.10 50s rim 41 1.4	20.1	45s 45s	rim	203	2	32	1	0.35	0.02	0.0740	0.0028	0.0109	0.0003	0.53	0.0479	0.0015	71.8	1.0	72.4	3.1	99.8 99.1		
205 48s rim 25 1 21 1 0.0875 0.0017 0.0012 0.0003 0.45 0.0564 0.0030 72.1 1.8 85.2 4.8 84.6 205 48s rim 41 1 4 0.99 0.5 0.017 0.0003 0.51 0.0479 0.0023 65.5 1.7 70.3 3.6 98.9 20.7 49sa rim 36 1 47 2 1.29 0.07 0.0783 0.0042 0.0108 0.0003 0.45 0.0025 69.2 1.7 76.5 4.0 90.4 20.9 50. core 33 87 4 0.23 0.01 0.0023 0.65 0.025 69.2 1.7 76.5 4.0 90.4 20.10 50. core 33 132 6 0.33 0.05 0.0711 0.040 0.0110 0.0023 0.65 0.0448 0.0017 71.9 1.7 75.4 3.8 93.3 20.12 71s rim 14	20.3 20.4	46s 46s	rim rim	57 45	1	55 40	3	0.98	0.05	0.0736	0.0036	0.0106	0.0003	0.49	0.0502	0.0021	68.3 68.3	1.6 1.6	72.2 69.9	3.4 3.5	94.6 97.7		
20.0 48s rim 41 1 41 2 0.99 0.00 0.0717 0.003 0.004 0.004/9 0.0022 95.5 1.7 7.0.3 3.0 98.9 20.7 48s orce 77 2 87 4 1.4 0.0 0.003 0.0013 0.0014 0.00125 69.5 1.7 7.0.3 3.0 98.9 20.8 49sa rim 36 1 47 2 1.29 0.07 0.0018 0.0003 0.46 0.0510 0.0022 69.2 1.7 7.65 4.0 90.4 20.10 50s rim 41 1 44 2 1.10 0.06 0.0711 0.040 0.0110 0.0002 0.66 0.0113 0.0024 70.4 1.7 75.4 3.8 99.3 20.11 rim 141 2 0.80 0.0709 0.0030 0.016 0.0002 66 0.048 0.0017 70.8 1.6 66.6 2.8 97.4 20.12 71s rim	20.5	48s	rim	25	1	21	1	0.83	0.04	0.0875	0.0051	0.0112	0.0003	0.43	0.0564	0.0030	72.1	1.8	85.2	4.8	84.6		
20.8 49sa rim 36 1 47 2 1.29 0.0783 0.00783 0.0018 0.0003 0.45 0.0526 0.0025 69.2 1.7 76.5 4.0 90.4 20.9 50s rim 41 1 44 2 1.00 0.026 0.0110 0.0003 0.46 0.0510 0.0024 70.4 1.7 75.4 3.8 93.3 20.10 71s rim 124 3 132 6 1.03 0.0709 0.0001 0.0002 0.56 0.0487 0.0017 71.9 1.7 75.4 3.8 93.3 97.4 20.12 71s rim 129 3 132 6 1.03 0.0709 0.0030 0.016 0.0007 0.678 0.061 6.6 2.8 97.4 20.13 73s rim 14 1 0.95 0.076 0.0039 0.0467 0.0048 90.8 4.4 8.88 15.8 102.3 37.65s rim 19 10 6 1	20.6	48s 49sa	rim core	41	2	87	4	1.14	0.05	0.0698	0.0038	0.0108	0.0003	0.45	0.0479	0.0023	69.5 68.6	1.7	68.5	3.6	98.9 100.1		
20.10 50s rim 14 1 14 2 1.10 0.06 0.0711 0.0000 0.010 0.00024 70.4 1.7 75.4 3.8 93.3 20.11 71is rim 134 3 107 5 0.80 0.04 0.0710 0.0003 0.046 0.0510 0.0024 70.4 1.7 75.4 3.8 93.3 20.12 71s rim 124 3 132 6 10.3 0.050 0.0745 0.0648 0.0017 71.9 1.7 75.4 3.8 93.3 20.12 71s rim 124 1 1 2 0.95 0.055 0.0467 0.0017 61.6 66.6 2.8 97.4 20.13 73s 7 3.1 0 0.022 0.021 0.0016 0.0007 0.27 0.0467 0.0084 90.8 4.4 88.8 15.5 102.3 83.3 -65s ramtle 2.9 1.0 6 1 0.02 0.018 0.0153 0.008	20.8 20.9	49sa 50s	rim core	36 338	1	47 77	2	1.29	0.07	0.0783	0.0042	0.0108	0.0003	0.45	0.0526	0.0025	69.2 1154.8	1.7 24.3	76.5 1430.9	4.0 27.7	90.4 80.7		
20.11 /15 rim 134 3 107 5 0.00 0.0754 0.0013 0.0012 0.00486 0.0017 71.9 1.7 7.8 3.0 97.4 20.12 71s rim 129 3 132 6 103 0.05 0.0745 0.0003 0.016 0.0002 0.663 0.0017 67.8 1.6 66.6 2.8 97.4 20.13 73s rim 44 1 41 2 0.95 0.0745 0.0003 0.0106 0.0002 0.694 0.0023 69.3 1.7 72.9 3.7 95.0 63.3 -65s core 238 12 75 7 0.31 0.04 3.6419 0.2150 0.0005 0.644 0.1228 0.0058 125.6 45.2 155.6 45.2 155.6 45.2 155.6 45.2 155.6 45.2 155.6 45.2 155.6 45.2 155.6 45.2 155.6 45.2 155.6 45.2 155.6 45.2 155.6 55.5 10.01 0.000 </td <td>20.10</td> <td>50s</td> <td>rim</td> <td>41</td> <td>1</td> <td>44</td> <td>2</td> <td>1.10</td> <td>0.06</td> <td>0.0771</td> <td>0.0040</td> <td>0.0110</td> <td>0.0003</td> <td>0.46</td> <td>0.0510</td> <td>0.0024</td> <td>70.4</td> <td>1.7</td> <td>75.4</td> <td>3.8</td> <td>93.3</td> <td></td>	20.10	50s	rim	41	1	44	2	1.10	0.06	0.0771	0.0040	0.0110	0.0003	0.46	0.0510	0.0024	70.4	1.7	75.4	3.8	93.3		
20.13 73s rim 44 1 41 2 0.9745 0.0745 0.0003 0.046 0.0500 0.0023 69.3 1.7 7.29 3.7 95.0 63.3 3-65s mantle 238 12 75 7 0.31 0.002 0.0014 0.0017 0.01142 0.0003 0.247 0.0068 90.8 44.8 88.8 16.8 10.23 63.3 3-65s mantle 229 11 6 1 0.02 0.0018 0.0163 0.0086 0.244 0.0088 125.6 45.2 155.87 49.1 80.5 63.8 3-65s rim 194 10 6 1 0.02 0.0018 0.0018 0.0048 0.0434 0.0088 98.2 4.9 89.2 17.8 110.1 Rejocid apoid regular signal regular signal regular signal regular signal regular signal regular signal regular signal <td <="" colspan="1" td="" td<=""><td>20.11</td><td>71s 71s</td><td>rim rim</td><td>134</td><td>3</td><td>132</td><td>5 6</td><td>1.03</td><td>0.04</td><td>0.0754</td><td>0.0031</td><td>0.0112</td><td>0.0003</td><td>0.56</td><td>0.0488</td><td>0.0017</td><td>67.8</td><td>1.7</td><td>73.8 69.6</td><td>2.8</td><td>97.4 97.4</td><td></td></td>	<td>20.11</td> <td>71s 71s</td> <td>rim rim</td> <td>134</td> <td>3</td> <td>132</td> <td>5 6</td> <td>1.03</td> <td>0.04</td> <td>0.0754</td> <td>0.0031</td> <td>0.0112</td> <td>0.0003</td> <td>0.56</td> <td>0.0488</td> <td>0.0017</td> <td>67.8</td> <td>1.7</td> <td>73.8 69.6</td> <td>2.8</td> <td>97.4 97.4</td> <td></td>	20.11	71s 71s	rim rim	134	3	132	5 6	1.03	0.04	0.0754	0.0031	0.0112	0.0003	0.56	0.0488	0.0017	67.8	1.7	73.8 69.6	2.8	97.4 97.4	
0.5 0 665 mantle 238 12 75 7 0.01 0.04 3.6419 0.2245 0.2150 0.0085 0.44 0.1428 0.0005 1255.6 452 1555.7 451.1 80.5 63.8 3-655 mantle 229 11 6 1 0.02 0.003 0.0918 0.01918 0.0153 0.0008 0.24 0.0434 0.0048 98.2 4.9 89.2 17.8 110.1 63.8 3-655 min 194 10 6 1 0.020 0.0018 0.0004 0.013 0.0444 0.0048 98.2 4.9 89.2 17.8 110.1 Rejected spots 5.1 3 s rim 114 10 20 4 0.0175 0.0108 0.0004 0.38 0.0444 0.0039 76.6 2.7 71.8 6.6 106.7 irregular signal 16.7 3 s mantle 333 26 19 3 0.064 0.0124 0.0004 0.81 0.0444 0.0039 76.6 2.7 71.8 6.6	20.13	73s 3-65c	rim mantle	44 259	1	41	2	0.95	0.05	0.0745	0.0039	0.0108	0.0003	0.46	0.0500	0.0023	69.3 90.8	1.7	72.9	3.7	95.0 102.3		
us.a s-rous manuel 229 11 0 1 UU21 UU113 UU113 UU113 UU113 UU1434 UU0132 UU1434 UU0133 UU1434 UU01434	63.7	3-65s	core	238	12	75	7	0.31	0.04	3.6419	0.2245	0.2150	0.0085	0.64	0.1228	0.0058	1255.6	45.2	1558.7	49.1	80.5		
Rejected spots 5.1 3s rim 114 10 20 4 0.18 0.0733 0.0070 0.0120 0.0044 0.0039 76.6 2.7 71.8 6.6 10.6 7 irregular signal 16.7 3s core 2.70 2.5 32 6 1.12 0.02 0.1345 0.0007 0.0164 0.0004 0.88 0.0444 0.0024 120.6 3.8 128.1 6.7 94.1 irregular signal 17.7 65s rim 67 9 47 1.3 0.70 0.22 0.0454 0.0004 0.65 0.0488 0.0014 1050 2.6 10.64 3.9 952 irregular signal 17.7 65s rim 67 9 47 1.3 0.70 0.22 0.0453 0.0044 0.61 0.051 0.0019 79.2 2.3 83.1 3.9 95.2 17.11 68s rime 1.0 <td>03.8 63.9</td> <td>კ-ნევ 3-65s</td> <td>mantle rim</td> <td>229 194</td> <td>10</td> <td>ы 6</td> <td>1</td> <td>0.02</td> <td>0.003</td> <td>0.0918</td> <td>0.0191</td> <td>0.0153</td> <td>0.0008</td> <td>0.24</td> <td>0.0434</td> <td>0.0088</td> <td>98.2 69.4</td> <td>4.9 3.9</td> <td>89.2 66.3</td> <td>19.2</td> <td>104.7</td> <td></td>	03.8 63.9	კ-ნევ 3-65s	mantle rim	229 194	10	ы 6	1	0.02	0.003	0.0918	0.0191	0.0153	0.0008	0.24	0.0434	0.0088	98.2 69.4	4.9 3.9	89.2 66.3	19.2	104.7		
5.1 3s rim 114 10 20 4 0.18 0.073 0.0075 0.0120 0.0004 0.38 0.0444 0.0039 76.6 2.7 71.8 6.6 106.7 irregular signal 16.7 3s core 270 2.5 3.2 6 0.12 0.012 0.0164 0.0006 0.57 0.0517 0.0024 120.6 3.8 122.1 6.7 94.1 irregular signal 16.7 3s mantle 33 2.6 0.02 0.1345 0.0044 0.0006 0.57 0.0517 0.0024 120.6 3.8 122.1 6.7 94.1 irregular signal 17.7 65s rim 67 9 47 3 0.06 0.01 0.0164 0.0004 0.61 0.0501 0.0019 79.2 2.3 83.1 3.9 95.2 irregular signal 17.17 65 rim 67 9 4.1 0.03 0.0483 0.0044 0.019 79.2 2.3 83.1 3.9 95.2 17.11	Rejec	ted spot	8																			Remarks	
Org Core Core <thc< td=""><td>5.1</td><td>3s 3c</td><td>rim</td><td>114</td><td>10</td><td>20</td><td>4</td><td>0.18</td><td>0.04</td><td>0.0733</td><td>0.0070</td><td>0.0120</td><td>0.0004</td><td>0.38</td><td>0.0444</td><td>0.0039</td><td>76.6</td><td>2.7</td><td>71.8</td><td>6.6</td><td>106.7</td><td>irregular signal</td></thc<>	5.1	3s 3c	rim	114	10	20	4	0.18	0.04	0.0733	0.0070	0.0120	0.0004	0.38	0.0444	0.0039	76.6	2.7	71.8	6.6	106.7	irregular signal	
17.7 ops nm or 9 4/ 13 0.70 0.22 0.0833 0.0041 0.0148 0.0004 0.61 0.0501 0.0019 79.2 2.3 83.1 3.9 95.2 irregular signal 17.11 69 core 17 2.6 0.10 0.03 0.0493 0.0041 0.0148 0.0004 0.68 0.0468 0.0015 94.4 2.7 92.4 3.8 102.2 irregular signal 17.12 70 mantle 290 0.11 0.03 1.4798 0.058 0.0029 0.73 0.1071 0.0029 615.6 17.0 92.4 3.8 102.2 irregular signal 18.8 78 rim 116 6 51 5 0.043 0.051 0.0029 0.73 0.1071 0.0029 87.1 3.4 98.0 irregular signal 18.9 78 rim 130 7 53 6 0.41 0.05 0.0183 0.0004 0.58 0.0480 0.0016 101.2 2.3 101.2 3.9<	16.7	3s	mantle	333	26	19	3	0.06	0.01	0.1105	0.0042	0.0164	0.0004	0.65	0.0488	0.0014	105.0	2.6	106.4	3.9	98.6	irregular signal	
17.12 70 mantle 290 40 32 9 0.11 0.03 1.4798 0.0589 0.1002 0.0029 0.73 0.1071 0.0029 615.6 17.0 922.1 24.4 66.8 irregular signal 18.8 78s rim 116 6 51 5 0.43 0.0589 0.0135 0.0003 0.56 0.0482 0.0016 86.3 2.0 87.1 3.4 99.0 irregular signal 18.9 78s rim 130 7 53 6 0.41 0.05 0.0142 0.0158 0.0004 0.58 0.0480 0.0016 101.2 2.3 101.2 3.9 100.0 irregular signal 63.5 3-65s mantle 78 0.041 0.051 0.0044 0.058 0.0480 0.0016 101.2 2.3 101.2 3.9 100.0 irregular signal 63.5 3-65s mantle 78 4 80 9 0.0431 0.0118 0.0004 75.5 5.9 61.0 41.3 123.8 <	17.7 17.11	69s	rim core	67 171	9 24	47	13 5	0.70	0.22	0.0853	0.0041	0.0124	0.0004	0.61 0.68	0.0501	0.0019	79.2 94.4	2.3 2.7	83.1 92.4	3.9 3.8	95.2 102.2	ırregular signal irregular signal	
18.9 78s rim 130 7 53 6 0.41 0.05 0.1048 0.0042 0.0158 0.0040 0.58 0.0046 101.2 2.3 101.2 2.9 100.0 irregular signal 63.5 3-65s mantle 78 4 80 9 1.03 0.12 0.0619 0.0431 0.0118 0.0009 0.11 0.0381 0.0264 75.5 5.9 61.0 41.3 123.8 irregular signal	17.12 18.8	70 78s	mantle rim	290 116	40 6	32 51	9 5	0.11 0.43	0.03 0.05	1.4798 0.0896	0.0589 0.0037	0.1002 0.0135	0.0029 0.0003	0.73 0.56	0.1071 0.0482	0.0029 0.0016	615.6 86.3	17.0 2.0	922.1 87.1	24.4 3.4	66.8 99.0	irregular signal irregular signal	
1.1.2	18.9 63.5	78s 3-65e	rim mantle	130 78	7 4	53 80	6 9	0.41	0.05	0.1048	0.0042	0.0158	0.0004	0.58	0.0480	0.0016	101.2	2.3	101.2 61.0	3.9 41.3	100.0 123.8	irregular signal	

MK02M (Busetsu granite) Sequences: 44, 45

											Is	otope ratios						Age (Ma)			
Spot no	o. Grain n	o. Position	U		Th		Th/U		²⁰⁷ Pb/		²⁰⁶ Pb/			²⁰⁷ Pb/		²⁰⁶ Pb/		²⁰⁷ Pb/		%	
			(ppm)	±	(ppm)	±		±	²³⁵ U	±	²³⁸ U	±	ρ	²⁰⁶ Pb	±	²³⁸ U	±	²³⁵ U	±	Conc.	
44.1	45e	rim	1155	108	1324	247	1 1 5	0.24	0.0727	0.0036	0.0110	0.0005	0.90	0.0481	0.0010	70.4	3.2	71.3	3.4	98.7	
44.1	460	rim	570	53	384	72	0.67	0.14	0.0700	0.0000	0.0109	0.0005	0.84	0.0466	0.0014	60.0	3.1	68.7	3.6	101.8	
44.3	46s	rim	488	45	221	41	0.45	0.09	0.0725	0.0040	0.0112	0.0005	0.83	0.0472	0.0015	71.5	3.2	71.1	3.8	100.6	
44.4	1a	core	457	43	207	39	0.45	0.09	0.0719	0.0040	0.0109	0.0005	0.82	0.0478	0.0015	69.9	3.2	70.5	3.8	99.3	
44.5	16	rim	836	78	698	130	0.83	0.17	0.0730	0.0037	0.0109	0.0005	0.88	0.0487	0.0012	69.6	3.1	71.5	3.6	97.4	
44.6	4s	core	328	31	112	21	0.34	0.07	5,2266	0.2413	0.3148	0.0141	0.97	0.1204	0.0013	1764.5	69.6	1857.0	40.1	95.0	
44.7	4s	rim	3820	356	96	18	0.03	0.01	0.0731	0.0034	0.0111	0.0005	0.95	0.0479	0.0007	71.0	3.2	71.6	3.3	99.1	
44.8	24s	core	911	85	548	102	0.60	0.13	0.0703	0.0036	0.0107	0.0005	0.88	0.0476	0.0011	68.8	3.1	69.0	3.4	99.6	
44.9	24s	rim	592	55	323	60	0.54	0.11	0.0729	0.0039	0.0109	0.0005	0.85	0.0486	0.0014	69.8	3.1	71.5	3.7	97.7	
44.10	72s	rim	654	61	319	59	0.49	0.10	0.0706	0.0037	0.0107	0.0005	0.85	0.0480	0.0013	68.3	3.1	69.3	3.6	98.7	
44.11	72s	rim	324	30	97	18	0.30	0.06	0.0714	0.0042	0.0107	0.0005	0.77	0.0484	0.0018	68.7	3.1	70.0	4.0	98.0	
44.12	27s	rim	2196	205	358	67	0.16	0.03	0.0728	0.0035	0.0112	0.0005	0.93	0.0473	0.0008	71.5	3.2	71.3	3.3	100.3	
44.13	28s	rim	649	60	643	120	0.99	0.21	0.0731	0.0039	0.0109	0.0005	0.86	0.0488	0.0013	69.6	3.1	71.6	3.7	97.2	
45.1	29s	mantle	353	26	138	20	0.39	0.06	0.0804	0.0046	0.0124	0.0006	0.80	0.0470	0.0016	79.4	3.6	78.5	4.3	101.2	
45.2	29s	rim	1714	124	944	137	0.55	0.09	0.0739	0.0036	0.0113	0.0005	0.93	0.0474	0.0009	72.4	3.2	72.4	3.4	100.0	
45.3	30s	mantle	493	36	14	2	0.03	0.005	0.0945	0.0050	0.0140	0.0006	0.86	0.0491	0.0013	89.4	4.0	91.7	4.6	97.5	
45.4	30s	rim	1051	76	337	49	0.32	0.05	0.0736	0.0037	0.0114	0.0005	0.90	0.0467	0.0010	73.3	3.3	72.1	3.5	101.6	
45.5	82s	rim	1067	77	381	55	0.36	0.06	0.0751	0.0038	0.0116	0.0005	0.90	0.0472	0.0010	74.0	3.3	73.5	3.6	100.7	
45.6	82s	rim	1333	97	606	88	0.45	0.07	0.0731	0.0036	0.0114	0.0005	0.91	0.0465	0.0009	73.1	3.3	71.7	3.4	102.0	
45.7	34s	core	630	46	275	40	0.44	0.07	0.0784	0.0041	0.0120	0.0005	0.86	0.0472	0.0013	77.2	3.5	76.6	3.9	100.8	
45.8	34s	rim	210	15	102	15	0.49	0.08	0.0694	0.0045	0.0107	0.0005	0.70	0.0470	0.0022	68.7	3.2	68.1	4.3	100.8	
45.9	305	rim	340	25	200	38	0.75	0.12	0.0765	0.0044	0.0117	0.0005	0.79	0.0475	0.0017	74.9	3.4	74.9	4.Z	100.0	
45.10	80S	rim	527	38	2/2	39	0.52	0.08	0.0734	0.0040	0.0115	0.0005	0.84	0.0463	0.0014	/3./	3.3	/2.0	3.8	102.4	
40.12	40S	core	489	30	238	34	0.49	0.08	0.0091	0.0038	0.0109	0.0005	0.82	0.0401	0.0015	09.7	3.1	07.9	3.0	102.7	
40.15	405	rim	497	30	207	30	0.42	0.07	0.0734	0.0040	0.0112	0.0000	0.03	0.0470	0.0014	/1.0	3.2	/1.9	3.0	99.0	
Rejec	ted spot	8																			Remarks
45.11	86s	mantle	90	7	33	5	0.37	0.06	0.3282	0.0195	0.0135	0.0006	0.80	0.1762	0.0063	86.5	4.1	288.2	15.0	30.0	irregular signal

GY89A (Busetsu granite) Sequences: 46, 47

											Is	sotope ratios						Age (Ma)			
Spot n	o. Grain n	o. Position	U		Th		Th/U		²⁰⁷ Pb/		²⁰⁶ Pb/			²⁰⁷ Pb/		²⁰⁶ Pb/		²⁰⁷ Pb/		%	
_			(ppm)	±	(ppm)	±		±	²³⁵ U	±	²³⁸ U	±	ρ	²⁰⁶ Pb	±	²³⁸ U	±	²³⁵ U	±	Conc.	
46.1	1s	rim	269	20	113	17	0.42	0.07	0.0749	0.0046	0.0110	0.0005	0.75	0.0496	0.0020	70.2	3.2	73.4	4.3	95.7	
46.4	14s	core	697	52	238	36	0.34	0.06	0.1014	0.0051	0.0160	0.0007	0.89	0.0460	0.0011	102.2	4.6	98.1	4.8	104.2	
46.5	14s	rim	764	57	397	60	0.52	0.09	0.1008	0.0051	0.0151	0.0007	0.89	0.0484	0.0011	96.6	4.3	97.5	4.7	99.0	
46.6	19s	rim	1926	145	162	24	0.08	0.01	0.0695	0.0034	0.0107	0.0005	0.93	0.0473	0.0009	68.3	3.1	68.2	3.2	100.2	
46.7	19s	core	182	14	139	21	0.76	0.13	0.2507	0.0133	0.0359	0.0016	0.85	0.0506	0.0014	227.5	10.1	227.1	10.9	100.2	
46.9	69s	core	378	28	58	9	0.15	0.03	5.3407	0.2464	0.3348	0.0150	0.97	0.1157	0.0013	1861.8	72.9	1875.4	40.2	99.3	
46.10	69s	core	364	27	178	27	0.49	0.08	5.4434	0.2511	0.3435	0.0154	0.97	0.1149	0.0013	1903.6	74.3	1891.7	40.4	100.6	
46.11	71s	rim	150	11	254	38	1.70	0.28	0.0723	0.0052	0.0109	0.0005	0.65	0.0483	0.0026	69.6	3.2	70.8	4.9	98.3	
46.13	71s	rim	486	37	34	5	0.07	0.01	0.0744	0.0041	0.0115	0.0005	0.83	0.0469	0.0015	73.7	3.3	72.9	3.9	101.2	
47.1	79s	rim	1141	166	51	15	0.04	0.01	0.0714	0.0036	0.0110	0.0005	0.90	0.0472	0.0010	70.3	3.2	70.0	3.4	100.4	
47.2	34s	core	253	37	139	40	0.55	0.18	0.2079	0.0109	0.0301	0.0014	0.87	0.0501	0.0013	191.2	8.5	191.8	9.2	99.7	
47.3	34s	rim	693	101	77	22	0.11	0.04	0.0709	0.0037	0.0108	0.0005	0.86	0.0477	0.0013	69.1	3.1	69.5	3.5	99.4	
47.4	89s	core	95	14	58	17	0.62	0.20	0.2581	0.0151	0.0367	0.0017	0.78	0.0510	0.0019	232.2	10.4	233.2	12.3	99.6	
47.5	89s	rim	1253	182	151	44	0.12	0.04	0.0725	0.0036	0.0110	0.0005	0.91	0.0480	0.0010	70.3	3.1	71.1	3.4	98.9	
47.6	90s	core	165	24	96	28	0.58	0.19	0.0676	0.0048	0.0108	0.0005	0.66	0.0454	0.0024	69.2	3.2	66.4	4.5	104.2	
47.7	90s	rim	89	13	45	13	0.50	0.16	0.0748	0.0062	0.0114	0.0005	0.57	0.0475	0.0032	73.2	3.5	73.3	5.9	100.0	
47.8	91s	rim	934	136	270	79	0.29	0.09	0.0763	0.0039	0.0116	0.0005	0.89	0.0478	0.0011	74.2	3.3	74.7	3.6	99.4	
47.9	91s	core	385	56	50	14	0.13	0.04	5.1409	0.2371	0.3197	0.0143	0.97	0.1166	0.0013	1788.5	70.4	1842.9	40.0	97.0	
47.10	93s	rim	1702	247	182	53	0.11	0.03	0.0723	0.0035	0.0112	0.0005	0.92	0.0467	0.0009	71.9	3.2	70.8	3.3	101.5	
47.11	93s	core	329	48	220	64	0.67	0.22	0.3048	0.0150	0.0428	0.0019	0.91	0.0516	0.0010	270.2	11.9	270.2	11.8	100.0	
47.12	93s	rim	2575	374	513	149	0.20	0.06	0.0730	0.0035	0.0111	0.0005	0.94	0.0477	0.0008	71.0	3.2	71.5	3.3	99.4	
47.13	95s	core	395	57	537	156	1.36	0.44	0.0707	0.0040	0.0107	0.0005	0.80	0.0479	0.0017	68.6	3.1	69.4	3.8	98.9	
Rejec	ted spot	8																			Rema
46.2	4s	rim	281	21	67	10	0.24	0.04	0.0800	0.0048	0.0119	0.0005	0.76	0.0487	0.0019	76.3	3.5	78.1	4.5	97.6	irregu
46.3	4s	core	341	26	267	40	0.78	0.13	0.0805	0.0046	0.0124	0.0006	0.79	0.0470	0.0017	79.6	3.6	78.6	4.4	101.2	irregu
46.8	69s	rim	827	62	91	14	0.11	0.02	0.0732	0.0038	0.0112	0.0005	0.88	0.0472	0.0012	72.1	3.2	71.7	3.6	100.5	irregu
46.12	71s	core	490	37	23	3	0.05	0.01	0.0927	0.0049	0.0130	0.0006	0.85	0.0519	0.0015	83.0	3.7	90.1	4.6	92.2	irregu

GY03D (~20 cm thick leucosome in metatexite) Sequences: 41, 42, 43

											ls	otope ratios						Age (Ma)		
Spot no.	Grain no.	Position	U		Th		Th/U		²⁰⁷ Pb/		²⁰⁶ Pb/			²⁰⁷ Pb/		²⁰⁶ Pb/		²⁰⁷ Pb/		%
			(ppm)	±	(ppm)	±		±	235U	±	²³⁸ U	±	ρ	²⁰⁶ Pb	±	²³⁸ U	±	²³⁵ U	±	Conc.
41.1	3s	inner rim	792	47	6	1	0.01	0.001	0.1007	0.0051	0.0151	0.0007	0.90	0.0485	0.0011	96.4	4.3	97.5	4.7	98.9
41.2	3s	core	254	15	367	44	1.45	0.19	11.0508	0.5094	0.4811	0.0216	0.97	0.1666	0.0018	2532.0	94.6	2527.4	43.9	100.2
41.3	6s	outer rim	3327	198	12	1	0.004	0.000	0.0872	0.0041	0.0131	0.0006	0.95	0.0481	0.0007	84.2	3.8	84.9	3.8	99.2
41.4	6s	core	1422	85	104	12	0.07	0.01	1.1100	0.0512	0.1082	0.0049	0.97	0.0744	0.0008	662.6	28.3	758.2	25.0	87.4
41.5	7s	inner rim	331	20	17	2	0.05	0.01	0.1069	0.0059	0.0155	0.0007	0.82	0.0502	0.0016	98.8	4.5	103.1	5.4	95.9
41.6	7s	core	504	30	135	16	0.27	0.04	0.2184	0.0107	0.0306	0.0014	0.92	0.0517	0.0010	194.6	8.6	200.6	9.0	97.0
41.7	7s	outer rim	2718	162	12	1	0.004	0.001	0.0940	0.0044	0.0142	0.0006	0.95	0.0480	0.0007	90.9	4.1	91.3	4.1	99.6
41.8	8s	core	403	24	138	16	0.34	0.05	4.8498	0.2238	0.3068	0.0138	0.97	0.1147	0.0012	1724.9	68.2	1793.6	39.6	96.2
41.9	8s	core	470	28	111	13	0.24	0.03	4.6304	0.2135	0.2955	0.0132	0.97	0.1137	0.0012	1668.9	66.3	1754.8	39.3	95.1
41.10	8s	inner rim	254	15	28	3	0.11	0.01	0.1002	0.0058	0.0155	0.0007	0.78	0.0470	0.0017	98.9	4.5	96.9	5.4	102.0
41.11	9s	core	226	13	55	7	0.24	0.03	2.0814	0.0974	0.1367	0.0061	0.96	0.1104	0.0015	826.2	34.9	1142.7	32.6	72.3
41.12	9s	outer rim	3375	201	14	2	0.004	0.001	0.0959	0.0045	0.0145	0.0007	0.95	0.0479	0.0007	92.8	4.1	93.0	4.2	99.9
41.13	9s	outer rim	3828	228	11	1	0.003	0.000	0.0942	0.0044	0.0144	0.0006	0.96	0.0476	0.0007	91.9	4.1	91.4	4.1	100.5
42.1	11s	core	669	58	900	156	1.35	0.26	0.3157	0.0150	0.0445	0.0020	0.94	0.0514	0.0008	280.7	12.3	278.6	11.7	100.8
42.2	11s	outer rim	2367	204	7	1	0.003	0.001	0.0914	0.0044	0.0137	0.0006	0.94	0.0485	0.0008	87.4	3.9	88.8	4.1	98.5
42.3	13s	core	240	21	150	26	0.62	0.12	0.1401	0.0078	0.0209	0.0009	0.81	0.0487	0.0016	133.0	6.0	133.1	7.0	99.9
42.4	13s	outer rim	4635	400	15	3	0.003	0.001	0.0965	0.0045	0.0146	0.0007	0.96	0.0481	0.0006	93.2	4.2	93.5	4.2	99.7
42.5	15s	core	1366	118	1260	218	0.92	0.18	0.2671	0.0125	0.0374	0.0017	0.96	0.0518	0.0007	236.9	10.4	240.4	10.1	98.5
42.6	15s	inner rim	709	61	57	10	0.08	0.02	0.0959	0.0049	0.0144	0.0007	0.88	0.0481	0.0012	92.5	4.1	93.0	4.5	99.5
42.7	18s	core	473	41	501	87	1.06	0.20	0.2775	0.0135	0.0398	0.0018	0.92	0.0506	0.0009	251.6	11.1	248.7	10.8	101.2
42.8	18s	outer rim	3289	284	35	6	0.01	0.00	0.0988	0.0047	0.0149	0.0007	0.95	0.0482	0.0007	95.1	4.2	95.7	4.3	99.4
42.9	19s	core	292	25	53	9	0.18	0.03	4.6994	0.2173	0.2967	0.0133	0.97	0.1149	0.0013	1674.9	66.5	1767.1	39.5	94.8
42.10	19s	outer rim	3674	317	14	2	0.004	0.001	0.0925	0.0043	0.0138	0.0006	0.95	0.0485	0.0007	88.5	3.9	89.8	4.0	98.5
42.11	20s	core	2429	210	1263	218	0.52	0.10	0.1235	0.0058	0.0173	0.0008	0.95	0.0516	0.0007	110.8	4.9	118.2	5.3	93.8
42.12	20s	inner rim	799	69	12	2	0.01	0.003	0.1047	0.0052	0.0161	0.0007	0.90	0.0472	0.0010	102.9	4.6	101.1	4.8	101.8
42.13	20s	outer rim	3694	319	14	2	0.004	0.001	0.0890	0.0042	0.0134	0.0006	0.95	0.0480	0.0007	86.0	3.8	86.6	3.9	99.4
43.2	28s	core	2848	145	1481	151	0.52	0.06	0.1824	0.0085	0.0262	0.0012	0.96	0.0505	0.0006	166.8	7.4	170.1	7.3	98.0
43.3	31s	outer rim	4651	237	14	1	0.003	0.000	0.0875	0.0041	0.0130	0.0006	0.96	0.0489	0.0007	83.1	3.7	85.1	3.8	97.5
43.4	31s	core	381	19	16	2	0.04	0.005	0.1623	0.0084	0.0196	0.0009	0.87	0.0602	0.0015	124.9	5.6	152.7	7.4	81.7
43.5	41s	core	823	42	443	45	0.54	0.06	0.2078	0.0100	0.0301	0.0014	0.94	0.0500	0.0009	191.3	8.5	191.7	8.4	99.8
43.6	41s	outer rim	4561	233	26	3	0.01	0.001	0.0895	0.0042	0.0131	0.0006	0.96	0.0494	0.0007	84.1	3.8	87.0	3.9	96.7
43.7	43s	outer rim	3203	163	12	1	0.004	0.000	0.0912	0.0043	0.0138	0.0006	0.95	0.0480	0.0007	88.2	3.9	88.6	4.0	99.6
43.8	46s	core	285	15	176	18	0.62	0.07	0.1846	0.0097	0.0265	0.0012	0.86	0.0506	0.0014	168.4	7.5	172.0	8.3	97.9
43.9	46s	core	1678	86	842	86	0.50	0.06	0.1846	0.0087	0.0267	0.0012	0.95	0.0501	0.0007	169.9	7.5	172.0	7.5	98.7
43.10	53s	outer rim	4132	211	17	2	0.004	0.000	0.0876	0.0041	0.0131	0.0006	0.96	0.0484	0.0007	84.1	3.7	85.3	3.8	98.6
43.11	53s	inner rim	869	44	57	6	0.07	0.01	0.1025	0.0051	0.0157	0.0007	0.90	0.0473	0.0010	100.5	4.5	99.0	4.7	101.5
43.13	54s	inner rim	1215	62	16	2	0.01	0.002	0.0952	0.0047	0.0145	0.0007	0.92	0.0476	0.0009	92.8	4.1	92.3	4.3	100.5
Rejecto	ed spots																			
43.1	28s	outer rim	5877	300	256	26	0.04	0.005	0.1546	0.0072	0.0116	0.0005	0.97	0.0965	0.0011	74.5	3.3	146.0	6.3	51.0
43.12	54s	core	814	42	52	5	0.06	0.01	0.1287	0.0064	0.0175	0.0008	0.91	0.0534	0.0011	111.7	5.0	122.9	5.7	90.8

GY47A (Pegmatite) Sequences: 9, 27

											Is	otope ratios						Age (Ma)			
Spot no	. Grain no	. Position	U		Th		Th/U		²⁰⁷ Pb/ 235		²⁰⁶ Pb/ 238			²⁰⁷ Pb/ ²⁰⁶ Db		²⁰⁶ Pb/		²⁰⁷ Pb/ 235		%	
			(ppm)	±	(ppm)	±		±		ž	0	±	ρ	PD	±	0	±	0	±	Conc.	
9.1	1	core	936	64	37	5	0.04	0.01	3.6126	0.1500	0.2382	0.0086	0.87	0.1100	0.0022	1377.4	45.1	1552.3	33.6	88.7	
9.2	1	core	492	34	28	4	0.06	0.01	4.4928	0.1873	0.2891	0.0105	0.87	0.1127	0.0023	1636.9	52.7	1729.6	35.2	94.6	
9.3	1	rim	1021	70	6	1	0.01	0.001	0.0906	0.0045	0.0143	0.0005	0.74	0.0458	0.0015	91.7	3.3	88.0	4.2	104.2	
9.4	1s	core	234	16	56	8	0.24	0.04	5.2519	0.2208	0.3378	0.0123	0.86	0.1127	0.0024	1876.3	59.4	1861.1	36.5	100.8	
9.5	1s	core	575	39	309	42	0.54	0.08	7.4527	0.3091	0.4047	0.0147	0.87	0.1336	0.0027	2190.4	67.7	2167.3	37.8	101.1	
9.6	1s	rim	1648	113	10	1	0.01	0.001	0.0959	0.0044	0.0144	0.0005	0.79	0.0482	0.0014	92.3	3.3	93.0	4.1	99.3	
9.7	2s	rim	1239	85	5	1	0.004	0.001	0.0894	0.0043	0.0136	0.0005	0.76	0.0475	0.0015	87.4	3.2	86.9	4.0	100.5	
9.8	2s	core	242	17	163	22	0.67	0.10	0.2406	0.0130	0.0338	0.0013	0.69	0.0515	0.0020	214.6	7.8	218.9	10.7	98.0	
9.9	3s	rim	1305	90	7	1	0.01	0.001	0.0933	0.0045	0.0146	0.0005	0.77	0.0464	0.0014	93.3	3.4	90.6	4.1	103.0	
9.10	3s	core	1068	73	715	98	0.67	0.10	0.1720	0.0079	0.0258	0.0009	0.80	0.0483	0.0013	164.5	5.9	161.1	6.8	102.1	
9.11	3s	rim	2775	190	11	2	0.004	0.001	0.0906	0.0040	0.0140	0.0005	0.82	0.0470	0.0012	89.5	3.2	88.0	3.8	101.7	
9.12	4s	rim	2544	1/5	14	2	0.01	0.001	0.0945	0.0042	0.0144	0.0005	0.82	0.0476	0.0012	92.2	3.3	91.7	3.9	100.6	
27.9	15	rim	1818	68	12	1	0.01	0.001	0.0923	0.0036	0.0141	0.0005	0.94	0.0476	0.0006	90.0	3.3	89.7	3.3	100.4	
27.10	ZS	rim	1858	/0	20	2	0.01	0.001	0.1048	0.0040	0.0141	0.0005	0.95	0.0539	0.0006	90.2	3.3	101.2	3.7	89.1	
27.11	25	rim	1408	55	9		0.01	0.001	0.0921	0.0036	0.0141	0.0005	0.93	0.0474	0.0007	90.2	3.3	69.4	3.4	100.9	
27.12	3S 2-	rim	1098	00	8		0.01	0.000	0.0900	0.0035	0.0137	0.0005	0.94	0.0476	0.0007	87.8	3.2	87.5	3.3	100.4	
21.13	38	rim	2308	87	10		0.01	0.001	0.0954	0.0036	0.0139	0.0005	0.95	0.0500	0.0006	88.7	3.Z	92.5	3.4	90.8	
Reject	ed spots	3																			Remarks
9.13	4s	mixed	1298	89	82	11	0.06	0.01	0.1191	0.0055	0.0178	0.0007	0.79	0.0484	0.0014	113.9	4.1	114.2	5.0	99.7	mixed analy
27.8	1s	rim	3201	121	34	3	0.01	0.001	0.1018	0.0038	0.0154	0.0006	0.97	0.0479	0.0005	98.7	3.6	98.5	3.5	100.3	irregular sig

Table S3	
Representative amphibole analyses from sample GY33A.	

Grain	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2
Spot	1	2	3	4	5	6	7	8	12	13	14	15	16	17	18	19	20
Position	rim	rim	rim	rim	rim	rim	core	core	rim	core	core						
SiO ₂	42.28	43.14	43.00	44.52	42.48	43.38	44.27	44.11	43.07	42.99	42.44	43.23	42.92	43.26	42.91	43.68	43.71
TiO ₂	1.08	1.13	0.96	1.12	1.03	1.09	1.26	1.32	0.82	1.08	1.07	1.07	1.00	1.06	1.22	1.40	1.40
Al ₂ O ₃	11.30	10.71	10.99	9.02	11.61	10.71	9.29	9.50	11.35	10.73	11.01	10.08	11.17	11.30	10.56	9.46	9.56
Cr_2O_3	0.03	0.06	0.01	b.d.	0.04	0.07	0.07	0.09	b.d.	b.d.	0.02	b.d.	0.04	0.02	0.04	0.01	b.d.
FeO	21.86	22.14	20.69	21.41	22.37	22.22	22.03	21.44	21.98	22.16	22.39	22.00	22.17	21.79	23.01	22.05	21.03
MnO	0.62	0.46	0.65	0.69	0.51	0.62	0.72	0.97	0.66	0.50	0.55	0.47	0.64	0.86	0.52	0.63	0.73
MgO	6.25	6.40	6.30	7.08	5.79	6.29	6.74	6.69	5.87	6.42	6.20	6.35	5.96	6.00	6.38	6.35	6.43
CaO	11.80	11.45	11.71	11.49	11.62	11.59	11.75	11.27	11.86	11.50	11.58	11.42	11.60	11.52	11.80	10.91	10.89
BaO	b.d.	0.03	0.01	0.06	0.03	b.d.	b.d.	0.03	b.d.	0.05	0.05	0.15	0.01	b.d.	0.13	b.d.	0.04
Na ₂ O	1.26	1.28	1.14	1.04	1.26	1.32	1.19	1.26	1.12	1.18	1.24	1.08	1.22	1.28	1.15	1.24	1.35
K ₂ O	1.39	1.37	1.31	1.09	1.49	1.38	1.21	1.26	1.52	1.37	1.43	1.36	1.38	1.54	1.35	1.19	1.30
F	b.d.	b.d.	0.02	0.01	b.d.	0.03	0.06	b.d.	0.03	0.01	0.07	b.d.	b.d.	0.01	0.05	0.07	b.d.
Cl	0.19	0.17	0.18	0.16	0.18	0.17	0.18	0.20	0.17	0.18	0.17	0.17	0.17	0.18	0.17	0.21	0.20
O=F	b.d.	b.d.	0.01	b.d.	b.d.	0.01	0.03	b.d.	0.01	b.d.	0.03	b.d.	b.d.	0.01	0.02	0.03	b.d.
O=Cl	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.05	0.04
Total (wt.%)	98.00	98.29	96.90	97.63	98.35	98.83	98.69	98.08	98.38	98.11	98.15	97.34	98.23	98.77	99.22	97.13	96.59
Number of O	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23
Si	6.52	6.62	6.65	6.83	6.53	6.62	6.75	6.76	6.60	6.61	6.54	6.70	6.59	6.60	6.56	6.76	6.78
Ti	0.13	0.13	0.11	0.13	0.12	0.12	0.14	0.15	0.09	0.12	0.12	0.12	0.12	0.12	0.14	0.16	0.16
Al	2.05	1.94	2.00	1.63	2.10	1.93	1.67	1.72	2.05	1.94	2.00	1.84	2.02	2.03	1.90	1.73	1.75
Cr	b.d.	0.01	b.d.	b.d.	b.d.	0.01	0.01	0.01	b.d.	b.d.	b.d.	b.d.	0.01	b.d.	0.01	b.d.	b.d.
Fe	2.82	2.84	2.67	2.75	2.88	2.84	2.81	2.75	2.82	2.85	2.89	2.85	2.85	2.78	2.94	2.85	2.73
Mn	0.08	0.06	0.08	0.09	0.07	0.08	0.09	0.13	0.09	0.07	0.07	0.06	0.08	0.11	0.07	0.08	0.10
Mg	1.44	1.46	1.45	1.62	1.33	1.43	1.53	1.53	1.34	1.47	1.43	1.47	1.36	1.37	1.45	1.47	1.49
Ca	1.95	1.88	1.94	1.89	1.91	1.90	1.92	1.85	1.95	1.89	1.91	1.90	1.91	1.88	1.93	1.81	1.81
Ba	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	0.01	b.d.	b.d.	0.01	b.d.	b.d.
Na	0.38	0.38	0.34	0.31	0.37	0.39	0.35	0.37	0.33	0.35	0.37	0.32	0.36	0.38	0.34	0.37	0.41
K	0.27	0.27	0.26	0.21	0.29	0.27	0.24	0.25	0.30	0.27	0.28	0.27	0.27	0.30	0.26	0.24	0.26
F	b.d.	b.d.	0.01	b.d.	b.d.	0.01	0.03	b.d.	0.01	b.d.	0.03	b.d.	b.d.	0.01	0.02	0.03	b.d.
Cl	0.05	0.04	0.05	0.04	0.05	0.04	0.05	0.05	0.04	0.05	0.04	0.04	0.04	0.05	0.04	0.05	0.05
Total cation	15.63	15.58	15.51	15.46	15.61	15.59	15.52	15.51	15.56	15.58	15.62	15.54	15.57	15.57	15.61	15.47	15.49
b.d.: below det	tection lim	it.															

Representative a	amphibole ar	alyses from	sample GY8	81B.																		
Grain	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2
Spot	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Position	rim	rim	rim	rim	rim	rim	rim	rim	rim	rim	core	core	core	rim	rim	rim	rim	rim	rim	rim	core	core
SiO ₂	43.83	42.90	44.06	44.37	43.40	44.26	45.25	44.35	44.19	43.79	43.93	44.78	43.58	43.73	43.80	44.07	44.32	44.19	44.40	44.81	43.05	43.55
TiO ₂	1.31	1.22	1.24	1.29	1.27	1.24	1.26	1.30	1.08	1.20	1.33	1.16	1.77	1.27	1.10	1.29	1.55	1.20	1.57	1.25	2.01	2.16
Al ₂ O ₃	10.78	12.00	10.49	10.13	10.67	9.76	9.79	9.26	10.60	9.97	10.01	9.67	9.53	10.11	10.30	10.14	10.03	9.89	9.85	10.03	9.70	9.33
Cr_2O_3	0.04	b.d.	0.03	0.04	0.01	0.02	0.05	0.01	b.d.	0.03	b.d.	0.05	b.d.	b.d.	b.d.	b.d.	0.01	b.d.	b.d.	0.01	0.04	0.07
FeO	21.02	21.79	21.13	22.26	20.99	21.83	21.62	21.71	21.85	21.15	21.99	21.52	21.25	20.54	19.57	20.65	20.82	21.21	21.03	22.72	22.24	21.13
MnO	0.78	0.64	0.69	0.80	0.48	0.61	0.71	0.71	0.49	0.71	0.66	0.78	0.54	0.55	0.64	0.62	0.73	0.57	0.52	0.64	0.71	0.59
MgO	6.49	5.94	6.53	6.80	6.69	7.09	6.98	6.98	6.49	6.56	6.62	6.88	6.55	6.67	6.54	6.78	6.73	6.93	7.24	7.02	6.65	6.35
CaO	11.32	11.68	11.43	11.48	11.40	11.20	11.54	11.10	11.42	11.38	11.04	11.68	10.99	11.74	11.63	11.65	11.63	11.57	11.38	11.56	10.87	11.11
BaO	0.06	0.12	b.d.	b.d.	b.d.	0.04	0.04	b.d.	0.04	0.04	b.d.	b.d.	0.03	0.07	b.d.	b.d.	0.12	b.d.	0.04	0.05	0.04	0.06
Na ₂ O	1.18	1.06	1.01	1.06	0.95	1.00	0.95	1.11	0.99	1.10	1.19	0.87	1.14	1.03	0.94	0.93	1.09	1.05	0.95	0.88	1.21	1.29
K ₂ O	1.02	1.28	1.01	0.98	1.04	0.95	0.83	0.82	1.06	0.98	1.06	0.91	0.95	1.02	1.04	0.96	0.94	0.92	0.96	0.90	1.04	1.13
F	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.
Cl	0.15	0.15	0.12	0.13	0.13	0.13	0.12	0.12	0.13	0.13	0.14	0.13	0.15	0.14	0.14	0.13	0.14	0.13	0.14	0.12	0.21	0.26
O=F	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.
O=Cl	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.05	0.06
Total (wt.%)	97.94	98.74	97.70	99.32	96.99	98.09	99.12	97.43	98.31	97.00	97.93	98.39	96.44	96.83	95.66	97.17	98.08	97.61	98.02	99.95	97.71	96.97
Number of O	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
s;	25 6.60	25 6.54	25 6 72	25 6 71	25 6.68	25 6.75	25 6.81	25 6.81	23 6 73	25 6 75	6 72	23 6.80	23 6.76	25 6 74	25 6 70	25 6.76	25 6 75	25 676	25 6 75	23 6 73	25 6.64	25 6 74
T;	0.05	0.14	0.75	0.15	0.00	0.14	0.01	0.15	0.12	0.14	0.15	0.12	0.70	0.15	0.12	0.15	0.75	0.14	0.19	0.14	0.04	0.25
A1	1.04	2.15	1.80	1.81	1.04	1.76	1.74	1.68	1.90	1.81	1.81	1.73	1.74	1.84	1.88	1.83	1.80	1.78	1.76	1.78	1.76	1.70
Cr	0.01	2.15 h.d	1.07 h.d	h.d	1.94 h.d	h./0	0.01	h.d	h.d	h.d	1.01 h.d	0.01	1./ 4	h.d	1.00 h.d	h.d	h.d	h./0	h./0	h./0	0.01	0.01
Fe	2.68	2.78	2 70	2.81	2 70	2 70	2 72	2 70	2.78	2.73	2.82	2 73	2.76	2.65	2.54	2.65	2.65	2.71	2.67	2.85	2.87	2 73
Mn	0.10	0.08	0.09	0.10	0.06	0.08	0.09	0.09	0.06	0.09	0.00	0.10	0.07	0.07	0.08	0.08	0.00	0.07	0.07	0.08	0.09	0.08
Ma	1 48	1.35	1 49	1.53	1.53	1.61	1.57	1.60	1 47	1.51	1.51	1.56	1.51	1.53	1.51	1.55	1.53	1.58	1.64	1.57	1.53	1.46
Ca	1.40	1.55	1.47	1.55	1.55	1.83	1.57	1.83	1.47	1.51	1.51	1.90	1.83	1.55	1.93	1.55	1.90	1.90	1.04	1.86	1.55	1.40
Ba	h.d	0.01	h.d	h.d	h.d	h.d	h.d	h d	h.d	h.d	h.d	h.d	h.d	h d	h./	h d	0.01	h.)0	h.d	h.d	h.d	h.d
Na	0.35	0.31	0.30	0.31	0.28	0.30	0.28	0.33	0.29	0.33	0.35	0.26	0.34	0.31	0.28	0.28	0.32	0.31	0.28	0.26	0.36	0.39
K	0.20	0.25	0.20	0.19	0.20	0.10	0.16	0.16	0.21	0.10	0.21	0.18	0.10	0.20	0.20	0.10	0.18	0.18	0.10	0.17	0.20	0.22
F	b.20	b.2.5	b.20	h d	b.20	b d	b d	b d	b.d	b d	b.d	b.10	b d	b.20	b.d	b d	b.10	b.10	b d	b.17	b.20	b.d
C1	0.04	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.03	0.04	0.04	0.04	0.03	0.04	0.03	0.04	0.03	0.05	0.07
01	0.04	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.04	0.05	0.04	0.04	0.04	0.05	0.04	0.05	0.04	0.05	0.00	0.07
Total cation	15.44	15.51	15.41	15.47	15.43	15.45	15.38	15.43	15.43	15.44	15.48	15.40	15.41	15.43	15.36	15.39	15.41	15.44	15.40	15.44	15.50	15.43
b.d.: below det	ection limi	t																				

Table S4

Table S5.					
Area	Pluton	Age (Ma)	Error (Ma)	Exposed Area (m ²)	Pulse
Mikawa	Kamihara W	98.9	0.8	52681691	99-95 Ma
Mikawa	Kamihara W	99.4	0.9	52681691	99-95 Ma
Mikawa	Kamihara E	96.0	1.0	75405830	99-95 Ma
Mikawa	Kiyosaki	94.7	0.7	6620551	99-95 Ma
Mikawa	81-75 Ma Hbl-Bt tonalite (Hazu)	81.1	1.0	10915494	81-75 Ma
Mikawa	81-75 Ma Hbl-Bt tonalite (Hazu)	81.1	1.0	10915494	81-75 Ma
Mikawa	81-75 Ma Hbl-Bt tonalite (Hazu)	75.0	1.0	10915494	81-75 Ma
Mikawa	78-75 Ma (Hbl)-Bt granite (Goyu)	77.6	0.6	7589369	81-75 Ma
Mikawa	78-75 Ma (Hbl)-Bt granite (Goyu)	77.1	0.6	7589369	81-75 Ma
Mikawa	Tenryukyo	75.0	1.0	89061024	81-75 Ma
Mikawa	Shinshiro	69.5	0.3	78345569	75-69 Ma
Mikawa	Shinshiro	70.6	1.0	78345569	75-69 Ma
Mikawa	Mitsuhashi	73.2	0.7	30821457	75-69 Ma
Mikawa	Inagawa	74.7	0.7	469664293	75-69 Ma
Mikawa	Inagawa	69.2	0.5	469664293	75-69 Ma
Mikawa	Inagawa	73.0	3.0	469664293	75-69 Ma
Mikawa	Busetsu	69.5	0.4	340997532	75-69 Ma
Mikawa	Busetsu	70.9	0.9	340997532	75-69 Ma
Mikawa	Busetsu	70.8	1.4	340997532	75-69 Ma
Mikawa	Mafic	71.5	1.1	62488213	75-69 Ma
Mikawa	Mafic	72.4	1.2	62488213	75-69 Ma
Yanai	Shimokuhara	105.0	3.0	25152535	
Yanai	Namera	105.0	2.0	3578271	
Yanai	Soo	100.6	1.0	9075680	
Yanai	Gamano	101.0	1.9	163871347	
Yanai	Gamano	100.0	1.0	163871347	
Yanai	Gamano	94.7	1.0	163871347	
Yanai	Gamano	96.2	3.0	163871347	
Yanai	Gamano	95.3	1.0	163871347	
Yanai	Kibe	98.0	1.0	14856263	
Yanai	Kibe	97.6	1.0	14856263	
Yanai	Iwakuni	95.6	1.0	19197476	

Surface exposure of each pulse is chalculated as a total of surface exposure of each granitoid belonging to each pulses. The pulse names of each granitoids are listed in the 'Pulse' column.

Figure 12 was prepared with data presented in the table above.

Areas: Mikawa area (eastern part of the Ryoke belt); Yanai area (western part of the Ryoke belt)

Pluton: Pluton name following correlations in Skrzypek et al. (2016) and Takatsuka et al. (2018)

Age / Error (Ma): All available U - Pb zircon ages for the plutons considered. References can be found in Skrzypek et al. (2016), Takatsuka et al. (2018) and the present study.

Exposed area (m²): Exposed pluton area is calculated using the seamless geological map of Japan, scale 1: 200,000 (July 3, 2012 version) and for map extents corresponding to those of Fig.1 in Skrzypek et al. (2016) and Fig. 1 in the present study.

Calculation method: For each pluton, all available U - Pb zircon data are used to calculate an age probability density curve assuming a Gaussian distribution for each Age/Error pair. Each curve is then scaled so that its area corresponds to the exposed pluton area. The thick black curve represents the sum of all probability density curves for the individual plutons.

Limitations: Defining the age of a pluton based on a single sample cannot account for age heterogeneity. The assumption that a whole pluton preserves a single age within a 2-3 Ma error seems to be mostly valid, except when several facies are identified (Inagawa granite in the Mikawa area, Gamano granodiorite in the Yanai area). The estimated exposed pluton area is restricted to arbitrary map extents; the actual proportions may slightly vary.