Kyoto University Research Information Repository	
Title	Characterization of candidate intermediates in the Black Box of the ecdysone biosynthetic pathway in Drosophila melanogaster: Evaluation of molting activities on ecdysteroid-defective larvae
Author(s)	Saito, Junki; Kimura, Ryota; Kaieda, Yuya; Nishida, Ritsuo; Ono, Hajime
Citation	Journal of Insect Physiology (2016), 93-94: 94-104
Issue Date	2016-10-01
URL	http://hdl.handle.net/2433/231026
Right	© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/; The full-text file will be made open to the public on 01 October 2017 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
Туре	Journal Article
Textversion	author

1	
2	Characterization of candidate intermediates in the Black Box of the
3	ecdysone biosynthetic pathway in Drosophila melanogaster: evaluation
4	of molting activities on ecdysteroid-defective larvae
5	
6	Junki Saito ¹ , Ryota Kimura ¹ , Yuya Kaieda, Ritsuo Nishida, Hajime Ono*
7	
8	
9	
10	Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto
11	606-8502, Japan
12	
13	
14	
15	
16	
17	*Corresponding author. Phone: +81-75-753-6310, Fax: +81-75-753-6312.
18	E-mail address: <u>onoono@kais.kyoto-u.ac.jp</u> (H. Ono)
19	Postal address: Division of Applied Life Sciences, Graduate School of Agriculture,
20	Kvoto University, Kitashirakawa-oiwakecho, Sakvo-ku, Kvoto, 606-8502, Japan
21	¹ These authors contributed equally to this work
22	

23 ABSTRACT

25	The biosynthetic pathway of the insect steroid hormone ecdysone remains the "Black
26	Box" wherein the characteristic ecdysteroid skeleton is built. 7-Dehydrocholesterol (7dC)
27	is the precursor of uncharacterized intermediates in the Black Box. The oxidation step at
28	C-3 has been hypothesized during conversion from 7dC to 3-oxo-2,22,25-
29	trideoxyecdysone, yet 3-dehydroecdysone is undetectable in some insect species.
30	Therefore, we first confirmed that the oxidation at C-3 occurs in the fruitfly, Drosophila
31	melanogaster using deuterium-labelled cholesterol. We next investigated the molting
32	activities of candidate intermediates, including oxidative products of 7dC, by feeding-
33	rescue experiments for Drosophila larvae in which an expression level of a biosynthetic
34	enzyme was knocked down by the RNAi technique. We found that the administration of
35	cholesta-4,7-dien-3-one (3-oxo- $\Delta^{4,7}$ C) could overcome the molting arrest of ecdysteroid-
36	defective larvae in which the expression level of <i>neverland</i> was reduced. However,
37	feeding 3-oxo- $\Delta^{4,7}$ C to larvae in which the expression levels of <i>shroud</i> and <i>cyp6t3</i> were
38	reduced inhibited molting at the first instar stage, suggesting that this steroid could be
39	converted into an ecdysteroid-antagonist in loss of function studies of these biosynthetic
40	enzymes. Administration of the highly conjugated cholesta-4,6,8(14)-trien-3-one,
41	oxidized from 3-oxo- $\Delta^{4,7}$ C, did not trigger molting of ecdysteroid-defective larvae. These
42	results suggest that an oxidative product derived from 7dC is converted into ecdysteroids
43	without the formation of this stable conjugated compound. We further found that the
44	14 α -hydroxyl moiety of Δ^4 -steroids is required to overcome the molting arrest of larvae
45	in loss of function studies of Neverland, Shroud, CYP6T3 or Spookier, suggesting that

46	oxidation at C-14 is indispensable for conversion of these Δ^4 -steroids into ecdysteroids
47	via 5β-reduction.
48	
49	
50	
51	Keywords: Ecdysteroidogenesis; Ecdysone; Black Box; 7-Dehydrocholesterol; Cholesta-
52	4,7-dien-3-one (3-oxo- $\Delta^{4,7}$ C); <i>Drosophila melanogaster</i>
53	
54	Abbreviations: 7dC, 7-dehydrocholesterol; 3-oxo-7dC, cholesta-5,7-dien-3-one; 3-oxo-
55	$\Delta^{4,7}$ C, cholesta-4,7-dien-3-one; 3-oxo- $\Delta^{4,6,8(14)}$ C, cholesta-4,6,8(14)-trien-3-one; 3-oxo-
56	5β- Δ^7 C, 5β-cholest-7-en-3-one; $\Delta^{4,7}$ C-3,6-dione, cholesta-4,7-diene-3,6-dione; Δ^4 -
57	diketol, 14 α -hydroxy-cholesta-4,7-diene-3,6-dione; Δ^4 -ketodiol, 3 β ,14 α -dihydroxy-
58	cholesta-4,7-dien-6-one; ketol, 3β -hydroxy- 5β -cholest-7-en-6-one; diketol, 14α -hydroxy-
59	5 β -cholest-7-ene-3,6-dione, 3-oxo-2,22,25-trideoxyecdysone; ketodiol, 3 β ,14 α -
60	dihydroxy-5β-cholest-7-en-6-one, 2,22,25-trideoxyecdysone; 3DE, 3-dehydroecdysone;
61	E, ecdysone; 20E, 20-hydroxyecdysone; nvd, neverland; sro, shroud; spo, spook; spok,
62	spookier; PG, prothoracic gland

- 64 1. Introduction
- 65

66 Steroid hormones regulate many aspects of developmental and physiological 67 processes in higher organisms. Ecdysozoan animals are good models to study endocrine 68 control of developmental process, because their developmental transitions, including 69 molting, metamorphosis and diapause, are primarily regulated by their steroid hormones 70 (Niwa and Niwa, 2014; Wollam and Antebi, 2011). The steroid hormones of insects and 71 nematodes are ecdysteroids and dafachronic acids (DAs), respectively, both of which are 72 biosynthesized from dietary cholesterol (Gilbert and Warren, 2005; Iga and Kataoka, 73 2012; Motola et al., 2006). In insects, ecdysone (E) is biosynthesized in the prothoracic 74 glands and then secreted into the haemolymph during postembryonic development. The 75 released E is then hydroxylated to the principal molting hormone, 20-hydroxyecdysone 76 (20E), in peripheral tissues such as fat body. This conversion from cholesterol involves 77 the formation of the characteristic ecdysteroid skeleton, the structure of which includes a **78** cis junction of rings A and B, a 7-en-6-one chromophore, and a trans junction of rings C 79 and D with a 14 α -hydroxyl moiety. This synthetic process has been characterized as 80 involving a critical rate-limiting step or steps, the so-called "Black-Box", during the more 81 than 50 years since the determination of chemical structure of E (Lafont et al., 2012; 82 Warren et al., 2009). In contrast, the biosynthetic pathway of the bile acid-like steroid 83 hormones, DAs, in the nematode, *Caenorhabditis elegans* has been elucidated. 84 The first step in the ecdysteroid biosynthetic pathway is the conversion of 85 cholesterol into 7-dehydrocholesterol (7dC), catalyzed by a Rieske oxygenase, Neverland 86 (Nvd) (Yoshiyama-Yanagawa et al., 2011; Yoshiyama et al., 2006). The analogous

87	process has also been reported in the DAs biosynthesis of C. elegans, in which the
88	conversion of cholesterol into 7dC is catalyzed by a homolog of Nvd, i.e. DAF-36
89	(Rottiers et al., 2006; Wollam et al., 2011). While the biosynthetic pathway from 7dC to
90	DAs has been unveiled in the nematode, the uncharacterized steps from 7dC to 14 α -
91	hydroxy-5 β -cholest-7-ene-3,6-dione (the diketol) which help to build the ecdysteroid
92	skeleton, have been called the Black Box in insects. During DAs biosynthesis, oxidation
93	at C-3 in the early step, from lathosterol to lathosterone, is catalyzed by a short chain
94	dehydrogenase, DHS-16, in C. elegans (Wollam et al., 2012). It should be noted that the
95	homologous enzymes, Shroud (Sro) and Non-molting glossy (Nm-g), likely function in a
96	reaction step of the Black Box in the fruitfly Drosophila melanogaster and the silkworm
97	Bombyx mori, respectively (Niwa et al., 2010). In addition, Spook (Spo) and its paralog
98	Spookier (Spok) have been thought to be the rate-limiting enzyme in the Black Box
99	(Namiki et al., 2005; Ono et al., 2006; Rewitz et al., 2009). Furthermore, CYP6T3 has
100	been identified as an enzyme which likely plays a role in the Black Box in D .
101	melanogaster (Ou et al., 2011).
102	The experiments using radiolabeled cholesterols have shown that the 3α -H of
103	cholesterol is eliminated during E biosynthesis in the locust, Schistocerca gregaria,
104	suggesting the involvement of 3-oxo-steroids in the Black Box (Davies et al., 1981).
105	These results are consistent with the hypothesis that 3-dehydrogenation of 7dC is a first
106	reaction in the Black Box (Gilbert et al., 2002). While the hypothesized initial product,
107	cholesta-5,7-dien-3-one (3-oxo-7dC), from 7dC by the oxidation at C-3 is very unstable,
108	a protected substrate of 3-oxo-7dC as a photosensitive ketal has been successfully
109	converted into ecdysteroid conjugates and precursors of E after deprotection by

110	irradiation with long-wave UV-light in <i>D. melanogaster</i> and the tobacco hornworm
111	Manduca sexta, respectively (Warren et al., 2009). This result strongly supports the
112	possibility of the unstable 3-oxo-7dC as the first product of 7dC in the Black Box.
113	The 4 β -H of cholesterol is eliminated during the biosynthesis of E in the blow-
114	fly Calliphora erythrocephala and S. gregaria (Davies et al., 1981; Lockley et al., 1975),
115	suggesting the presence of a 3-oxo- Δ^4 intermediate in the Black Box. An ecdysteroid-like
116	steroid, 14 α -hydroxy-cholesta-4,7-diene-3,6-dione (Δ^4 -diketol), is the possible
117	intermediate, because this compound is converted into ecdysteroids in crustacean Y-
118	organs and showed molting activity in ecdysteroid-defective Drosophila larvae (Blais et
119	al., 1996; Ono et al., 2012). If the Δ^4 -diketol is an intermediate in ecdysteroid
120	biosynthesis, the 5 β -reduction which leads to the diketol is the final step of the Black
121	Box. However, there is no direct evidence in this reduction reaction to generate the A/B
122	cis ring junction. The diketol is converted into 3-dehydroecdysone (3DE) or E with the
123	additional reduction step at C-3 by successive hydroxylations (Bocking et al., 1993; Dolle
124	et al., 1991). The sequential hydroxylation reactions are catalyzed by three cytochrome
125	P450 monooxygenases, i.e. Phantom, Disembodied and Shadow (Chavez et al., 2000;
126	Niwa et al., 2004; Warren et al., 2002; Warren et al., 2004). While E is secreted from the
127	PG in many insects, 3DE or both of 3DE and E are released from the PG in several other
128	insect species (Kiriishi et al., 1990). Following secretion of 3DE or/and E from the PG
129	into haemolymph, subsequent reduction of 3DE to E occurs which then is rapidly
130	converted into 20E by the final hydroxylation step catalyzed by the cytochrome P450
131	monooxygenase, Shade (Petryk et al., 2003).

132	Although the involvement of 3-oxo-steroids has been postulated as mentioned
133	above, no 3-oxo-steroid biosynthesized in the early steps has been detected in the PG of
134	insects. Furthermore, exclusive secretion of E from the PG was observed in B. mori and
135	the flesh fly Sarcophaga peregrina (Kiriishi et al., 1990), which leaves open the
136	possibility that E is biosynthesized without oxidation at the 3-position. In this study, we
137	first confirmed that the oxidation of dietary cholesterol at C-3 takes place in D .
138	melanogaster, using deuterium-labeled cholesterol. Because the oxidative product of 7dC
139	has been considered as an intermediate in the Black Box, we investigated if 3-oxo-
140	steroids prepared from 7dC and their analogs can overcome developmental arrest of
141	ecdysteroids-defective larvae in which the expression of ecdysteroid biosynthetic
142	enzymes is knocked down in the PG. We further focused on the requirement of the 14α -
143	hydroxyl moiety of Δ^4 -steroids to trigger molting of the ecdysteroids-defective larvae.

145 2. Materials and methods

146 2.1. Drosophila strains

UAS-nvd-IR; UAS-nvd-IR/Tm6B, Tb was generated from UAS-nvd-IR strains
(Yoshiyama et al., 2006). UAS-sro-IR; UAS-sro-IR/Tm3, Ser, GFP was generated from
UAS-sro-IR strains (#50112 and #16388) obtained from the VDRC Stock Center. UASCyp6t3-IR; UAS-Cyp6t3-IR was generated from UAS-Cyp6t3-IR strains (#30896 and
#109703) obtained from the VDRC Stock Center. UAS-spok-IR; UAS-spok-IR was
described in Ono et al., 2012. Phm-Gal4-22/TM3, Sb, GFP was obtained from M.B.
O'Connor. Oregon-R was obtained from the Drosophila Genetic Resource Center at

154 Kyoto Institute of Technology. Flies were cultured on a standard cornmeal/yeast155 extract/dextrose medium.

158	3-Oxo- $\Delta^{4,7}$ C, 3-oxo- $\Delta^{4,6,8(14)}$ C, $\Delta^{4,7}$ C-3,6-dione, 3-oxo-5 β - Δ^7 C and Δ^4 -diketol
159	were synthesized from 7dC as described previously (Dolle et al., 1991; Kinnear et al.,
160	1979). Δ^4 -Ketodiol was synthesized from Δ^4 -diketol by reduction using NaBH ₄ , and then
161	purified by reverse-phase HPLC. $(3\alpha, 25, 26, 26, 26, 27, 27, 27, 27, 27)$ -Cholesterol (cholesterol-
162	d8) was synthesized from (25,26,26,26,27,27,27- 2 H)-cholesterol (cholesterol-d7) by
163	Jones oxidation at 3-position and following reduction using NaBD4, and then purified by
164	reverse-phase HPLC. Cholesterol-d7 was purchased from Avanti Polar Lipids, Inc.
165	(Alabaster, AL, USA). E and 7dC were purchased from Sigma-Aldrich (St. Louis, MO,
166	USA). Each compound was purified by reverse-phase HPLC before experiments.
167	Chemical structures of steroids are shown in Fig. 1.
168	
169	2.3. Sample preparation and analyses of ecdysteroids using an LC/MS/MS system
170	Drosophila larvae (Oregon-R) were fed with yeast paste containing cholesterol
171	or deuterium-labeled cholesterol. For preparation of yeast paste, 50 mg of dry yeast was
172	thoroughly mixed with 90 μl of water and 10 μl of 10 mM steroid in ethanol. Twenty of
173	developed pupae were thoroughly washed and homogenized in 1 ml ethanol by hand with
174	a plastic pestle. The homogenate was pretreated using Sep-Pak C18 plus cartridge
175	(Waters, MA, USA) as described previously (Ono et al., 2012) and dissolved in 50 μ l of
176	ethanol.

Ecdysteroids were analyzed in an LC/MS/MS system, as described previously
(Hikiba et al., 2013). Briefly, ecdysteroids were separated by reverse-phase HPLC using
a PEGASIL ODS column (3 μm, 2 x 50 mm, Senshu-pak, Senshu-kagaku, Tokyo, Japan)
with gradient elution of acetonitrile/water, and quantified with the QTRAP5500 MS/MS
system (AB SCIEX, Foster City, CA, USA) using MRM mode.

182

183 2.4. Feeding-rescue experiments

184 Feeding-rescue experiments were done as described previously (Ono et al., 185 2012). Briefly, L1 larvae were fed with yeast paste which was prepared from 50 mg of 186 dry yeast mixed with 90 µl of water and 10 µl of 10 mM steroid in ethanol or else only 187 solvent. Supplied steroids were recovered from yeast paste after incubation for 24 hrs at 188 29°C under dark conditions, as described previously with minor modification. Briefly, 189 each sample was extracted with ethanol and the eluate was applied to ODS column 190 (Cosmosil 140C140-OPN, Nacalai Tesque, Inc., Kyoto, Japan) or Sep-Pak Plus C18 191 cartridge (Waters, MA, USA), which was then eluted with 5 ml of water and 192 subsequently with 5 ml of methanol or ethanol, respectively. The eluate with methanol containing 3-oxo- $\Delta^{4,7}$ C or 3-oxo- $\Delta^{4,6,8(14)}$ C was chromatographed on a reverse-phase 193 194 HPLC column (YMC-Pack CN-A-523, 10 X 250mm, YMC Co., Ltd., Kyoto, Japan) at a 195 flow rate of 2.5 ml/min with 76% methanol in water or 72% methanol in water, respectively. The eluate with ethanol containing $\Delta^{4,7}$ C-3,6-dione or Δ^4 -ketodiol was 196 197 chromatographed on a reverse-phase HPLC column (YMC-Pack CN, 6 X 150mm, YMC 198 Co., Ltd., Kyoto, Japan) at a flow rate of 1.5 ml/min with 63% methanol in water or at a 199 flow rate of 1.0 ml/min with 60% methanol in water, respectively (Fig. S1). For

200	generation of RNAi-mediated knockdown larvae, phm-Gal4-22/TM3, Sb, GFP was
201	crossed to UAS-transgene containing inverted repeat of a gene coding for an ecdysteroid
202	biosynthetic enzyme. RNAi-mediated knockdown larvae without balancer marker were
203	picked after hatching and reared at 29°C in the experiments. Reduction of transcriptional
204	level of a target gene was confirmed by quantitative RT-PCR (Fig. S2).
205	
206	2.5. Quantitative RT-PCR
207	Purification of total RNA, reverse transcription and quantitative RT-PCR were
208	performed as described previously (Ono et al., 2012). Transcription levels were
209	normalized with RpL23 transcription levels in the same samples. The primers used for
210	quantitative RT-PCR are listed in Table S1.
211	
212	3. Results
213	
214	3.1. Oxidation of 3 β -alcohol at the 3-position is essential for ecdysteroidogenesis
215	To clarify the formation of 3-oxo-steroids during ecdysteroidogenesis, we fed
216	food containing cholesterol-d8 possessing deuterium at the 3-position or cholesterol-d7
217	without deuterium at the 3-position to Drosophila larvae. Whole bodies of the developed
218	pupae were extracted in order to analyze for 20E using the LC/MS/MS system, as 20E
219	was contained as a major ecdysteroid in the pupal extracts. If the 3α - ² H atom is
220	eliminated during ecdysteroidogenesis, cholesterol-d8 is converted into
221	$(26,26,26,27,27,27^{-2}H)$ -ecdysone (ecdysone-d6) in the PG, and then into 20E-d6 in
222	peripheral tissues. On the other hand, if the 3α - ² H atom is retained, cholesterol- <i>d</i> 8 is

converted into (3α, 26,26,26,27,27,27⁻²H)-ecdysone (ecdysone-*d7*) in the PG, and then
into 20E-*d7* by subsequent oxidation. To clarify the products derived from the labelled
cholesterol, fragments with a loss of two water molecules derived from 20E-*d6* and 20E-*d7* were analyzed by multiple reaction monitoring (MRM) (Table 1).
While we detected 20E in cholesterol-fed animals, we detected 20E-*d6* and 20E-*d7*, but not 20E in both the cholesterol-*d7*- and cholesterol-*d8*-fed animals, presumably
due to exclusive incorporation of labeled cholesterol into animals by feeding substrate at

230 high concentration (Table 2). We calculated the peak area ratio of fragment derived from

231 20E-d7 to that from 20E-d6 (20E-d7/20E-d6). We assumed that the detection of 20E-d7

as a minor product in the cholesterol-d7-fed animals, as the ratio of 20E-d7/20E-d6 ratio

was 0.284, was derived from isotope effects. To confirm it, isotope effect of 20E was

examined by comparison of the relative peak area of 20E and 20E-d1 derived from

standard 20E. We observed their peak areas derived from 20E and 20E-d1, 1.66 X 10⁴

and 5.75 X 10^5 , respectively. Hence, the ratio of 20E-d1/20E, 0.289, was similar to that

237 of 20E-d7/20E-d6, 0.284, indicating that the detection of 20E-d7 was derived from

238 isotope effects.

We next analyzed products of the cholesterol-*d*8-fed animals. If the 3α -²H atom is retained during ecdysteroidogenesis, the ratio must be more than 1 due to production of 20E-*d*7 in the cholesterol-*d*8-fed animals, but this is not the case. The ratio in the cholesterol-*d*8-fed animals was significantly larger than that in the cholesterol-*d*7-fed animals. The excess deuterium is likely due to reintroduction of deuterium during subsequent reductive process as reported in previous study (Davies et al., 1981). Indeed, the observation of approximately 30% excess percentage of deuterium in the cholesterol-

246 *d8*-fed animals relative to the cholesterol-*d7*-fed animals is agreement with the results in 247 the locust, *S. gregaria*, where the retention of up to 30% of tritium by administration of 248 $(3\alpha^{-3}H)$ -cholesterol in larvae was observed (Davies et al., 1981). Therefore, we 249 concluded that $3\alpha^{-2}H$ of cholesterol-*d8* was eliminated during ecdysteroid biosynthesis in 250 *D. melanogaster* as shown in the locust.

251

252 3.2 Administration of 3-oxo- $\Delta^{4,7}C$, but not 3-oxo- $\Delta^{4,6,8(14)}C$, triggered molting of nvd-253 RNAi larvae

254 As Nvd catalyzes the first reaction step, from cholesterol to 7dC, in ecdysone 255 biosynthesis (Yoshiyama-Yanagawa et al., 2011; Yoshiyama et al., 2006), we assumed 256 that feeding-rescue experiments for *nvd*-RNAi larvae could be applicable to clarify 257 components in the Black Box. We focused on oxidative products of 7dC and their related 258 compounds (Fig. 2A). 7dC is oxidized into 3-oxo-7dC but this product is immediately isomerized into 3-oxo- $\Delta^{4,7}$ C (Warren et al., 2009). 3-Oxo- $\Delta^{4,7}$ C is stable but further 259 converted into the highly conjugated 3-oxo- $\Delta^{4,6,8(14)}$ C by further oxidation. We first tested 260 261 if these 3-oxo-steroids can overcome the molting arrest of *nvd*-RNAi larvae. More than 262 80% of larvae died at L1 stage without steroidal supplement and all of the remaining 263 larvae died at L1/L2 or L2 stage by reduction of *nvd* expression (Table 3, Fig. 2B). We 264 confirmed that the developmental arrest was rescued by administration of E and 7dC, but 265 not by administration of C, (Table 3, Table S2), as shown in the previous paper (Yoshiyama et al., 2006). When 3-oxo- $\Delta^{4,7}$ C was applied to *nvd*-RNAi larvae, 266 267 approximately 65% of them attained L1 molting, the percentage of which is significantly higher than that of unsupplied larvae. Approximately 10% of 3-oxo- $\Delta^{4,7}$ C-fed larvae 268

269	further attained L2 molting and two of them pupariated but died at this stage. In contrast,
270	feeding of 3-oxo- $\Delta^{4,6,8(14)}$ C did not rescue the developmental arrest, as more than 90% of
271	L1 larvae died without molting. We further tested if developmental arrest could be
272	rescued by administration of a 3-oxo-steroid, 5 β -cholest-7-en-3-one (3-oxo-5 β - Δ^7 C),
273	which has a <i>cis</i> junction of rings A and B (Fig. 2A), but this compound also did not
274	overcome the arrest of molting. Taken together, the developmental arrest of <i>nvd</i> -RNAi
275	larvae was rescued by administration of 3-oxo- $\Delta^{4,7}$ C, but not of another 3-oxo-steroids
276	tested, suggesting that 3-oxo- $\Delta^{4,7}$ C was metabolized into ecdysteroid or ecdysteroid-like
277	compound possessing molting activity.
278	
279	3.3 Administration of 3-oxo- $\Delta^{4,7}$ C inhibited molting of sro- and Cyp6t3-RNAi larvae
280	Because Sro likely catalyzes an early step in the Black Box, we anticipated that
281	administration of 3-oxo- $\Delta^{4,7}$ C could rescue the molting arrest of <i>sro</i> -RNAi larvae. We
281 282	administration of 3-oxo- $\Delta^{4,7}$ C could rescue the molting arrest of <i>sro</i> -RNAi larvae. We found that approximately 70 % of larvae containing two copies of <i>UAS-sro-IR</i> and one
281 282 283	administration of 3-oxo- $\Delta^{4,7}$ C could rescue the molting arrest of <i>sro</i> -RNAi larvae. We found that approximately 70 % of larvae containing two copies of <i>UAS-sro-IR</i> and one copy of <i>phm-GAL4</i> died at L1 stage without molting and the remaining larvae mostly
281 282 283 284	administration of 3-oxo- $\Delta^{4,7}$ C could rescue the molting arrest of <i>sro</i> -RNAi larvae. We found that approximately 70 % of larvae containing two copies of <i>UAS-sro-IR</i> and one copy of <i>phm-GAL4</i> died at L1 stage without molting and the remaining larvae mostly died at L1/L2 or L2 stage by reduction of <i>sro</i> expression (Table 4, Fig. 2C). We
281 282 283 284 285	administration of 3-oxo- $\Delta^{4,7}$ C could rescue the molting arrest of <i>sro</i> -RNAi larvae. We found that approximately 70 % of larvae containing two copies of <i>UAS-sro-IR</i> and one copy of <i>phm-GAL4</i> died at L1 stage without molting and the remaining larvae mostly died at L1/L2 or L2 stage by reduction of <i>sro</i> expression (Table 4, Fig. 2C). We confirmed that administration of C did not rescue the developmental arrest (Table S3).
281 282 283 284 285 286	administration of 3-oxo- $\Delta^{4,7}$ C could rescue the molting arrest of <i>sro</i> -RNAi larvae. We found that approximately 70 % of larvae containing two copies of <i>UAS-sro-IR</i> and one copy of <i>phm-GAL4</i> died at L1 stage without molting and the remaining larvae mostly died at L1/L2 or L2 stage by reduction of <i>sro</i> expression (Table 4, Fig. 2C). We confirmed that administration of C did not rescue the developmental arrest (Table S3). The developmental arrest was rescued by feeding E, as 80 % of them developed to L3
281 282 283 284 285 286 286	administration of 3-oxo- $\Delta^{4,7}$ C could rescue the molting arrest of <i>sro</i> -RNAi larvae. We found that approximately 70 % of larvae containing two copies of <i>UAS-sro-IR</i> and one copy of <i>phm-GAL4</i> died at L1 stage without molting and the remaining larvae mostly died at L1/L2 or L2 stage by reduction of <i>sro</i> expression (Table 4, Fig. 2C). We confirmed that administration of C did not rescue the developmental arrest (Table S3). The developmental arrest was rescued by feeding E, as 80 % of them developed to L3 stage and two animals further attained pupariation (Table 4). In contrast, all <i>sro</i> -RNAi
281 282 283 284 285 286 287 288	administration of 3-oxo- $\Delta^{4,7}$ C could rescue the molting arrest of <i>sro</i> -RNAi larvae. We found that approximately 70 % of larvae containing two copies of <i>UAS-sro-IR</i> and one copy of <i>phm-GAL4</i> died at L1 stage without molting and the remaining larvae mostly died at L1/L2 or L2 stage by reduction of <i>sro</i> expression (Table 4, Fig. 2C). We confirmed that administration of C did not rescue the developmental arrest (Table S3). The developmental arrest was rescued by feeding E, as 80 % of them developed to L3 stage and two animals further attained pupariation (Table 4). In contrast, all <i>sro</i> -RNAi larvae unexpectedly died at L1 stage by feeding food containing 3-oxo- $\Delta^{4,7}$ C at 1 mM
281 282 283 284 285 286 287 288 289	administration of 3-oxo- $\Delta^{4,7}$ C could rescue the molting arrest of <i>sro</i> -RNAi larvae. We found that approximately 70 % of larvae containing two copies of <i>UAS-sro-IR</i> and one copy of <i>phm-GAL4</i> died at L1 stage without molting and the remaining larvae mostly died at L1/L2 or L2 stage by reduction of <i>sro</i> expression (Table 4, Fig. 2C). We confirmed that administration of C did not rescue the developmental arrest (Table S3). The developmental arrest was rescued by feeding E, as 80 % of them developed to L3 stage and two animals further attained pupariation (Table 4). In contrast, all <i>sro</i> -RNAi larvae unexpectedly died at L1 stage by feeding food containing 3-oxo- $\Delta^{4,7}$ C at 1 mM final concentration. Next, we examined the lethal phase of larvae fed with 3-oxo- $\Delta^{4,7}$ C at

291 larvae was observed by feeding 3-oxo- $\Delta^{4,7}$ C at 1mM, but not at 0.1mM (Table 5, χ^2 test,

292 p < 0.05). Administration of 3-oxo- $\Delta^{4,6,8(14)}$ C did not rescue the developmental arrest but 293 rather inhibited larval molting, as the percentage of L1 molting was significantly reduced 294 than that of unsupplied control larvae (Fig. 2C).

295 Next, we focused on CYP6T3 which is another component in the Black Box. By

296 RNAi-mediated knockdown of *Cyp6t3* in the PG, all larvae molted to L2 stage, but

almost all of them did not develop to L3 stage. Instead the animals died at L2 stage or

298 developed into L2 prepupae in which L2 larvae underwent precocious metamorphosis

without L2-L3 transition (Table 6), as reported previously (Ou et al., 2011). We

300 confirmed that administration of C did not rescue the developmental arrest to L3 or

301 prepupal stage (Table S4). The developmental arrest was rescued by administration of E,

302 as all larvae developed to L3 stage (Table 6, Fig. 2D). When *Cyp6t3*-RNAi larvae were

303 fed with food containing 3-oxo- $\Delta^{4,7}$ C, more than 20% of them died at L1 stage, indicating

304 that this compound inhibited L1 molting as shown in *sro*-RNAi larvae. We also found

305 that more than 20% of *Cyp6t3*-RNAi larvae died at L1 stage by administration of 3-oxo-

306 $\Delta^{4,6,8(14)}$ C, as shown by administration of 3-oxo- $\Delta^{4,7}$ C.

307

308 3.4 Administration of neither 3-oxo- $\Delta^{4,7}C$ nor 3-oxo- $\Delta^{4,6,8(14)}C$ triggered molting of

309 spok-RNAi larvae

310 We further tested if administration of $3-\infty-\Delta^{4,7}C$ or $3-\infty-\Delta^{4,6,8(14)}C$ can rescue 311 the developmental arrest of *spok*-RNAi larvae. All of *spok*-RNAi larvae died at L1 stage, 312 when they fed with food containing either $3-\infty-\Delta^{4,7}C$ or $3-\infty-\Delta^{4,6,8(14)}C$ as well as food 313 without steroidal supplement (Fig. 2E).

314

315 3.5 14 α -Hydroxyl moiety of Δ^4 -steroids is required to rescue the developmental arrest

316

of ecdysteroid-defective larvae

317 Because the 14 α -hydroxyl moiety is characteristic of the structure of 318 ecdysteroids, we tested if this function is essential to rescue developmental arrest of 319 ecdysteroid-defective larvae. We confirmed that administration of the proposed 3-oxo- Δ^4 intermediate with the 14 α -hydroxyl moiety, i.e. the Δ^4 -diketol (Fig. 3A), triggered 320 molting of ecdysteroid-defective larvae. As expected, administration of the Δ^4 -diketol 321 322 rescued developmental arrest of *nvd*- and *sro*-RNAi larvae, as approximately 40% and 323 65% of Δ^4 -diketol-fed larvae attained L1 molting, respectively, the percentages of which 324 are significantly higher than those of unsupplied larvae. (Table 3, 4, Fig. 3B, C). The attainment of L1 molting by administration of the Δ^4 -diketol was also confirmed in *spok*-325 326 RNAi larvae as reported previously (Table 7, Fig. 3E) (Ono et al., 2012). When Cyp6t3-RNAi larvae were fed with food containing the Δ^4 -diketol, no L2 prepupa was observed. 327 328 Instead approximately 46% of tested animals showed molting behavior to the L3 stage 329 (Table 6, Fig. 3D). These results indicate that developmental arrest of *Cyp6t3*-RNAi animals at the L2 or L2 prepupal stage was rescued by administration of the Δ^4 -diketol. 330 Next, we focused on 3 β -hydroxy- Δ^4 -steroids with a 14 α -hydroxyl moiety, Δ^4 -331 ketodiol, and 3-oxo- Δ^4 -steroid without 14 α -hydroxyl moiety, $\Delta^{4,7}$ C-3,6-dione (Fig. 3A). 332 Administration of the Δ^4 -ketodiol rescued the developmental arrest of *nvd*-, *sro*-, *Cyp6t3*-333 334 and *spok*-RNAi larvae as shown in that of the Δ^4 -diketol (Fig. 3B-E). The significant 335 elevations of percentage of L1 or L2 molting, relative to unsupplied larvae, were 336 observed by feeding the Δ^4 -ketodiol in *nvd*-, *sro*-, *spok*- or *Cyp6t3*-RNAi larvae, 337 respectively. By administration of $\Delta^{4,7}$ C-3,6-dione, all *nvd*-, *sro*- and *spok*-RNAi larvae

338	died at L1 stage. It should be noted that not all <i>nva</i> - and <i>sro</i> -RINAI larvae led with
339	unsupplied food died at L1 stage, indicating that administration of $\Delta^{4,7}$ C-3,6-dione
340	inhibited larval molting in both nvd- and sro-RNAi larvae as shown in sro-RNAi larvae
341	fed with 3-oxo- $\Delta^{4,7}$ C. We further examined the lethal phase of <i>sro</i> -RNAi larvae fed with
342	$\Delta^{4,7}$ C-3,6-dione at different concentration (Table 5). Significant difference in L1 lethality
343	from control unsupplied-larvae was observed at 0.1mM, but not at 0.01mM (χ^2 test, $p <$
344	0.01). We also found that 20% of Cyp6t3-RNAi larvae died at L1 stage by administration
345	of $\Delta^{4,7}$ C-3,6-dione, while all <i>Cyp6t3</i> -RNAi larvae developed to L2 stage fed with
346	unsupplied food (Table 6), indicating that the administration of $\Delta^{4,7}$ C-3,6-dione also
347	inhibited larval molting of <i>Cyp6t3</i> -RNAi larvae. While the application of $\Delta^{4,7}$ C-3,6-dione
348	inhibited larval molting of ecdysteroids-defective larvae, this compound did not show any
349	growth defect, including molting inhibition and reduced body size in wild-type animals
350	(Fig. S3).

1. . . 1

....

1 1 1

т. 1

. 1.1

11

1

DN1 A 1

C 1

• . •

While both the Δ^4 -diketol and Δ^4 -ketodiol rescued the developmental arrest of 351 352 ecdysteroid-defective larvae, their effects on RNAi-mediated knockdown animals were 353 considerably different between the four target genes, *nvd*, *sro*, *cyp6t3* and *spok*. By application of the Δ^4 -diketol or Δ^4 -ketodiol, approximately 35% of *nvd*-RNAi L1 larvae 354 355 successfully molted to L2 stage. In contrast, a substantial proportion of sro- and spok-356 RNAi larvae, from 29% to 63% of animals, died during molting from L1 to L2 stage, 357 while a small proportion of them, from 2% to 15% of animals, successfully molted to L2 358 stage. For *Cyp6t3*-RNAi animals, approximately half of animals died during molting from L2 to L3 stage by feeding the Δ^4 -diketol or Δ^4 -ketodiol, while only one larva fed 359 360 with the Δ^4 -diketol successfully molted to L3 stage.

4. Discussion

364	Rapid reactions of unstable intermediates in the small ecdysteroid-producing
365	organ have been considered an obstacle to the elucidation of the reaction mechanism that
366	builds the ecdysteroid skeleton in the Black Box. In fact, even the true intermediates,
367	such as the ketodiol and ketotriol, have not been detected from the PG of <i>B. mori</i> by
368	LC/MS/MS analysis in a previous study (Hikiba et al., 2013). It is interesting to note that
369	7dC has been detected from the PG of <i>B. mori</i> , but not from that of <i>D. melanogaster</i>
370	(Enya et al., 2014), suggesting that 7dC is metabolized into the following intermediate at
371	different reaction rates between these species. We have failed to detect candidate
372	intermediates, such as the Δ^4 -diketol and diketol, as well as oxidative products of 7dC
373	including 3-oxo- $\Delta^{4,7}$ C from the <i>Drosophila</i> whole bodies and <i>Bombyx</i> PG by LC/MS/MS
374	analysis (data not shown). We, therefore, have taken strategy using feeding-rescue
375	experiments for ecdysteroid-defective larvae in which the expression of an ecdysteroid
376	biosynthetic enzyme is knocked down in order to characterize conceivable intermediates.
377	The previous study (Davies et al., 1981) and this study have shown that
378	oxidation at C-3 unambiguously occurs during ecdysteroidogenesis in different insect
379	species, i.e. the locust and fruitfly. Thus, 3DE is the product of ecdysteroid biosynthesis,
380	but facile 3β -OH reduction must occur before it can be secreted or else earlier in the
381	synthesis. The possible candidate, 3-oxo-7dC, which is a product of the oxidation of 7dC
382	at C-3, is very unstable. However, it is interesting to note that 3-oxo-7dC can be protected
383	as a photosensitive ketal, and then released by irradiation with UV-light. By taking

384	advantage of this reaction, conversions of 3-oxo-7dC into ecdysteroid conjugates in adult
385	Drosophila and into precursors of E in the PG of M. sexta have been confirmed (Warren
386	et al., 2009). Because 3-oxo-7dC is rapidly isomerized into 3-oxo- $\Delta^{4,7}$ C and then
387	oxygenated into the highly conjugated 3-oxo- $\Delta^{4,6,8(14)}$ C, we anticipated that these
388	compounds could be candidate intermediates in the Black Box. It is plausible that 3-oxo-
389	$\Delta^{4,6,8(14)}$ C can be converted into the diketol by concerted addition of oxygen or peroxide
390	across C-6 and C-14 (Gilbert et al., 2002), however, application of this compound did not
391	show any molting activity in ecdysteroid-defective larvae i.e. nvd-, sro- and Cyt6t3-RNAi
392	larvae, but instead partially inhibited L1 molting of sro- and Cyt6t3-RNAi larvae. On the
393	other hand, administration of 3-oxo- $\Delta^{4,7}$ C rescued the molting arrest of <i>nvd</i> -RNAi larvae,
394	as 65% of them developed to L2 stage and some of them further developed to L3 or
395	prepupal stage. These results could provide a convincing hypothesis that this compound
396	is the bona fide intermediate in the Black Box in which concomitant oxidation of 3-oxo-
397	$\Delta^{4,7}$ C at C-6 and C-14 catalyzed by Spo/Spok leads to the Δ^4 -diketol. In this hypothesis,
398	Sro/Nm-g catalyze the oxidation from 7dC to 3-oxo- $\Delta^{4,7}$ C, as its homolog DHS-16
399	catalyzes oxidation of lathosterol at C-3 in C. elegans (Wollam et al., 2012). However,
400	administration of 3-oxo- $\Delta^{4,7}$ C unexpectedly did not rescue the developmental arrest of
401	sro-RNAi larvae, but rather markedly inhibited their molting. To explain this
402	phenomenon, two possibilities could exist. One possibility is that 3-oxo- $\Delta^{4,7}$ C cannot be
403	converted into any metabolite in loss of function of Sro, and so then inhibits molting of
404	L1 larvae by itself. To examine this possibility, we fed 3-oxo- $\Delta^{4,7}$ C to wild-type larvae,
405	but did not see any growth defect such as elevation of lethality or reduction of body size
406	(Fig. S3), indicating 3-oxo- $\Delta^{4,7}$ C itself does not have a detrimental effect on larval

407 development. Alternatively, a critical reaction to otherwise build an ecdysteroid structure would not proceed in loss of function of Sro, so that 3-oxo- $\Delta^{4,7}$ C is instead converted into 408 409 an undesirable by-product which has a negative effect on production of ecdysteroids in 410 the PG or antagonistically inhibits 20E signaling to trigger molting (Fig. 4). A previous 411 study has suggested that an unknown metabolite which can be recognized by an anti-412 ecdysone antibody was accumulated in *sro* mutant embryos of *D. melanogaster* (Chavez 413 et al., 2000; Niwa et al., 2010). Because such metabolite possibly has an ecdysteroid-like 414 structure, it could compete with ecdysteroids as an antagonist. To clarify whether 3-oxo- $\Delta^{4,7}$ C is the true intermediate in the Black Box. we 415 have further examined if deuterium-labeled 3-oxo- $\Delta^{4,7}$ C can be converted into deuterium-416 417 labeled ecdysteroids in whole bodies of Drosophila, however no labeled- intermediate, E 418 nor 20E has been detected as products derived from the administrated 3-oxo- $\Delta^{4,7}$ C (data 419 not shown). If 3-oxo- $\Delta^{4,7}$ C is not an intermediate in the Black Box, it was likely 420 converted into an ecdysteroid-like compound which has a potential activity to trigger 421 molting in *nvd*-RNAi larvae (Fig. 4). Previous studies have shown that the terminal 422 hydroxylations, C-25, C-22 and C-2, do not have strict substrate specificities, i.e. the 5α -423 ketodiol and 5 β -cholest-7-ene-3 β ,6 α ,14 α -triol were hydroxylated at C-25, C-22 and C-2 424 in the PG as shown in 5 β -ketodiol, but neither of them were converted into E by 425 isomerization at C-5 or oxidation at C-6, respectively (Bollenbacher et al., 1977; Schwab 426 and Hetru, 1991). Hence, 3-oxo- $\Delta^{4,7}$ C might be converted to a ketodiol-like compound by 427 enzymes in the Black Box, and then hydroxylated to an uncharacterized compound 428 possessing a molting activity as shown in 14-deoxyecdysone derived from 3β -hydroxy-429 5β-cholest-7-en-6-one (ketol) (Bollenbacher et al., 1977; Ono et al., 2012). Regardless of

430	whether 3-oxo- $\Delta^{4,7}$ C is the intermediate or not, identification of any metabolite derived
431	from 3-oxo- $\Delta^{4,7}$ C could provide a critical clue to understand reactions in the Black Box.
432	Although the 14 α -hydroxylation of a precursor of ecdysteroids is essential to the
433	ecdysteroid skeleton, it is not clear which step in the Black Box is involved in this
434	hydroxylation. Considering that the ketol is not hydroxylated at C-14 in both in vivo and
435	in <i>vitro</i> (Bollenbacher et al., 1977; Haag et al., 1987), the 14 α -hydroxylation must
436	precede 5 β -reduction and/or formation of a 7-en-6-one chromophore. We showed that the
437	developmental arrest of <i>nvd</i> -, <i>sro-</i> and <i>spok</i> -RNAi larvae were rescued by feeding the Δ^4 -
438	diketol and Δ^4 -ketodiol, suggesting that oxidation at C-14 is indispensable for conversion
439	of these Δ^4 -steroids into ecdysteroids via 5 β -reduction regardless of 3-dehyroxy- or 3 β -
440	hydroxy moiety (Fig. 5). In contrast, both steroids lacking 14 α -hydroxyl moiety, 3-oxo-
441	$\Delta^{4,7}$ C and $\Delta^{4,7}$ C-3,6-dione, inhibited molting of <i>sro</i> -RNAi larvae, and $\Delta^{4,7}$ C-3,6-dione
442	further inhibited molting of <i>nvd</i> -RNAi. It should also be noted that application of these
443	steroids lacking 14 α -hydroxyl moiety, 3-oxo- $\Delta^{4,7}$ C and $\Delta^{4,7}$ C-3,6-dione partially
444	inhibited L1 molting of <i>Cyp6t3</i> -RNAi larvae. These results suggest that Δ^4 -steroids
445	lacking 14 α -hydroxyl moiety could be converted into a detrimental by-product inhibiting
446	larval molting in ecdysteroids-defective larvae. Although the idea that concomitant
447	oxidation of 3-oxo- $\Delta^{4,6,8(14)}$ C at C-6 and C-14 leads to the Δ^4 -diketol is plausible (Gilbert
448	et al., 2002), our trials of feeding-rescue experiments did not show consistent results as
449	discussed above. Rather, application of 3-oxo- $\Delta^{4,6,8(14)}$ C inhibited L1 molting of <i>sro</i> - and
450	<i>Cyp6t3</i> -RNAi larvae, suggesting that formation of 3-oxo- $\Delta^{4,6,8(14)}$ C must be circumvented
451	in order to build the ecdysteroid skeleton. One speculation is that, to this end, 14α -
452	hydroxylation at an early step in the Black Box is required to build the 5β-7-en-6-one

453 structure without formation of $3-\infty-\Delta^{4,6,8(14)}C$, nevertheless any positive evidence for **454** this is lacking.

455	If this highly conjugated 3-oxo-steroid is not included in the Black Box, in
456	which step does 14 α -hydroxylation occur? One possibility is that 3-oxo- $\Delta^{4,7}$ C is
457	concomitantly oxidized at C-6 and C-14, if this steroid is the true intermediate. Another
458	possibility is that oxidation of 3-oxo-7dC at C-14 takes place before the formation of 3-
459	oxo- $\Delta^{4,7}$ C. Otherwise, 14 α -hydroxylation precedes oxidation at C-3, as 7dC first
460	oxygenated at C-14, and then other oxidation reactions including C-3 oxidation follow. In
461	both cases, it is possible that 14α -hydroxylation plays a role to prevent the formation of
462	undesirable by-products causing molting inhibition.
463	We observed the different effects of the same steroids on larval development
464	among the different RNAi-treated animals. For example, approximately 40% of nvd-
465	RNAi larvae were rescued by administration of the 14 α -hydroxy-steroids, the Δ^4 -diketol
466	and Δ^4 -ketodiol, but a substantial proportion of <i>sro-</i> , <i>spok-</i> and <i>Cyp6t3-</i> RNAi larvae fed
467	with these steroids failed to progress to the next stage, as they died during molting from
468	L1 to L2 or from L2 to L3 stage. It is conceivable that these results could give clues to
469	speculate a sequential position of uncharacterized enzymes, but comparison of the extent
470	of development among the different RNAi-treated animals is not necessarily appropriate,
471	because phenotypes of RNAi-treated animals were different from each other likely due to
472	the different extent of loss of function of targeted genes. While the application of the Δ^4 -
473	diketol and Δ^4 -ketodiol significantly rescued the developmental arrest of <i>nvd</i> -RNAi
474	animals, a substantial proportion of sro-, spok- and Cyp6t3-RNAi larvae failed to
475	progress to the next stage, as they died during molting from L1 to L2 or from L2 to L3

476 stage. One possible explanation for the incomplete developmental progression is that 477 larvae could not produce enough E from the ingested Δ^4 -diketol and Δ^4 -ketodiol in the 478 PG to complete a series of molting process due to complex pharmacokinetics underlying 479 the oral administration. In these cases, low ecdysteroid titer could induce the formation of 480 second larval mouth hook and new cuticle, but not complete molting process. Indeed, the 481 developmental arrest during molting was observed in *nvd*- and *spok*- RNAi larvae even 482 by E feeding regimen, suggesting that ecdysteroid titers were not elevated at an 483 appropriate time in these larvae. Another explanation is that the ingested Δ^4 -diketol and 484 Δ^4 -ketodiol were not converted into E in the PG, but rather into ecdysteroid-like 485 compounds having competence to bind to ecdysone receptor. It should be pointed out that 486 ecdysteroid titer must increase, then decrease to attain the normal molting cascade **487** including the formation of new cuticle, the digestion of old cuticle, and the completion of **488** molting. Escape from the old cuticle is initiated by the release of the peptide hormones 489 triggered by the decline of 20E titer to a basal level (Truman, 2005). Therefore, larvae **490** could not complete molting without the decline of 20E titer, as an ecdysteroid mimic was 491 applied to lepidopteran larvae where ecdysteroid agonist activity was persisted in larval tissues (Dhadialla et al., 1998). There is a possibility that the ingested Δ^4 -diketol and Δ^4 -492 493 ketodiol were converted into ecdysteroid agonists not to be degraded in *sro-*, *spok-* and 494 *Cyp6t3*-RNAi larval tissues, thereby, larvae fed with these steroids could not complete 495 molting. Besides, it should be pointed out that a small number of ecdysteroid-defective 496 larvae successfully progress to the next stage by feeding the Δ^4 -diketol and Δ^4 -ketodiol, **497** suggesting that a possibility of a production of a small amounts of E in the PG.

498	Now, insect genome engineering using the CRISPR/Cas9 system is rapidly
499	prevailing (Daimon et al., 2014), therefore, knockout of a gene encoding for an
500	ecdysteroid biosynthetic enzyme in large size insects such as <i>B. mori</i> will give us a clue
501	to elucidate the Black Box, i.e. identification of an accumulated metabolite caused by loss
502	of function of a target enzyme will unveil the biosynthetic pathway of the Black Box.
503	
504	Acknowledgments
505	We are grateful to M. Iga and H. Kataoka for LC/MS/MS analyses. We are
506	grateful to J.T. Warren for critical reading. We thank R. Niwa, M.B. O'Connor, the
507	Genetic Resource Center at Kyoto Institute of Technology and the Vienna Drosophila
508	RNAi Centre for fly stocks. This work was supported in part by JSPS KAKENHI Grant
509	Number 26450466.
=10	

- 511 Figure legends
- 512

513 Fig. 1. Chemical structures of steroids.

514

515 Fig. 2. Molting activities of oxidative products derived from 7dC in the ecdysteroid-

- **516** defective larvae. (A) Synthetic pathway of oxidative products of 7dC. 3-Oxo- $\Delta^{4,7}$ C and 3-
- **517** oxo- $\Delta^{4,6,8(14)}$ C were synthesized from 7dC by successive oxidation. 3-Oxo-5 β - Δ^7 C was
- **518** synthesized from 3-oxo- $\Delta^{4,7}$ C by reduction reaction. (B) Percentage of *nvd*-RNAi larvae
- 519 attained L1 molting. (C) Percentage of *sro*-RNAi larvae attained L1 molting. (D)
- 520 Percentage of *Cyp6t3*-RNAi larvae attained L2 molting. (E) Percentage of *spok*-RNAi
- 521 larvae attained L1 molting. Asterisk indicates a statistically significant difference of L1 or

522 L2 molting between steroid-supplied and unsupplied animals. χ^2 test: **p < 0.01; *p <

- **523** 0.05.
- 524

526 Synthetic pathway of Δ^4 -diketol analogs. $\Delta^{4,7}$ C-3,6-dione and Δ^4 -diketol were

527 synthesized from 3-oxo- $\Delta^{4,7}$ C by successive oxidation. The Δ^4 -ketodiol was synthesized

528 from the Δ^4 -diketol by reduction reaction. (B) Percentage of *nvd*-RNAi larvae attained L1

529 molting. (C) Percentage of *sro*-RNAi larvae attained L1 molting. (D) Percentage of

530 *Cyp6t3*-RNAi larvae attained L2 molting. (E) Percentage of *spok*-RNAi larvae attained

- 531 L1 molting. Asterisk indicates a statistically significant difference of L1 or L2 molting
- **532** between steroid-supplied and unsupplied animals. χ^2 test: **p < 0.01; *p < 0.05.
- 533

534	Fig. 4. Possible metabolic pathways of 3-oxo- $\Delta^{4,7}$ C in <i>Drosophila</i> . The oxidative product
535	of 7dC, 3-oxo- $\Delta^{4,7}$ C, could be converted into ecdysteroid or ecdysteroid-like compound
536	via a step catalyzed by Sro. Loss of function of Sro leads production of ecdysteroid-
537	antagonist from 3-oxo- $\Delta^{4,7}$ C due to an unfavorable metabolic conversion.
538	
539	Fig. 5. Possible metabolic pathways of Δ^4 -steroids in <i>Drosophila</i> . As the developmental
540	arrest of ecdysteroid-defective larvae were rescued by feeding the 14 α -hydroxy-steroids,
541	oxidation at C-14 is indispensable for conversion of Δ^4 -steroids into ecdysteroids
542	regardless of 3-dehydro- or 3 β -hydroxy moiety. In contrast, Δ^4 -steroids lacking 14 α -
543	hydroxyl moiety could be converted into a detrimental by-product inhibiting larval
544	molting in ecdysteroids-defective larvae.
545	

547 References

548

549 Blais, C., Dauphin-Villemant, C., Kovganko, N., Girault, J. P., Descoins, C., Jr., Lafont, R., 1996. Evidence for the involvement of 3-oxo- Δ^4 intermediates in ecdysteroid 550 551 biosynthesis. Biochem. J. 320, 413-419. 552 Bocking, D., Dauphinvillemant, C., Sedlmeier, D., Blais, C., Lafont, R., 1993. 553 Ecdysteroid biosynthesis in molting glands of the crayfish Orconectes limosus: 554 evidence for the synthesis of 3-dehydroecdysone by in vitro synthesis and 555 conversion studies. Insect Biochem. Mol. Biol. 23, 57-63. 556 Bollenbacher, W. E., Galbraith, M. N., Gilbert, L. I., Horn, D. H., 1977. In vitro 557 metabolism of 3β-hydroxy-, and 3β,14 α -dihydroxy-[3 α -³H]-5β-cholest-7-en-6-558 one by the prothoracic glands of Manduca sexta. Steroids. 29, 47-63. 559 Chavez, V. M., Marques, G., Delbecque, J. P., Kobayashi, K., Hollingsworth, M., Burr, 560 J., Natzle, J. E., O'Connor, M. B., 2000. The Drosophila disembodied gene 561 controls late embryonic morphogenesis and codes for a cytochrome P450 enzyme 562 that regulates embryonic ecdysone levels. Development. 127, 4115-4126. 563 Daimon, T., Kiuchi, T., Takasu, Y., 2014. Recent progress in genome engineering 564 techniques in the silkworm, Bombyx mori. Dev. Growth Differ. 56, 14-25. 565 Davies, T. G., Dinan, L. N., Lockley, W. J., Rees, H. H., Goodwin, T. W., 1981. 566 Formation of the A/B cis ring junction of ecdysteroids in the locust, Schistocerca 567 gregaria. Biochem. J. 194, 53-62. 568 Dhadialla, T.S., Carlson, G.R., Le, D.P., 1998. New insecticides with ecdysteroidal and 569 juvenile hormone activity. Annu. Rev. Entomol. 43, 545-569. 570 Dolle, F., Hetru, C., Roussel, J. P., Rousseau, B., Sobrio, F., Luu, B., Hoffmann, J. A., 571 1991. Synthesis of a tritiated 3-dehydroecdysteroid putative precursor of 572 ecdysteroid biosynthesis in Locusta migratoria. Tetrahedron. 47, 7067-7080. 573 Enya, S., Ameku, T., Igarashi, F., Iga, M., Kataoka, H., Shinoda, T., Niwa, R., 2014. A 574 Halloween gene *noppera-bo* encodes a glutathione S-transferase essential for 575 ecdysteroid biosynthesis via regulating the behaviour of cholesterol in 576 Drosophila. Sci. Rep. 4, 6586.

- 577 Gilbert, L. I., Rybczynski, R., Warren, J. T., 2002. Control and biochemical nature of the 578 ecdysteroidogenic pathway. Annu. Rev. Entomol. 47, 883-916. 579 Gilbert, L. I., Warren, J. T., 2005. A molecular genetic approach to the biosynthesis of 580 the insect steroid molting hormone. Vitam. Horm. 73, 31-57. 581 Haag, T., Meister, M.-F., Hetru, C., Kappler, C., Nakatani, Y., Beaucourt, J.P., Rousseau, 582 B., Luu, B., 1987. Synthesis of a labelled putative precursor of ecdysone—II: 583 $[^{3}H_{4}]$ 3 β -hydroxy-5 β -cholest-7en-6-one: critical re-evaluation of its role in *Locusta* **584** migratoria. Insect Biochem. 17, 291-301. 585 Hikiba, J., Ogihara, M. H., Iga, M., Saito, K., Fujimoto, Y., Suzuki, M., Kataoka, H., 586 2013. Simultaneous quantification of individual intermediate steroids in silkworm 587 ecdysone biosynthesis by liquid chromatography-tandem mass spectrometry with 588 multiple reaction monitoring. J. Chromatogr. B. 915-916, 52-56. 589 Iga, M., Kataoka, H., 2012. Recent studies on insect hormone metabolic pathways 590 mediated by cytochrome P450 enzymes. Biol. Pharm. Bull. 35, 838-843. 591 Kinnear, J. F., Martin, M. D., Faux, A. F., Horn, D. H. S., Wilkie, J. S., 1979. Insect 592 moulting hormones: a study of 4-en-3-one steroids as possible ecdysteroid 593 precursors. Aust. J. Chem. 32, 2017-2024. 594 Kiriishi, S., Rountree, D. B., Sakurai, S., Gilbert, L. I., 1990. Prothoracic gland synthesis 595 of 3-dehydroecdysone and its hemolymph 3β-reductase mediated conversion to 596 ecdysone in representative insects. Experientia. 46, 716-721. 597 Lafont, R., Dauphin-Villemant, C., Warren, J., Rees, H., 2012. Ecdysteroid chemistry and **598** biochemistry, in: Gilbert, L.I. (ed.), Insect Endocrinology. Academic Press, San 599 Diego, CA., pp. 106-176. 600 Lockley, W. J. S., Boid, R., Lloyd-Jones, G. J., Rees, H. H., Goodwin, T. W., 1975. Fate 601 of the C-4 hydrogen atoms of cholesterol during its transformation into ecdysones 602 in insects and plants. J. Chem. Soc., Chem. Commun. 346-348. 603 Motola, D. L., Cummins, C. L., Rottiers, V., Sharma, K. K., Li, T., Li, Y., Suino-Powell, 604 K., Xu, H. E., Auchus, R. J., Antebi, A., Mangelsdorf, D. J., 2006. Identification 605 of ligands for DAF-12 that govern dauer formation and reproduction in C. 606 elegans. Cell. 124, 1209-1223.
 - 27

607	Namiki, T., Niwa, R., Sakudoh, T., Shirai, K., Takeuchi, H., Kataoka, H., 2005.
608	Cytochrome P450 CYP307A1/Spook: a regulator for ecdysone synthesis in
609	insects. Biochem. Biophys. Res. Commun. 337, 367-374.
610	Niwa, R., Matsuda, T., Yoshiyama, T., Namiki, T., Mita, K., Fujimoto, Y., Kataoka, H.,
611	2004. CYP306A1, a cytochrome P450 enzyme, is essential for ecdysteroid
612	biosynthesis in the prothoracic glands of <i>Bombyx</i> and <i>Drosophila</i> . J. Biol. Chem.
613	279, 35942-35949.
614	Niwa, R., Namiki, T., Ito, K., Shimada-Niwa, Y., Kiuchi, M., Kawaoka, S., Kayukawa,
615	T., Banno, Y., Fujimoto, Y., Shigenobu, S., Kobayashi, S., Shimada, T., Katsuma,
616	S., Shinoda, T., 2010. Non-molting glossy/shroud encodes a short-chain
617	dehydrogenase/reductase that functions in the 'Black Box' of the ecdysteroid
618	biosynthesis pathway. Development. 137, 1991-1999.
619	Niwa, R., Niwa, Y. S., 2014. Enzymes for ecdysteroid biosynthesis: their biological
620	functions in insects and beyond. Biosci. Biotechnol. Biochem. 78, 1283-1292.
621	Ono, H., Morita, S., Asakura, I., Nishida, R., 2012. Conversion of 3-oxo steroids into
622	ecdysteroids triggers molting and expression of 20E-inducible genes in
623	Drosophila melanogaster. Biochem. Biophys. Res. Commun. 421, 561-566.
624	Ono, H., Rewitz, K. F., Shinoda, T., Itoyama, K., Petryk, A., Rybczynski, R., Jarcho, M.,
625	Warren, J. T., Marques, G., Shimell, M. J., Gilbert, L. I., O'Connor, M. B., 2006.
626	Spook and Spookier code for stage-specific components of the ecdysone
627	biosynthetic pathway in Diptera. Dev Biol. 298, 555-570.
628	Ou, Q., Magico, A., King-Jones, K., 2011. Nuclear receptor DHR4 controls the timing of
629	steroid hormone pulses during Drosophila development. PLoS Biol. 9, e1001160.
630	Petryk, A., Warren, J. T., Marques, G., Jarcho, M. P., Gilbert, L. I., Kahler, J., Parvy, J.
631	P., Li, Y., Dauphin-Villemant, C., O'Connor, M. B., 2003. Shade is the
632	Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the
633	steroid insect molting hormone 20-hydroxyecdysone. Proc. Natl. Acad. Sci. USA
634	100, 13773-13778.
635	Rewitz, K. F., Larsen, M. R., Lobner-Olesen, A., Rybczynski, R., O'Connor, M. B.,
636	Gilbert, L. I., 2009. A phosphoproteomics approach to elucidate neuropeptide

- 637 signal transduction controlling insect metamorphosis. Insect Biochem. Mol. Biol.638 39, 475-483.
- 639 Rottiers, V., Motola, D. L., Gerisch, B., Cummins, C. L., Nishiwaki, K., Mangelsdorf, D.
 640 J., Antebi, A., 2006. Hormonal control of *C. elegans* dauer formation and life
 641 span by a Rieske-like oxygenase. Dev Cell. 10, 473-482.
- 642 Schwab, C., Hetru, C., 1991. Synthesis and conversion study of a radiolabeled putative
 643 ecdysone precursor, 5-β-cholest-7-ene-3-β,6-α,14-α-triol in *Locusta migratoria*644 prothoracic glands. Steroids. 56, 316-319.
- 645 Truman, J. W., 2005. Hormonal control of insect ecdysis: endocrine cascades for646 coordinating behavior with physiology. Vitam. Horm. 73, 1-30.
- 647 Warren, J. T., O'Connor, M. B., Gilbert, L. I., 2009. Studies on the Black Box:
- 648 incorporation of 3-oxo-7-dehydrocholesterol into ecdysteroids by *Drosophila*649 *melanogaster* and *Manduca sexta*. Insect Biochem. Mol. Biol. 39, 677-687.
- Warren, J. T., Petryk, A., Marques, G., Jarcho, M., Parvy, J. P., Dauphin-Villemant, C.,
 O'Connor, M. B., Gilbert, L. I., 2002. Molecular and biochemical characterization
 of two P450 enzymes in the ecdysteroidogenic pathway of *Drosophila*
- 653 *melanogaster*. Proc. Natl. Acad. Sci. USA 99, 11043-11048.
- Warren, J. T., Petryk, A., Marques, G., Parvy, J. P., Shinoda, T., Itoyama, K., Kobayashi,
 J., Jarcho, M., Li, Y., O'Connor, M. B., Dauphin-Villemant, C., Gilbert, L. I.,
- 656 2004. Phantom encodes the 25-hydroxylase of *Drosophila melanogaster* and
 657 *Bombyx mori*: a P450 enzyme critical in ecdysone biosynthesis. Insect Biochem.
- 658 Mol. Biol. 34, 991-1010.
- Wollam, J., Antebi, A., 2011. Sterol regulation of metabolism, homeostasis, anddevelopment. Annu. Rev. Biochem. 80, 885-916.
- Wollam, J., Magner, D. B., Magomedova, L., Rass, E., Shen, Y., Rottiers, V.,
 Habermann, B., Cummins, C. L., Antebi, A., 2012. A novel 3-hydroxysteroid
 dehydrogenase that regulates reproductive development and longevity. PLoS Biol.
 10, e1001305.
- Wollam, J., Magomedova, L., Magner, D. B., Shen, Y., Rottiers, V., Motola, D. L.,
 Mangelsdorf, D. J., Cummins, C. L., Antebi, A., 2011. The Rieske oxygenase

667	DAF-36 functions as a cholesterol 7-desaturase in steroidogenic pathways
668	governing longevity. Aging Cell. 10, 879-884.
669	Yoshiyama-Yanagawa, T., Enya, S., Shimada-Niwa, Y., Yaguchi, S., Haramoto, Y.,
670	Matsuya, T., Shiomi, K., Sasakura, Y., Takahashi, S., Asashima, M., Kataoka, H.,
671	Niwa, R., 2011. The conserved Rieske oxygenase DAF-36/Neverland is a novel
672	cholesterol-metabolizing enzyme. J. Biol. Chem. 286, 25756-25762.
673	Yoshiyama, T., Namiki, T., Mita, K., Kataoka, H., Niwa, R., 2006. Neverland is an
674	evolutionally conserved Rieske-domain protein that is essential for ecdysone
675	synthesis and insect growth. Development. 133, 2565-2574.
676	
677	

Parameters for MRM analysis of steroids.

20E	Q1/Q3	Retention time in LC (min)
20E	481.3/445.3	1.69
20E-d6	487.3/451.3	1.67
20E-d7	488.3/452.3	1.67

Substrate	Peak area (X 10 ⁴ , mean \pm SD, $n = 3$)		Ratio (mean \pm SD, $n = 3$)	
	20E	20E-d6	20E-d7	20E-d7/20E-d6
Cholesterol	19.9 ± 5.89	ND	ND	
Cholesterol-d7	ND	14.1 ± 9.37	3.82 ± 2.24	0.284 ± 0.0255
Cholesterol-d8	ND	8.18 ± 3.76	3.05 ± 1.31	0.378 ± 0.0152

Analysis of 20E extracted from *Drosophila* pupae.

ND: not detected

Steroid	Percentage of animals which died at each stage						
	Lethal stage						
	L1	L1/L2	L2	L2/L3	L3	Purepupa	
EtOH	83 (92)	9 (10)	8 (9)	0 (0)	0 (0)	0 (0)	
7dC	16 (3)	0 (0)	47 (9)	11 (2)	21 (4)	5 (1)	
3-Oxo- $\Delta^{4,7}$ C	35 (19)	4 (2)	53 (29)	4 (2)	4 (2)	2 (1)	
3-Oxo- $\Delta^{4,6,8(14)}$ C	94 (45)	4 (2)	2(1)	0 (0)	0 (0)	0 (0)	
3-Oxo-5β-7-ene	84 (26)	13 (4)	3 (1)	0 (0)	0 (0)	0 (0)	
Δ^4 -Diketol	61 (19)	0 (0)	35 (11)	0 (0)	3 (1)	0 (0)	
Δ^4 -Ketodiol	33 (19)	30 (17)	37 (21)	0 (0)	0 (0)	0 (0)	
$\Delta^{4,7}$ C-3,6-dione	100 (68)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	
Ecdysone	6 (2)	0 (0)	16 (5)	16 (5)	48 (15)	13 (4)	

Lethal phase of *nvd*-RNAi animals fed with steroid or none.

L1/L2 and L2/L3 refer to larvae that died while molting from L1 to L2 and from L2 to L3, respectively.

Steroid	Percentage of animals which died at each stage						
	Lethal stage						
	L1	L1/L2	L2	L2/L3	L3	Purepupa	
EtOH	67 (59)	26 (23)	7 (6)	0 (0)	0 (0)	0 (0)	
3 -Oxo- $\Delta^{4,7}$ C	100 (95)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	
$3-Oxo-\Delta^{4,6,8(14)}C$	88 (37)	10 (4)	2 (1)	0 (0)	0 (0)	0 (0)	
Δ^4 -Diketol	34 (14)	63 (26)	2 (1)	0 (0)	0 (0)	0 (0)	
Δ^4 -Ketodiol	43 (13)	47 (14)	10 (3)	0 (0)	0 (0)	0 (0)	
$\Delta^{4,7}$ C-3,6-dione	100 (53)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	
Ecdysone	0 (0)	0 (0)	20 (5)	0 (0)	72 (18)	8 (2)	

Lethal phase of sro-RNAi animals fed with steroid or none.

Each number in parentheses refers to the number of animals which died at each stage.

L1/L2 and L2/L3 refer to larvae that died while molting from L1 to L2 and from L2 to L3, respectively.

Steroid	Concentration	Percentage of animals which died at each stage								
		Lethal stage								
		L1	L1/L2	L2	L2/L3	L3	Purepupa			
3-oxo-Δ ^{4,7} C	1 mM	99 (180)	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)			
	0.1 mM	83 (156)	12 (22)	5 (9)	0 (0)	0 (0)	0 (0)			
	0.01 mM	86 (76)	11 (10)	2 (2)	0 (0)	0 (0)	0 (0)			
	0 mM	75 (128)	12 (21)	13 (22)	0 (0)	0 (0)	0 (0)			
$\Delta^{4,7}$ C-3,6-dione	1 mM	97 (36)	3 (1)	0 (0)	0 (0)	0 (0)	0 (0)			
	0.1 mM	82 (28)	18 (6)	0 (0)	0 (0)	0 (0)	0 (0)			
	0.01 mM	72 (28)	28 (11)	0 (0)	0 (0)	0 (0)	0 (0)			
	0 mM	67 (38)	28 (16)	5 (3)	0 (0)	0 (0)	0 (0)			

Lethal phase of *sro*-RNAi animals fed with 3-oxo- $\Delta^{4,7}$ C at different concentration.

Each number in parentheses refers to the number of animals which died at each stage.

L1/L2 refers to larvae that died while molting from L1 to L2.

Steroid	Percentage of animals which died at each stage									
	Lethal stage									
	L1	L1/L2	L2	L2 prepupa	L2/L3	L3	Purepupa			
EtOH	0 (0)	0 (0)	60 (24)	38 (15)	0 (0)	3 (1)	0 (0)			
3-Oxo- $\Delta^{4,7}$ C	21 (11)	4 (2)	60 (21)	8 (14)	6 (3)	2 (1)	0 (0)			
3-Oxo- $\Delta^{4,6,8(14)}$ C	23 (9)	0 (0)	77 (30)	0 (0)	0 (0)	0 (0)	0 (0)			
Δ^4 -Diketol	3 (2)	0 (0)	48 (29)	0 (0)	47 (28)	2 (1)	0 (0)			
Δ^4 -Ketodiol	2(1)	0 (0)	44 (24)	0 (0)	55 (30)	0 (0)	0 (0)			
$\Delta^{4,7}$ C-3,6-dione	20 (12)	0 (0)	63 (38)	17 (10)	0 (0)	0 (0)	0 (0)			
Ecdysone	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	100 (22)	0 (0)			

Lethal phase of *Cyp6t3*-RNAi animals fed with steroid or none.

Each number in parentheses refers to the number of animals which died at each stage.

L1/L2 and L2/L3 refer to larvae that died while molting from L1 to L2 and from L2 to L3, respectively.

Steroid	Percentage of animals which died at each stage Lethal stage								
	L1	L1/L2	L2	L2/L3	L3	Purepupa			
EtOH	100 (84)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)			
3 -Oxo- $\Delta^{4,7}$ C	100 (117)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)			
$3-Oxo-\Delta^{4,6,8(14)}C$	100 (65)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)			
Δ^4 -Diketol	56 (33)	37 (22)	7 (4)	0 (0)	0 (0)	0 (0)			
Δ^4 -Ketodiol	57 (34)	28 (17)	15 (9)	0 (0)	0 (0)	0 (0)			
$\Delta^{4,7}$ C-3,6-dione	100 (60)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)			
Ecdysone	8 (4)	0 (0)	14 (7)	2 (1)	65 (33)	12 (6)			

Lethal phase of *spok*-RNAi animals fed with steroid or none.

Each number in parentheses refers to the number of animals which died at each stage.

L1/L2 refers to larvae that died while molting from L1 to L2.

7dC

3-Oxo-7dC

3-Oxo-Δ^{4,7}C

 $\Delta^{4,7}$ C-3,6-dione

ŌН 0 II O

Δ⁴-Diketol

Δ⁴-Ketodiol

OH

Сон

Ketol

ŌН HO Ĥ

но ŌН 0 H ö

Diketol

Ketodiol

Fig. 4

Fig. 5

Supplemental Table

 Table S1. The primers used for quantitative RT-PCR

	1 1	
gene	forward primer	reverse primer
nvd	5'-ACCTCCCCCTTATCCAAATG-3'	5'-AGCAACGCTTCCACCAATAC-3'
sro	5'-ATGAGCGGCAGTCAACTTCT-3'	5'-CAGGAAATCACGGTCATGTG-3'
Cyp6t3	5'- ACGCTACCGCTGGCTAAGTA-3'	5'-ACTGGCACATTCTTCCCAAC-3'
spok	5'-TATCTCTTGGGCACACTCGCTG-3'	5'-GCCGAGCTAAATTTCTCCGCTT-3'
rpL23	5'-GCTCAGGAAGAAGGTCATGC-3'	5'-GGCTATAGAGCTTGCATTGGA

Table S2

Steroid	Percentage of animals which died at each stage								
	Lethal stage								
	L1	L1/L2	L2	L2/L3	L3	Purepupa			
EtOH	64 (28)	30 (13)	5 (2)	2 (1)	0 (0)	0 (0)			
С	65 (35)	30 (16)	6 (3)	0 (0)	0 (0)	0 (0)			
Ecdysone	0 (0)	0 (0)	0 (0)	6 (1)	94 (16)	0 (0)			

Lethal phase of *nvd*-RNAi animals fed with steroid or none.

Table S3

Steroid	Percentage	Percentage of animals which died at each stage								
	Lethal stag	Lethal stage								
	L1	L1/L2	L2	L2/L3	L3	Purepupa				
EtOH	33 (14)	62 (26)	5 (2)	0 (0)	0 (0)	0 (0)				
С	46 (16)	54 (19)	0 (0)	0 (0)	0 (0)	0 (0)				
Ecdysone	0 (0)	0 (0)	5 (1)	5 (1)	89 (17)	0 (0)				

Lethal phase of *sro*-RNAi animals fed with steroid or none.

Table S4

Steroid	Percentage of animals which died at each stage								
	Lethal stage								
	L1	L1/L2	L2	L2 prepupa	L2/L3	L3	Purepupa		
EtOH	19 (10)	10 (5)	21 (11)	35 (18)	15 (8)	0 (0)	0 (0)		
С	7 (3)	0 (0)	46 (19)	22 (9)	24 (10)	0 (0)	0 (0)		
Ecdysone	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	47 (7)	53 (8)		

Lethal phase of *Cyp6t3*-RNAi animals fed with steroid or none.

Supplementary figure legends

2

3 Fig. S1. HPLC analyses of the stability of tested steroids, 3-oxo- $\Delta^{4,7}$ C (A),

- **4** 3-oxo- $\Delta^{4,6,8(14)}$ C (B), $\Delta^{4,7}$ C-3,6-dione (C) and Δ^{4} -ketodiol (D). Approximately, 22, 43, 35
- 5 or 22% of the original substrate was recovered from yeast paste in (A), (B), (C) and (D),
- 6 respectively. UV absorption at 237, 348, 280 or 264 nm was monitored for (A), (B), (C)
- 7 and (D), respectively.
- 8

9 Fig. S2. Transcriptional levels of target genes in RNAi-mediated L1 larvae. (A)

10 Transcriptional levels of *nvd* (A), *sro* (B), *Cyp6t3* (C) and *sro* (D) in each targeted RNAi
11 larvae.

12

13 Fig. S3. Pupal length of animals fed with steroid or none. Each number in parentheses 14 refers to the number of animals. All animals normally developed to pupal stage without 15 any molting defects. No significant difference was observed in animals fed with steroid 16 or none (Student's *t*-test: p > 0.5).

17

Fig. S1

Fig. S2

Fig. S3

