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We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network
which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching
operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new
useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an
entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a
proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states.
The second example is a many-body decomposition of a tensor by using an entanglement branching operator.
We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we
conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement
entropy.
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I. INTRODUCTION

In the last decade, a tensor network grows a new promising
theoretical tool for treating many-body systems. A novel
property of a quantum state like a topological order [1] and
a symmetry protected topological order [2] can be explicitly
constructed by tensor networks. Tensor networks help us to
understand novel properties of a quantum state as a specific
property of a tensor. Based on the area law of entanglement en-
tropy, we can define a general class of quantum states as a tensor
network which has a special structure. For example, projected
entangled pair states (PEPS) [3] and multiscale entanglement
renormalization ansatz (MERA) [4]. We can control the quality
of these tensor network states through the degrees of freedom
on tensor indexes. Thus, we can use a tensor network as a
promising variational wave function for strongly correlated
materials. We can also define tensor network formulation of
many-body problems. It gives us a new perspective way to
treat many-body problems. For example, contracting a tensor
network with controllable accuracy, we can systematically
calculate the property of many-body systems.

To optimize a tensor in a tensor network and to calculate a
contraction of a tensor network, novel numerical algorithms for
a tensor network have been proposed in the last decades [5–10].
They help us to understand the properties of strongly corre-
lated materials numerically (for example, see Refs. [11–14]).
Thus, the development of tensor algorithms is highly active.
However, the types of operations in a tensor network algorithm
are limited.

In this paper we will propose a new tensor operation which
is called an entanglement branching (EB). The EB is to split a
composite entanglement flow in a link of a tensor network. We
will explicitly introduce an EB operator in a tensor network.

In Sec. II we will briefly introduce tensor networks, tensor
operations, and tensor network algorithms. In Sec. III we will
define an EB operator and a local problem to optimize it. In
Sec. IV we will show two applications of the EB operation. One
is an improvement of the higher-order tensor renormalization

group (HOTRG) [8] to catch a proper renormalization flow in a
tensor network space. The other is a many-body decomposition
of a tensor. In Sec. V we will conclude and discuss our results.

II. TENSOR NETWORKS, TENSOR OPERATIONS,
AND TENSOR NETWORK ALGORITHMS

A tensor network is a theoretical tool to describe correla-
tions between elements in a system. At first we will introduce a
useful graphical notation for tensor networks. Second, we will
introduce conventional operations in tensor networks. Finally,
we will show an example of tensor network algorithms.

Figure 1 shows a graphical representation of a tensor and a
tensor network. The object in Fig. 1(a) represents a tensor T .
Each line from the object represents each index of T . The link
(labeled m) between tensor L and R in Fig. 1(b) represents
a tensor contraction for a tensor L index and a tensor R

index. Thus, the whole of Fig. 1(b) represents a composite
tensor (LR): (LR)ijkl ≡ ∑

m LijmRmkl . Figure 1(c) represents
a complex composite tensor which consists of four tensors.
Since these diagrams visually seem to be networks of tensors,
they are called tensor networks.

A quantum state is defined in a tensor product space of
localized Hilbert spaces. Thus, if we can regard a tensor index
as the degrees of freedom in a localized Hilbert space, the
wave function is written as a tensor. For example, we can
regard four indexes i, j , k, and l in Figs. 1(a), 1(b) and 1(c)
as the physical degrees of freedom in a four-body system. A
quantum state defined by a tensor network is called a tensor
network state. We can use a tensor network state to represent a
novel quantum state explicitly [1,2]. If a tensor network state
satisfies the area law of entanglement entropy as like PEPS and
MERA, we can use it as a variational wave function which is
systematically controllable. In general, an entanglement flows
through a link of a tensor network. If we consider a cut of a
tensor network to decompose physical indexes into two groups,
the entanglement entropy of the decomposed subsystem is
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FIG. 1. (a) A graphical representation of a tensor T . Four lines
represent tensor indexes i, j , k, and l. (b) A graphical representation
of a tensor contraction between L and R. A link between two tensors
denotes a pair of contracted indexes. For example, a link m represents
a tensor contraction for the tensor L index and the tensor R index.
Thus, this diagram represents a composite tensor (LR) as (LR)ijkl =∑

m LijmRmkl . Applying a matrix decomposition, we can decompose
a tensor into two tensors with a tensor contraction as shown in this
diagram. (c) A tensor network which consists of four tensors, A, B,
C, and D. We call it a four-body tensor network.

less than
∑

i∈cut log(Di), where Di is the degrees of a link
i in a cut. Thus, a link i maximally contributes log(Di) to an
entanglement entropy. The minimum cut defines a limit of an
entanglement entropy of a tensor network state. Therefore, the
property of an entanglement entropy in a tensor network state
depends on the geometrical structure of a tensor network.

There are two basic operations to manipulate a tensor
network. One is a tensor contraction, and the other is a
tensor decomposition. We calculate a tensor contraction in
a tensor network to obtain a new composite tensor. For
example, from Fig. 1(b) or 1(c) to 1(a). Currently, the tensor
decomposition is simply based on a matrix decomposition.
However, the matrix-based tensor decomposition has a limit
of a transformation of tensor network topology. For example,
using a matrix-based tensor decomposition, we can transform
a tensor T in Fig. 1(a) to a tensor network of L and R in
Fig. 1(b). However, we cannot transform Fig. 1(a) to 1(c). The
matrix-based tensor decomposition produces only a two-body
tensor network. Even the higher-order singular value decom-
position (HOSVD) has the same limit that can be regarded as
the sequence of two-body decomposition. The EB operation
proposed in this paper will resolve this limit (see Sec. IV B).

Various types of tensor network algorithms have been
proposed in the last decades [5–10]. Here we will give a
brief introduction of the HOTRG algorithm [8] as a typical
tensor network algorithm. A partition function of a classical or
quantum system can be written by a grid-type tensor network as
shown in Fig. 2(a). HOTRG algorithm approximately makes
a coarse-grained tensor by inserting projection operators as
shown in Fig. 2(b). We calculate projection operators from
a HOSVD of a tensor T . Calculating tensor contractions
among two T s and two P s, we obtain a coarse-grained tensor
T ′ in Fig. 2(c). The number of tensors in the new tensor
network is half. Thus, the HOTRG algorithm is a real-space
renormalization on a tensor network. Repeating this procedure
with changing a direction, we finally obtain a single tensor.
A trace of a coarse-grained tensor is an approximation of all
tensor contractions in the original tensor network. In general,
as like the HOTRG algorithm, a procedure in a tensor network
algorithm is a combination of tensor contractions and matrix-
based tensor decompositions.
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FIG. 2. (a) A tensor network representation of a partition function
of a two-dimensional classical system or a one-dimensional quantum
system. Dotted circles denote a short-range loop entanglement struc-
ture. Red and blue colors denote remained and erased entanglement
flows by a HOTRG procedure, respectively. (b) A coarse-graining
procedure in a HOTRG algorithm. A projection operator P is usually
determined by a HOSVD. (c) A new renormalized tensor network for
(a). A new tensor T ′ is the result of a tensor contraction of two T s
and two P s in (b).

III. ENTANGLEMENT BRANCHING

A link in a tensor network carries an entanglement flow.
The entanglement flow may be composite. For example, the
entanglement flow in a link m of a tensor L in Fig. 1(b) may
include two entanglement flows from i and j . Here we consider
a splitting of a composite entanglement flow in a link as EB.

To define the EB operation explicitly, we introduce an
isometric EB operator for a link of a tensor. For the sake
of simplicity, we will discuss a splitting of a composite
entanglement flow which consists of two entanglement flows.
Figure 3(a) shows an EB operator B which splits a composite
entanglement flow on a link m into upper left and right links
(i and l). Here, based on a real space geometry, we consider
that upper left and right links (i and l) of B should carry
entanglement flows from lower left and right links j and k

of T , respectively [see two dotted curves in Fig. 3(a)].
We can freely insert a pair of EB operators B and B† on

a link in a tensor network without approximation, because B

is isometric [see Fig. 3(b)]. The insertion directly redesigns a
tensor network to add new links which carry split entanglement
flows. It gives us a new freedom to transform the topology of
a tensor network as discussed in Sec. IV B.

To find an appropriate EB operator for a target link of a
tensor T , we can use squeezing operators. Here we consider a
new tensor network in Fig. 3(c). Tensors w and v in Fig. 3(c) are
projection operators. If an entanglement flow from a lower left
link j ′ of T passes to an upper left link i ′ of B in Fig. 3(c), we
can construct a loop entanglement flow among T , B, and w [see
a left dotted loop in Fig. 3(c)]. Thus we can squeeze the degrees
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FIG. 3. (a) An EB operator B splits a composite entanglement
flow on a linkm into left and right directions. (b) An isometric property
of an EB operator B. (c) A tensor network with squeezing operators
w and v.
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of freedom on a link a without increasing the distance between
two tensor networks in Figs. 3(a) and 3(c). We can also squeeze
that on a link b by the combination of T , B, and v. Therefore, if
we can optimize a branching tensor B and projection operators
w and v to squeeze the degrees of freedom of links a and b with
minimizing the distance of tensor networks in Figs. 3(a) and
3(c), then the optimized tensor B is an appropriate EB operator.
The minimization of the distance between tensor networks
in Figs. 3(a) and 3(c) is a local optimization problem which
depends only on T . To optimize tensors B, w, and v, we can
use an iteration method in Appendix A.

We can extend the definition of an EB operator for a compos-
ite entanglement flow which consists of multiple entanglement
flows than 2. The optimization problem can be generalized for
such case straightforwardly.

IV. APPLICATIONS OF ENTANGLEMENT BRANCHING

The EB operation is a new freedom to manipulate a tensor
network because it can split a composite entanglement flow on
a link in a tensor network. In this section we will introduce two
applications of the EB operation.

A. Improvement of HOTRG algorithm

We introduced the HOTRG algorithm in Sec. II as an
example of tensor network algorithms. The HOTRG algorithm
approximately calculates all tensor contractions in a grid-
type tensor network [Fig. 2(a)]. We can apply it to calculate
the partition function of classical and quantum many-body
systems because a grid-type tensor network is a tensor network
representation of a partition function.

While we can regard the HOTRG algorithm as a real-space
renormalization group method on a tensor network as shown in
Fig. 2, it may not be a proper real-space renormalization. In an
ideal real-space renormalization, the effect of entanglements
under a new cut-off scale should be renormalized. Thus,
entanglement structures in a renormalized scale should be
disappeared after a real-space renormalization. However, the
HOTRG algorithm cannot erase a loop entanglement structure
in a renormalized scale. Dotted loops in Fig. 2(a) mean loop
entanglement structures in a tensor network. Here we assume
that the entanglement of tensor T has a corner double-line
(CDL) structure. Because loop entanglement structures are
defined in a renormalized scale, they should disappear in a
new renormalized tensor network of Fig. 2(c). While we can
remove half of all loop entanglements by projection operators
P in Fig. 2(b), half of them remain in a new renormalized
tensor network as shown in Fig. 2(c). Therefore, a coarse-
grained tensor by the HOTRG algorithm is not a proper
renormalized tensor. There is the same problem in the tensor
renormalization group (TRG) algorithm proposed by Levin
and Nave [7] which is the first real-space renormalization
group method for a grid-type tensor network. In fact, the
invariant entanglement structure for these algorithms is CDL
(see Ref. [15]). The idea to erase entanglements in a renor-
malized scale was first pointed by Gu and Wen [16]. However,
their tensor-entanglement-filtering renormalization algorithm
cannot correctly erase entanglements in a renormalized scale
near a critical point. Evenbly and Vidal [9] proposed the use
of disentangler tensors introduced in MERA to improve the
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FIG. 4. The HOTRG algorithm with EB operations. Red and blue
colors denote remained and erased entanglement flows by the original
HOTRG procedure, respectively. (a) An EB operator B to separate a
short-range entanglement flow. (b) A tensor network with squeezing
operators w for the optimization of B. (c) Insertion of EB operators
B in a grid-type tensor network. (d) New tensors L and R calculated
by an SVD decomposition of a tensor network (c). (e) Insertion of
projection operators P for a combination of R and L. (f) A new
renormalized tensor network. A new tensor T ′ is the result of a tensor
contraction of R and L and two P s in (e).

TRG algorithm. Their tensor network renormalization (TNR)
algorithm showed the expected property of an ideal real-space
renormalization even at a critical point. Finally, the importance
to erase entanglements in a renormalized scale was confirmed.
In the following, we will consider the similar improvement of
the HOTRG algorithm by the use of EB.

The HOTRG procedure remains a part of loop entanglement
flows which pass through four tensors around plaquettes [see
dotted circles in Fig. 2(a)]. To catch the entanglement flow,
we need to split a part of a composite entanglement flow on a
link which belongs to a loop entanglement structure. Thus,
we introduce an EB operator B on a link m as shown in
Fig. 4(a). Since the contraction of B and B† is identity, we can
freely insert the pair into a link m. The purpose of inserting
the EB operator is to catch an entanglement flow which
constructs a loop entanglement structure through the nearest
neighbor tensor [see the dotted curve in Fig. 4(a)]. To find an
appropriate EB operator, the position of squeezing operators
in an optimization problem is important. Here our purpose is
to split the dotted entanglement flow in Fig. 4(a). If we insert
squeezing operators on a left horizontal link from a tensor T

connected to an EB operator B in Fig. 4(a), all entanglement
flows from the left horizontal link to the link m are split into
a link j . However, our target is an entanglement flow only
in the shortest scale, not one in all scales. Figure 4(b) shows
an effective position of squeezing operators to select only the
target entanglement flow. The optimization problem of the EB
operator B is a minimization of a distance between two tensor
networks, Figs. 4(a) and 4(b). In general, an entanglement
flow on a link is not perfectly composite. Even then, suitable
squeezing operators in an optimization problem increase the
ratio of a target entanglement component.

045124-3



KENJI HARADA PHYSICAL REVIEW B 97, 045124 (2018)

If we have an EB operator B to split an entanglement flow
which constructs a loop entanglement structure, we can erase
it by the conventional HOTRG procedure. We first gather the
target entanglement flow in a tensor by SVD decomposing
the tensor network in Fig. 4(c) into two tensors L and R in
Fig. 4(d). For simplicity we assume a vertical flip symmetry
of T . We set the bond dimension of a link between L and R as
that of a horizontal link between two T s. In general, the SVD
decomposition may cause a truncation error. In the case of CDL
tensors, the target entanglement flow is confined in the tensor
L in Fig. 4(d). Between L and R, there is no entanglement
flow which constructs the shortest loop entanglement structure.
Thus, there is no truncation in the SVD decomposition into L

and R. If we apply a coarse-graining procedure in the HOTRG
algorithm to the combination of R and L as shown in Fig. 4(e),
we can erase two loop entanglement structures by a single
projection operator P . Finally, there is no loop entanglement
structure in a new tensor network of Fig. 4(f). In summary,
using an EB operator B, we define new tensors L and R from
two tensors T . Applying the HOTRG algorithm to new tensor
R and L, we can erase all loop entanglement structures in
a renormalized scale. Therefore, this procedure may catch a
proper renormalized flow in a tensor network space.

We test our HOTRG algorithm based on EB operators in
the calculation of a partition function of the two-dimensional
classical Ising model. Tensor network representation of the
partition function of the two-dimensional Ising model is shown
in Fig. 2(a). There are two directions in a grid-type tensor
network in Fig. 2(a). To erase all loop entanglements in a renor-
malized scale, we apply the new HOTRG procedure shown in
Fig. 4 to two tensor T s linked horizontally. After that, we apply
the conventional HOTRG procedure to two tensor T ′s linked
vertically, because all loop entanglements are already removed.
The definition of a renormalization step in the following is
the pair of a new and a conventional HOTRG procedure for
horizontally and vertically linked tensors. We initially prepare
a tensor T for 2 × 2 sites of the two-dimensional Ising model.
We set a limit of the bond dimension D of tensor T ’s indexes.
The limits of bond dimensions of a link j and k of an EB
operator B in Fig. 4(a) are

√
D and D, respectively. To solve

the optimization problem stably, we initially start the bond
dimension of the link j from 1, and we gradually increase
it to

√
D. For each bond dimension of the link j , we also

gradually increase a bond dimension of a link a of a squeezing
operator w in Fig. 4(b) from 1. The limit is an effective bond
dimension (see the detail in Appendix A) of an original link of
a tensor T . If a loop entanglement flow exists, the necessary
bond dimension is less than the limit. In the increasing step of
the bond dimension of the link j of B, we extend it as like a
squeezing operator w in Appendix A. We notice that the order
of a computational cost to solve the optimization problem does
not change that of the total computational cost of a HOTRG
algorithm. The former is O(D6), and the latter is O(D7) (see
the details of the computational complexity of the new HOTRG
algorithm in Appendix B).

Figure 5 shows the precision of free energy calculated by
new and conventional HOTRG algorithms. Symbols joined
by solid and dashed lines denote the relative precision of
free energy by HOTRG algorithms with and without an EB
operation, respectively. The precision of the new HOTRG
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FIG. 5. Precision of free energy for the two-dimensional Ising
model calculated by HOTRG algorithms with and without EB
operation. A horizontal axis is a ratio of a temperature and a critical
temperature Tc. D is the limit of a bond dimension of tensor index
in Fig. 2(a). Results of HOTRG calculations with and without EB
operation are joined by solid and dashed lines, respectively.

algorithm with the EB operation is better than that of the
original HOTRG algorithm at all temperatures. In particular,
the improvement is enhanced at the critical point [17]. The
reason is that the original HOTRG algorithm cannot erase
entanglements in a renormalized scale. To see the effect of
an EB operator B, we check an entanglement between two
tensors. In the following we define an entropy of a normalized
singular value distribution of a tensor as (−Tr�̃ log �̃), where
�̃ = �/Tr�. Here � is a diagonal matrix of singular values
for a matrix M which is a matrix representation of a tensor.
Row and column indexes of M denote left and right parts
of tensor indexes. The entropy of a composite tensor defined
by a tensor network is an estimator of an entanglement flow
through a link which connects two parts of a tensor network.
Figure 6 shows the entropy of a composite tensor in the new
HOTRG algorithm before and after applying EB operators at
the critical point. Dashed lines in the inset of Fig. 6 are cuts
to define a decomposition into left and right parts of a local
tensor network before and after an EB operation. The entropy
after EB operations is reduced from the original one. The

FIG. 6. Entropy of a composite tensor in a new HOTRG algorithm
before and after EB operation at the critical point. The composite
tensor is defined in the inset. A dotted line in the inset denotes a
separation line between left and right parts of a composite tensor.
Here the limit of a bond dimension is 24.
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FIG. 7. Entropy of a composite tensor based on nearest neighbor
tensors at three temperatures. Tc is a critical temperature. Here the
limit of a bond dimension is 24 in all cases.

entropy in Fig. 6 is reduced by applying EB operators. The EB
operator splits a target entanglement flow correctly. Because
of a decrease in an entanglement, we can regard this procedure
as a disentangling operation. Figure 7 shows the entropy of a
composite tensor based on nearest neighbor tensors (see the left
tensor network in the inset of Fig. 6) at three temperatures. At
the critical point, the entropy does not increase. However, that
of the original HOTRG algorithm increases with the number of
renormalization steps as like that of the TRG algorithm. The
behavior of the new HOTRG algorithm is expected because
we erase entanglements in a renormalized scale for each
renormalization step. In disordered and ordered phases, the
entropy converges to 0 and ln(2), respectively. These values
are consistent with fixed point tensors in a disorder phase
and an order phase. All behaviors are similar to that of TNR
algorithm. From these results, we can confirm that the new
HOTRG algorithm using an EB operator catches a proper
renormalization flow in a tensor network space.

Evenbly and Vidal discussed the derivation of MERA
from a density operator by using a TNR procedure [18].
The tensor network representation of a density operator of a
one-dimensional quantum system is a grid-type tensor network
shown in Fig. 2(a). Also, there are two open boundaries along
the real-space direction. If we repeat a TNR procedure to the
grid-type tensor network with two open boundaries, we finally
obtain the product of two MERAs. Thus we can derive MERA
from a tensor network representation of a density operator
by TNR. If we repeat a new HOTRG procedure using an EB
operator to a grid-type tensor network of a density operator,
we obtain a tensor network shown in Fig. 8. Although a single
link is split, the structure is similar to that of MERA. This new
tensor network state also holds the log correction of the area
law of entanglement entropy at a critical point of a quantum
chain as like MERA.

B. Many-body decomposition

The conventional tensor decomposition is based on the
matrix decomposition. It transforms a tensor to a two-body
tensor network. For example, from (a) to (b) in Fig. 1. Thus,
there is a limit of a transformation of tensor network topology.

If we use an EB operator, we can transform a tensor to a
many-body tensor network as (c) in Fig. 1. Figure 9(a) shows a

B

P

B

B

P

B

FIG. 8. A tensor network derived from a tensor network repre-
sentation of a density operator by the HOTRG procedure with EB
operation. A triangle with three links represents an EB operator. A
triangle with four links represents a projection operator. A circle with
four links represents a coarse-grained tensor.

procedure of a many-body decomposition. At first, by using an
SVD, a tensor T is decomposed into upper and lower tensors.
It is a conventional two-body decomposition. If we insert a pair
of EB operators on a contraction link between upper and lower
tensors, we can split a composite entanglement flow in the link
into left- and right-part entanglements. Contracting upper and
lower tensors with EB operators, we get new upper and lower
tensors with new left and right indexes. Decomposing new
upper and lower tensors into subleft and subright tensors by
using an SVD, we finally obtain a four-body tensor network.
This procedure defines a four-body decomposition with a loop
from a tensor T . It keeps a minimum entangled state on a
loop because an isolated loop entanglement does not exist
in an initial tensor. This procedure can be generalized for a
many-body decomposition. We notice that this procedure is an
approximate decomposition. We need to control the precision
in the steps of SVD. Under a given precision, a necessary
bond dimension of a new link depends on the strength of an
entanglement flow.

The many-body decomposition may have interesting ap-
plications because it gives us a new freedom to transform
a topology of a tensor network. The first application of a
many-body decomposition is a perfect disentangling for a loop
entanglement structure. The disentangling is an important idea

(a)

(b)

Branching Many-body
decomposing

T SVD Branching Contracting SVD

Repeating

FIG. 9. (a) Many-body decomposition by EB operators.
(b) Derivation of PEPS from a wave function.
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for tensor network algorithms. For example, a disentangler
tensor in MERA is a key role in expressing a critical quantum
many-body state. The another example is a disentangler tensor
in TNR. It is crucial to reach a proper fixed-point of critical
phenomena by erasing a loop entanglement structure. One way
of a perfect disentangling for a loop entanglement structure is
a tensor contraction to erase a loop structure. We can perfectly
remove a loop entanglement structure in a four-body tensor
network of Fig. 1(c) by tensor contractions to Fig. 1(a). There
is no loop entanglement in a tensor of Fig. 1(a). To inverse
this deformation, by using a four-body decomposition shown
in Fig. 9(a), we can again get a four-body tensor network
without a loop entanglement structure. The second conceptual
application of a many-body decomposition is a systematic
derivation of PEPS from a wave function. Figure 9(b) shows
a transformation of a tensor with four physical indexes which
are represented by links terminated by open circles. We first
apply EB operators to four unphysical indexes. EB operators
split a composite entanglement flow from two nearest neighbor
physical indexes. If we start from a wave function, we can
skip this step, because there is no unphysical index. Because
we recursively apply this step to a part of a derived PEPS
in the following, we introduce this step. Second, we apply
a variant of a four-body decomposition shown in Fig. 9(a).
Finally, we get a PEPS which consists of 2 × 2 blocks. If a
physical index is composite in a block, we recursively repeat
this procedure. The many-body decomposition is approximate
with precision. Under a fixed precision, a bond dimension of
a derived PEPS depends on the strength of entanglements in
a quantum state. If a quantum state satisfies the area law of
entanglement entropy, we intuitively expect that this derivation
succeeds by a finite bond dimension with accuracy. In fact,
since the computational complexity is huge, this derivation of
a PEPS is conceptual. However, this procedure shows that a
metric of a tensor network state to describe a quantum state
can be related to entanglements in a quantum state.

V. CONCLUSION AND DISCUSSION

A tensor network and a tensor network algorithm grow
new promising theoretical tools to study various problems
for many-body systems. To add a new freedom for a tensor
network algorithm, we proposed an EB operation defined by
an EB operator. It splits a composite entanglement flow on
a tensor index. We can set up an optimization problem for
splitting an entanglement flow by using a squeezing operator.
The optimization problem can be solved iteratively.

We introduced two applications of an EB operation. The
first one is an improvement of the HOTRG algorithm to catch
a proper renormalization flow in a tensor network space. The
numerical results for the two-dimensional Ising model show
expected properties in a precision of a free energy calculation
and a local entanglement between two coarse-grained tensors.
We also derived a new tensor network state from applying our
improved HOTRG procedure to a grid-type tensor network
of a density operator. The second application is a many-body
decomposition of a tensor. Using it, we can change a topology
of a tensor network directly. We can apply it to a perfect
disentangling and a systematic derivation of a PEPS from a
wave function.

The purpose of an EB operation is to split a composite
entanglement flow on a link in a tensor network. We can use
it for a disentangling in a part of a tensor network as shown
in the case of the improved HOTRG algorithm. Thus, the EB
operator may be regarded as a disentangler in MERA and
TNR. However, the purpose of a disentangler is different from
that of an EB operator. It is a disentangling between two local
degrees of freedom in a tensor network. In fact, a disentangler
tensor does not consist only of a role of EB operation. For
example, a disentangler tensor in TNR may contain both roles
of projection and an EB. The disentangler is an important
concept for tensor networks. The EB is a new basic operation
which can be applied to the implementation of the disentangler.
It may have other applications as a many-body decomposition.

From a practical point of view, the computational cost
to optimize an EB operator is an issue. In particular, the
number of iterations in the iteration method (see Appendix
A) is a problem. In fact, in the case of the two-dimensional
Ising model, we need more than 1000 iterations to solve
the optimization problem of an EB operator. In the case of
improved TRG algorithms, the computational cost of a loop
optimization technique [10] and a Gilt technique [19] is much
less than that of TNR [9,20]. Thus it extends the application
scope of an improved TRG algorithm in a real study. For an
optimization of an EB operator, we also need to reduce the total
computational cost. Although we start from randomized initial
tensors, there may be good initial tensors. To avoid a local
solution, we extend tensor size gradually. There may be a good
iteration strategy. The improvement of solving the optimization
problem of an EB operator remains for future research.

Since the improved algorithms based on TRG as like TNR
mix space and (imaginary-)time directions, they cannot be
directly applied to anisotropic cases. However, the improved
HOTRG algorithm with an EB operation can be applied to
such problem, because it only does a coarse-graining of tensors
along a chosen direction. Based on the same property, the
HOTRG algorithm was extended to a three-dimensional grid-
type tensor network [8]. The extension of our approach to a
three-dimensional case is also interesting.
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APPENDIX A: ITERATION METHOD TO OPTIMIZE AN
ENTANGLEMENT BRANCHING OPERATOR

To optimize an EB operator in Fig. 3(a), we need to
minimize a distance between two tensor networks of Figs. 3(a)
and 3(c). An EB operator B and squeezing operators w and
v are isometric. Thus, the minimization between two tensor
networks of Figs. 3(a) and 3(c) is a maximization of a norm
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FIG. 10. A squared distance between two tensor networks to
optimize an EB operator.

of a four-body tensor network by B, T , w, and v as shown in
Fig. 10.

We can solve the maximization problem by iteration updates
of B, w, and v. If we fix tensors except for a tensor w or
v, the maximization problem for w or v can be written as a
diagonalization problem. If we fix tensors except for a tensor
B, we can solve the maximization problem for B by using an
SVD optimization technique for MERA [21].

However, there may be many local solutions in the total
maximization problem. To avoid a local solution, we use
a strategy to extend a solution of w and v gradually. The
procedure is written as follows:

(1) Initialize B randomly.
(2) Set the values of bond dimensions of links a and b 1,

and initialize w and v randomly.
(3) Iteratively update B, w, and v to minimize the squared

distance between Figs. 3(a) and 3(c). Because they are isome-
tries, the local optimization problem for a tensor B can be
solved by the singular value decomposition method as the
optimization of isometries in MERA [21], and it for a tensor w

or v can be solved by a diagonalization of an environment of
a target tensor. Here we define an environment as a composite
tensor of which a tensor contraction with target tensors is a
maximized squared norm.

(4) Increase bond dimensions of links a and b (extend bond
dimensions ofw andv). New elements ofw andv are initialized
as zero, but other elements are unchanged. Alternatively, we
can increase a bond dimension in a diagonalization of an
environment of a target tensor w and v, respectively.

(5) Go back to step 3 until bond dimensions of links a and
b reach a limit of them.

We can estimate the limit of bond dimensions of a link a

and b by an entropy of a tensor T between an index of a target
link and a composite index of other links.

Figure 11 shows entropy profiles in the above optimization
process of EB operator in Fig. 10. The main panel shows a
result of a CDL tensor with a random unitary on a target link
of EB operator as follows:

Ti1i2,j1j2,k1k2 = Ui1i2,i
′
1i

′
2
δi ′1,j2δi ′2,k2δj1,k1 , (A1)

where U is a random unitary and the composite index (i1,i2)
is a target of EB operator. Thus, the ideal EB operator is U †.
When the bond dimension of a subindex is

√
D, the entropy of a

composite tensor of the ideal B and T is log(D)/2(=Entropy0)
when it is decomposed into a left index group i and j and a right
index group l and k. As shown in the main panel in Fig. 11,
the entropy rapidly converges to the ideal value. A color of a
symbol denotes a bond dimension of links a and b. Although
we cannot expect an proper EB operator for a general random
tensor T , the optimization method struggles to find a better
EB operator. But, even for a random tensor, the optimization
process decreases the entropy of a composite tensor as shown

FIG. 11. Entropy profile of a composite tensor of B and T in an
optimization process of EB operator in Fig. 10. The main panel shows
a result of a CDL tensor with a random unitary on a target index. The
bond dimension is D = 3 × 3. Entropy0 is log(3). The inset shows
that of a random tensor for the same bond dimension. All tensors B, w,
and v are randomly initialized. We start an initial bond dimension of
links a and b from one. A color of a symbol denotes a bond dimension
of links a and b.

in the inset of Fig. 11. Therefore, the proposed optimization
method of EB operator is efficient.

APPENDIX B: COMPUTATIONAL COMPLEXITY OF A
NEW HOTRG ALGORITHM WITH ENTANGLEMENT

BRANCHING OPERATORS

The procedure of the new HOTRG algorithm with EB
operators consists of three parts: (i) an optimization of an
EB operator, (ii) a calculation of new tensor L and R, and
(iii) a calculation of a coarse-grained tensor from L and R.
For simplicity we suppose that the bond dimension of tensor
indexes except for a link b in Fig. 12(a) is D and the bond
dimension of the link b is

√
D.

The first part (i) is to solve a maximization of a squared norm
of a tensor network byB,T , andw as shown in the right squared
norm in Fig. 12(a). Since B and w are isometries, we can use an
iteration method based on an SVD optimization technique as
like MERA [21]. Thus, the computational complexity of the
first part (i) is governed by the calculation of environments

const.  -B

i

T T

j k

T T

i j k

B

w
w

T T

B

w|| 2

- || =

2|| ||
B

T T

B
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T T

B

Vl L L’=

(a )
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i j
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FIG. 12. The calculation in a new HOTRG algorithm with EB
operators. (a) A squared distance between two tensor networks to
optimize an EB operator. (b) A right matrix-vector multiplication.
(c) A left matrix-vector multiplication. (d) A coarse-grained tensor L′.

045124-7



KENJI HARADA PHYSICAL REVIEW B 97, 045124 (2018)

FIG. 13. Comparison of scaling dimensions for the original
HOTRG and the new HOTRG algorithm with EB operators. (a) Scal-
ing dimensions of the original HOTRG algorithm at a renormalization
step. (b) Scaling dimensions of the new HOTRG algorithm with EB
operators at a renormalization step. A transfer matrix is constructed
from two columns of tensors (2 × 2 tensors). The bond dimension
D is 24 in both cases. Dotted lines denote exact values of scaling
dimensions of the two-dimensional Ising model.

for an SVD optimization technique. The environment is a
composite tensor defined by a tensor network which is a
representation of the squared norm in the right part of Fig. 12(a)
except for a target tensor. The computational complexity of
the calculation of an environment is O(D6). Also, the total
computational time is proportional to the number of iterations
to update tensors in the iteration method. As explained in
Appendix A and Sec. IV A, we gradually increase the bond
dimension of the link a and b in Fig. 12(a).

In the second part (ii) we use a partial SVD algorithm for
the tensor network in Fig. 4(c) to decompose it into L and R

in Fig. 4(d). We need to calculate a right and left matrix-vector
multiplication for the partial SVD algorithm. They are shown in
Figs. 12(b) and 12(c). Here Vr and Vl are right and left vectors,
respectively. The computational complexity of their matrix-
vector multiplications is O(D5). Thus, the total computational
complexity of a partial SVD algorithm is O(D6).

In the third part (iii) we introduce an intermediate tensor
L′ which is applied to a projection operator for upward and
downward indexes i, j , i ′, and j ′ of L. The bond dimension of
upward and downward indexes of L′ is D. The computational

complexity of the calculation of L′ is O(D6). Also, the com-
putational complexity of the calculation of the coarse-grained
tensor T ′ in Fig. 4(e) from L′ and R is O(D7).

The maximum computational complexity is the third part
(iii). Therefore, the total computational complexity of the new
HOTRG algorithm with EB operators is O(D7).

APPENDIX C: CRITICAL FIXED-POINT TENSOR OF A
NEW HOTRG ALGORITHM WITH ENTANGLEMENT

BRANCHING OPERATORS

When we apply a new HOTRG procedure with EB operators
to a renormalized tensor at a critical point, it quickly converges
to a critical fixed-point tensor as shown in Fig. 7. There are
several methods which derive a universal data from a critical
fixed-point tensor. In particular, for a two-dimensional critical
system, Gu and Wen [16] proposed a useful method based on
a conformal field theory. Then, the scaling dimension can be
estimated from eigenvalues of a transfer matrix constructed
from a critical fixed-point tensor as follows:

�i = − 1

2π
log(λi/λ0), (C1)

where λi is the ith eigenvalue of a transfer matrix defined by a
renormalized tensor and λ0 is the largest eigenvalue. Figure 13
shows scaling dimensions by Eq. (C1) at a renormalization
step for the original HOTRG algorithm and the new one. We
construct the transfer matrix from two columns of tensors (L =
2 transfer matrix in Ref. [10]). The bond dimension D is 24 in
both cases. The high-level scaling dimensions of the original
HOTRG algorithm start to merge with the low-level scaling
dimensions after three renormalization steps. However, those
of the new HOTRG algorithm with EB operators keep up to ten
renormalization steps with 222 spins. Therefore, EB operators
improve a critical property of a renormalized tensor.

Table I shows the estimated values of scaling dimensions
and a central charge of the new HOTRG algorithm with
EB operators. The accuracy is comparable with the other
entanglement-filtered tensor network algorithm (for example,
see tables in Refs. [9,10,19,22]).

TABLE I. Exact values and numerical estimation of scaling
dimensions and a central charge from a renormalized tensor by the new
HOTRG algorithm with EB operators. A transfer matrix is constructed
from two columns of tensors (2 × 2 tensors). The bond dimension D

is 24. The last digit with parentheses means a confidential interval
estimated from seven (216 spins) to nine (220 spins) renormalization
steps.

Exact HOTRG with EB op.

c 0.5 0.49996(2)
σ 0.125 0.12515(3)
ε 1 1.0002(1)

1.125 1.1250(1)
1.125 1.1252(1)

2 2.0009(2)
2 2.0013(2)
2 2.0029(4)
2 2.008(1)
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