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Recently a new inflationary scenario was proposed in [1] which can be applicable to an inflaton having 
multiple vacua. In this letter, we consider a more general situation where the inflaton potential has a (UV) 
saddle point around the Planck scale. This class of models can be regarded as a natural generalization of 
the hillclimbing Higgs inflation [2].

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

The Standard Model (SM) of particle physics is the most suc-
cessful theory that describes physics below the TeV scale. The 
observed Higgs mass ∼ 125 GeV indicates that the SM can be 
safely interpolated up to the Planck scale without any divergence 
or instability. Furthermore, the observed Higgs quartic coupling 
λ ∼ 0.12 also shows an interesting behavior of the Higgs potential 
around the Planck scale Mpl; The potential can have another de-
generate minimum around that scale. The origin of this behavior 
comes from the fact that λ and its beta function βλ can simul-
taneously vanish around Mpl . This is called the Multiple point 
criticality principle and it is surprising that the Higgs mass was 
predicted to be around 130 GeV about 20 years ago based on this 
principle [3].

Various phenomenological and theoretical studies of such a de-
generate vacuum have been done so far [4–8]. One of them is 
the Higgs inflation with a non-minimal coupling ξφ2 R/M2

pl [9]. 
When this scenario was proposed, it was argued that we need 
large ξ ∼ 105 in order to obtain the successful inflationary pre-
dictions of the cosmic microwave background (CMB). However, the 
criticality of the Higgs potential makes it possible to realize the 
inflation even if ξ is relatively small ∼ O(10) by using small but 
nonzero λ ∼ 10−6 around Mpl . See [10] for the detailed analyses.

Although the SM criticality can help the realization of the Higgs 
inflation, it is difficult to realize the MPP simultaneously because 
the latter requires λ = 0 around the Planck scale and we can no 
longer maintain the monotonicity of the Higgs potential above the 
scale ∼ Mpl/

√
ξ . Recently, a new inflationary scenario was pro-

posed in [1] which enables an inflation even if the inflaton poten-
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tial has multiple degenerate vacua. Then, the authors applied it to 
the SM Higgs and showed that it is actually possible to obtain a 
successful inflation while satisfying the MPP [2]. In those papers, 
the authors studied a few cases such that the inflaton potential 
behaves as a quadratic potential around another potential mini-
mum. Although the inflationary predictions of this scenario does 
not strongly depend on the details of the inflaton potential such 
as the coefficients of the Taylor expansion, they can depend on the 
leading exponent of the (Jordan-frame) potential and the choice of 
the conformal factor. In this letter, we generalize their works to 
the cases where the inflaton potential has a saddle point around 
the Planck scale. Our study is meaningful from the point of view 
of the MPP because this situation can be understood as a natu-
ral generalization of this principle. Although some fine-tunings are 
needed in order to realize a saddle point, some theoretical studies 
[11–14] suggest that we can naturally archive such fine-tunings by 
considering physics beyond ordinary field theory.

1. Brief review of hillclimbing inflation

Let us briefly review the hillclimbing inflation. We consider the 
following action of an inflaton φ J in the Jordan-frame:

S =
∫

d4x
√−g J

(
Mpl

2

2

�R J − K J

2
(∂φ J )

2 − V J (φ J )

)
, (1)

where (∂φ J )
2 = gμν

J ∂μφ J ∂νφ J . If we identify φ J as the Higgs, the 
usual Higgs potential corresponds to V J (φ J ) in this framework. 
Then, by doing the Weyl transformation

gμν = �g Jμν, (2)

we have
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S =
∫

d4x
√−g

[ M2
pl

2
R − 1

2

(
K J

�
+ 3

2

(
Mpl

∂ ln�

∂φ J

)2 )
(∂φ J )

2

− V J (φ J )

�2

]
, (3)

where R is the Ricci scalar in the Einstein-frame and we have ne-
glected the total derivative term. Let us now assume that the sec-
ond term of the kinetic terms dominates. In this case, we can re-
gard χ ≡ Mpl

√
3/2 ln � or −Mpl

√
3/2 ln � as a fundamental field 

instead of φ J .1 For example, in the case of the ordinary Higgs in-
flation, we have

�(φ J ) = 1 + ξ
φ2

J

M2
pl

, V J (φ J ) = λφ4
J

4
, (4)

which leads to the following potential in the Einstein-frame:

V E(χ) = λφ4
J

4�2
= λM4

pl

4ξ2
(1 − �−1)2

� λM4
pl

4ξ2

(
1 − exp

(
−

√
2

3

χ

Mpl

))2

, (5)

from which we can see that V E (χ) becomes exponentially flat 
when χ � Mpl ⇔ � � 1. See also Ref. [10] for more detailed anal-
yses.

On the other hand, a new possibility has been proposed in 
Ref. [1], where it is shown that we can also consider the � 	 1
region instead of � � 1. In this case, because V E is given by 
V E = V J /�

2, V J needs to behave as

V J = V 0�
2 (1 + · · · ) (6)

around � = 0 in order to realize the inflationary era, i.e. H = ȧ/a =
const . Because the conformal factor � should approaches one af-
ter inflation, the inflaton climbs up the Jordan-frame potential. This 
is the reason why the authors of Ref. [1] call this scenario “Hill-
climbing (Higgs) inflation”. Let us briefly summarize the inflationary 
predictions of this scenario. By expanding the Jordan-frame poten-
tial V J as a function of �

V J = V 0�
2(1 +

∑
m≥n

ηm�m), (7)

we obtain

ε = M2
pl

2

(
V ′

V

)2

� 1

3

(∑
m

ηmm�m

)2

, (8)

η = M2
pl

V ′′

V
� −2

3

∑
m

ηmm2�m, (9)

where the prime represents the derivative with respect to χ and 
we have used the relation χ = √

3/2 ln �. Furthermore, we can 
relate the initial value of � to the e-folding number N:

N =
∫

dt H = 1

M2
pl

∫
dχ

V
∂V
∂χ

� 3

2ηnn2

1

�n
ini

. (10)

From those equations, we obtain the following inflationary predic-
tions:

1 The choice of the sign depends on the region we consider; When we consider 
� ≥ 1 (≤ 1), we take χ = (−)Mpl

√
3/2 ln�.

Fig. 1. Upper (Lower): A schematic behavior of the Jordan (Einstein)-frame potential 
around the saddle point φ0 (χ = ∞). Here, the solid (dashed) contour corresponds 
to k = odd (even).

ns = 1 − 6ε + 2η � 1 − 2

N
, r = 16ε = 12

n2N2
. (11)

Note that both of them do not depend on the details of the inflaton 
potential such as its coefficients ηn ’s. This is the similar behavior 
of the ξ or α attractor [15–17]. However, the leading exponent n
depends on a specific model we consider and the choice of the 
conformal factor. In the following, we consider the hillclimbing in-
flation around a (UV) saddle point of an inflaton potential.

2. Hillclimbing saddle point inflation

Let us now consider a general situation where the Jordan-frame 
potential has a saddle point φ0 around the Planck scale:

V J (φ0) = 0, V (1)
J (φ0) = 0, V (2)

J (φ0) = 0, · · · , V (k)
J (φ0) = 0 (12)

with V (i)
J denoting the i-th derivative of V J . In the following, we 

assume⎧⎪⎨
⎪⎩

V (k+1)
J (φ0) > 0 for odd k,

V (k+1)
J (φ0) < 0 for even k,

V (k+2)
J (φ0) �= 0

(13)

in order to realize a positive vacuum energy in φ J ≤ φ0.2 This is 
schematically shown in the upper panel of Fig. 1. In this case, we 
can expand V J around φ0 as

V J (φ J ) = V (k+1)
J

(k + 1)! (φ J − φ0)
k+1 + V (k+2)

J

(k + 2)! (φ J − φ0)
k+2

= |V (k+1)
J |φk+1

0

(k + 1)!
(

1 − φ J

φ0

)k+1

×
(

1 + v(k+2)
1

(
φ J

φ0
− 1

)
+ v(k+3)

2

(
φ J

φ0
− 1

)2 )
, (14)

where

v(k+2)
1 = φ0 V (k+2)

J

(k + 2)V (k+1)
J

, v(k+3)
2 = φ0 V (k+3)

J

(k + 2)(k + 3)V (k+1)
J

. (15)

2 The third assumption is not necessary for our present set up. We can 
also consider a more general situation such that V (k+1)

J (φ0) �= 0, V (k+2)
J (φ0) =

0, · · · , V (k+m)
J (φ0) = 0, V (k+m+1)

J (φ0) �= 0.
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As for the conformal factor �, we can consider various possibili-
ties3:

�(φ J )
2 =

(
1 − φ J

φ0

)k+1
⎛
⎝1 +

∑
i≥0

ωi

(
1 − φ J

φ0

)i
⎞
⎠ , (16)

∑
i≥0

ωi = 0, (17)

where the second equation guarantees �(0) = 1. In this letter, in 
order to give some concrete inflationary predictions, we consider 
the following two models:

� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − φ2

J

φ2
0

) k+1
2

(Model 1),(
1 − φ4

J

φ4
0

) k+1
2

(Model 2),

(18)

which correspond to Model 1 and Model 2 presented in Ref. [2], 
respectively. In the case of Model 1, the Einstein-frame potential 
becomes

V E � |V (k+1)
J |φk+1

0

(k + 1)!2k+1

(
1 +

(
k + 1

2
− v(k+2)

1

)(
1 − φ J

φ0

)

+
(

v(k+3)
2 − k + 1

2
v(k+2)

1 + (k + 1)(k + 2)

8

)(
1 − φ J

φ0

)2 )

� V 0

(
1 + η 2

k+1
�

2
k+1 + η 4

k+1
�

4
k+1

)
, (19)

where

V 0 = |V (k+1)
J |φk+1

0

(k + 1)!2k+1
, η 2

k+1
= 1

2

(
k + 1

2
− v(k+2)

1

)
,

η 4
k+1

= 1

22

(
v(k+3)

2 − k + 1

2
v(k+2)

1 + (k + 1)(k + 2)

8

)
,

(Model 1) (20)

from which we can see that the resultant leading exponent de-
pends on the coefficients of the Jordan-frame potential.4 In the 
lower panel of Fig. 1, we schematically show the Einstein-frame 
potential V E . Here note that the saddle point φ0 corresponds to 
χ = ∞ because of the relation χ = −Mpl

√
3/2 ln �. Here, the solid 

(dashed) contour corresponds to k =odd (even). In the case of 
Model 2, we have

V 0 = |V (k+1)
J |φk+1

0

(k + 1)!22(k+1)
, η 2

k+1
= 1

4

(
3(k + 1)

2
− v(k+2)

1

)
,

η 4
k+1

= 1

42

(
v(k+3)

2 − 3(k + 1)

2
v(k+2)

1 + (k + 1)(9k + 10)

8

)
,

(Model 2) (21)

Thus, both of the models typically give the leading exponent n =
2

(k+1)
as long as we do not require a fine-tuning of the coeffi-

cients.5 As a result, the tensor-to-scalar ratio becomes larger when 

3 In this letter, we assume that the conformal factor � also becomes zero at a 
saddle point of V J . This fine-tuning might also be explained by some new physics 
[11–14].

4 For example, in the case of the Higgs potential, we have k = 1, v(k+2)
1 = 3, which 

lead to η1 = −1. This agrees with the previous study Ref. [2].
5 If we consider general V J and �, the coefficients η2i/(k+1) ’s are simple polyno-

mials of (v(k+i+1)
i , ωi), and it is possible to eliminate some of the first η2i/(k+1) ’s 

Fig. 2. The parameter regions that produce the observed value of the scalar pertur-
bation As = 2.2 × 10−9. The upper (lower) panel corresponds to Model 1 (2). Here, 
the different color bands represent different k’s respectively, and the solid (dashed) 
lines corresponds to N = 50 (60).

we increase k. Note that, in this framework, the coefficient of the 
leading term in the potential must be negative, η 2

k+1
< 0, which 

enables χ to roll down it. Furthermore, the potential height V 0 is 
also constrained by the curvature perturbation

As = V 0

24π2εM4
pl

= 2.2 × 10−9 ∝ V (k+1)
J (φ0)φ

k+1
0

M4
pl

. (22)

In Fig. 2, we plot the parameter regions obtained from Eq. (22). 
Here, the (k + 1)-th derivative V (k+1)

J (φ0) is normalized by φk−3
0 , 

and each bands corresponds to each k’s. The solid (dashed) con-
tours represent N = 50 (60).

In Fig. 3, we also show the inflationary predictions obtained 
from the analytic formulas Eq. (11). Here, the different color lines 
represent different k’s and the small (large) dots correspond to 
N = 50 (60). Note that ns does not change within this analytic 
formula because it only depends on the e-folding N . As is already 
mentioned in Ref. [2], the higher order terms of the inflaton po-
tential can have slightly large contributions to the inflationary dy-
namics, and numerical studies are necessary in order to give more 
precise predictions. This is left for future investigations.

3. Conclusion

In this letter, we have applied the idea of the hillclimbing infla-
tion to the models where the inflaton potential has a saddle point 
around the Planck scale and shown that it is possible to archive a 
successful inflation. A notable feature of this class of models is that 
the leading exponent of the Jordan-frame potential as a function of 

by choosing specific values of those parameters. Then, the leading exponent can be 
n = 2l

k+1 with arbitrary l. The Model 2 of the hillclimbing Higgs inflation Ref. [2] is 
such a case.
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Fig. 3. The inflationary predictions of the hillclimbing saddle point inflation. Here, 
the different color lines represent different k’s and the small (large) dots correspond 
to N = 50 (60).

the conformal factor is typically given by 2/(k + 1), which leads to 
a large tensor-to-scalar ratio. Although we have just concentrated 
on a saddle point of the inflaton potential, we can also consider 
various realizations of the hillclimbing inflation by using a variety 
of V J and �. So it might be interesting to investigate such possi-
bilities and construct a phenomenological model that can realize a 
successful inflation.
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