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Abstract

We perform a tree-level O(a) improvement of two-dimensional N = (2, 2) supersymmetric Yang–Mills 
theory on the lattice, motivated by the fast convergence in numerical simulations. The improvement respects 
an exact supersymmetry Q which is needed for obtaining the correct continuum limit without a parameter 
fine tuning. The improved lattice action is given within a milder locality condition in which the interactions 
are decaying as the exponential of the distance on the lattice. We also prove that the path-integral measure 
is invariant under the improved Q-transformation.
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1. Introduction

Nonperturbative dynamics of supersymmetric gauge theories is of great interest for various 
reasons. However many interesting problems are out of reach of the current analytic under-
standings. For example, while properties of the vacua can be analyzed very precisely by using 
holomorphy (e.g. [1,2]), the dynamics of excitations is hard to study except for specific objects 
saturating the so-called BPS bound. In the context of the gauge/gravity duality, gauge theory dual 
to weakly coupled gravity is strongly coupled and furthermore the quantities of interests are not 
necessarily protected by supersymmetry. Numerical simulation based on lattice gauge theory is 
considered as a promising approach to such problems.

Historically, lattice formulation of supersymmetry brushed off many attempts. The problem 
was the parameter fine tuning problem; because a lattice breaks the infinitesimal translation, 
which is a part of the supersymmetry algebra, the supersymmetry cannot be preserved completely 
on a lattice. Then, even if the supersymmetry is restored in a naive continuum limit at the tree 
level, radiative corrections break it in general.

For two-dimensional theories, the parameter fine tuning problems can be circumvented by 
keeping a part of the supersymmetry algebra (one or two supercharges and U(1) or SU(2)

R-symmetry) at discretized level [3–20]. Encouraged by this development, several groups have 
been trying lattice simulations of two-dimensional super Yang–Mills theories [21–25],1 in-
cluding the maximally supersymmetric theory relevant for the gauge/gravity duality [26–29]. 
Furthermore it has been pointed out that such two-dimensional theories can be used to con-
struct four-dimensional super Yang–Mills theory [37,38] by utilizing the Myers effect with which 
two spatial dimensions are encoded in matrix degrees of freedom [39,40]. The two-dimensional 
N = (2, 2) supersymmetric Yang–Mills theory on an arbitrarily discretized Riemann surface is 
developed in [41–45].

At present, there is a consensus among the community of researchers that these regularization 
schemes can work in principle. However, in practice — especially, in order to perform precision 
measurements at large volume and large N , with currently available numerical resources — it 
is desirable to have improved regularizations which converge to the continuum limit faster. In 
the lattice QCD community, such improvement is known as the Symanzik improvement pro-
gram [46,47]. Errors arising on discretization of a continuum system by lattice are of the order 
of the lattice spacing O(a) in general. The program makes the errors reduced to higher orders 
in a.

In this paper, we consider the improvement of the lattice action of two-dimensional N = (2, 2)

super Yang–Mills theory proposed by one of the authors (F. S.) [7]. This is a technically nontriv-
ial subject, because the improvement term must preserve the exact supercharge and R-symmetry 
that are relevant to realize the theory flowing to the desired continuum theory without any pa-
rameter fine tuning. As a first step, we consider O(a) improvement at the tree level. Because the 
ultraviolet divergence is mild due to the low-dimensionality and supersymmetry, it is sufficient 
to consider the tree and one-loop levels in this setting.2 The one-loop calculation will be reported 
in the forthcoming publication.

1 Another approach with a parameter fine tuning can be found in Refs. [30–32]. Also, for four-dimensional N = 1
super Yang–Mills theory, see [33–36].

2 As a comparison, the tree-level improvement is enough to achieve the significant acceleration of the simulation in the 
case of the (0 + 1)-dimensional theory [56].



268 M. Hanada et al. / Nuclear Physics B 929 (2018) 266–297

The previous unimproved action [7] has been constructed in the three steps:

• Write the action S in the continuum theory in a Q-exact form, S = Q 1
2g2

∫
d2x �(x), by 

using one of the supercharges Q.
• Construct a lattice counterpart of Q-transformation, Qlat, which is an exact symmetry at the 

regularized level.

• Define a lattice action in the Q-exact form as Slat = Qlat
a2

2g2

∑
x �lat(x) where �lat is a lattice 

counterpart of �(x).

Note that the path-integral measure has to be taken in a Q-invariant way as well, and the natural 
measure is actually Q-invariant. The created lattice action reproduces the continuum one with 
O(a) corrections because the lattice supersymmetry transformation generated by Qlat and the 
term �lat are different from the continuum ones at the order.

For O(a) improvement, we need to improve both of Qlat and �lat., keeping the path-integral 
measure Q-invariant. Note also that we have to make sure that an extra O(a) correction does not 
appear from the measure. The improvements will be done by lattice operators Rμ and R12 for Q
and �, respectively, which include a kind of Wilson terms. We will find that the improved lattice 
theory satisfies a milder locality condition known as the exponential locality. Such condition is 
accepted in obtaining a local continuum theory within the universality hypothesis [48,49,55].

This paper is organized as follows. In Sec. 2 we review the continuum theory and introduce the 
unimproved lattice action. On the way we clarify the origin of O(a) deviation from the continuum 
theory to illuminate a strategy for the improvement. Sec. 3 and Sec. 4 are the main parts of this 
paper. In Sec. 3, clarifying existence conditions of the consistent lattice Q-transformation by a 
lemma, we improve the lattice action with keeping the Q-exact form. In Sec. 4, we summarize 
the improved theory and show that it is free from the doubling problem thanks to O(a3) Wilson 
terms. The Q-invariant measure is then consistently defined in any finite physical volume. Sec. 5
is devoted to summarize the results and discuss future directions concerning this project. A proof 
of the lemma is given in Appendix A, and the factors Rμ and R12 are presented with their 
locality properties in Appendix B. For convenience in the numerical simulation, we present the 
explicit form of the improved lattice action in Appendix C. Appendix D gives a computational 
detail related to the Q-invariance of the path-integral measure.

2. Original lattice formulation

In this section, we briefly review two-dimensional N = (2, 2) supersymmetric Yang–Mills 
theory and its lattice formulation with one of the four supercharges of the theory exactly pre-
served. As a preparation to the O(a) improvement, errors arising in the discretization are also 
discussed.

2.1. Continuum theory

We start with N = (2, 2) supersymmetric Yang–Mills theory on two-dimensional Euclidean 
space, whose field contents are gauge fields Aμ, adjoint scalars φ, φ̄, gaugino fields λ, λ̄ and an 
auxiliary field D which satisfies D† = −D. We assume that the gauge group is SU(N) and all 
fields are matrix-valued functions which are expanded by a basis of N × N traceless hermitian 
matrices Tα (α = 1, · · · , N2 − 1) normalized as tr (TαTβ) = δαβ .
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The action is expressed as

Scont = 1

2g2

∫
d2x tr

{
1

2

2∑
μ,ν=1

F 2
μν +

2∑
μ=1

DμφDμφ̄ + 1

4
[φ, φ̄]2 − D2

+ 2λ̄R(D1 − iD2)λR + 2λ̄L(D1 + iD2)λL + 2λ̄R[φ̄, λL] + 2λ̄L[φ,λR]
}
, (2.1)

where g is a coupling constant, μ, ν = 1, 2, and the subscripts L and R denote the spinor in-
dices of λ. The theory is obtained from the four-dimensional N = 1 supersymmetric Yang–Mills 
theory by the dimensional reduction. In fact, the gaugino fields with/without bars signify four-
dimensional chirality and the indices L and R two-dimensional chirality [17]. The covariant 
derivatives and the field strengths are defined by

Dμ = ∂μ + i[Aμ, · ], (2.2)

Fμν = ∂μAν − ∂νAμ + i[Aμ, Aν], (2.3)

respectively. The action is invariant under an infinitesimal gauge transformation with a function 
ω(x) =∑α ωα(x) Tα :

δωAμ(x) = −Dμω(x), δωF (x) = i[ω(x),F (x)], (2.4)

where the adjoint scalar and fermion fields are represented as F . The theory possesses four 
supersymmetries corresponding to the four spinor components (with/without bars, and L/R). In 
addition, there are two types (vector and axial) of the U(1)R symmetries in the theory. Among 
them, the lattice formulation given in section 2.2 preserves the latter, which transforms the fields 
according to the charge assignment: +2 (−2) to φ (φ̄), +1 (−1) to λL, λ̄R (λR , λ̄L), and 0 to 
the others.

Naive lattice discretization breaks supersymmetry completely, due to the lack of Leibniz rule 
on the lattice. This difficulty can be partly avoided by expressing the action as an exact form 
with respect to a nilpotent supercharge Q. Namely, one of the four supercharges, Q, can be kept 
on a lattice. To find the exact form of the action, it is convenient to use new fermion variables 
ψμ, χ, η defined as

ψ1 ≡ 1√
2
(λL + λ̄R), ψ2 ≡ i√

2
(λL − λ̄R),

χ ≡ 1√
2
(λR − λ̄L), η ≡ −i

√
2(λR + λ̄L), (2.5)

instead of the original gaugino fields λ, ̄λ.3 The action (2.1) can be expressed in the variables as

Scont = 1

2g2

∫
d2x tr

{
H 2 − 2iHF12 +

2∑
μ=1

DμφDμφ̄ + 1

4
[φ, φ̄]2

+ 2iχ(D1ψ2 − D2ψ1) + i

2∑
μ=1

ψμDμη − 1

4
η[φ,η] − χ[φ,χ] +

2∑
μ=1

ψμ[φ̄,ψμ]
}
.

(2.6)

3 These variables are used in topological field theory, and here we employ them to define the lattice action with an exact 
supercharge. The new auxiliary field H is given by H = iD + iF12. Note D should be taken as anti-hermitian in (2.1). 
Among the four supercharges of the theory (QL , QR , Q̄L , Q̄R ), a combination Q ≡ −(QL + Q̄R)/

√
2 transforms 

fields as (2.7)–(2.11).
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We choose one of the four supercharges Q defined by

QAμ = ψμ, (2.7)

Qψμ = iDμφ, (2.8)

Qφ = 0, (2.9)

Qφ̄ = η, Qη = [φ, φ̄], (2.10)

Qχ = H, QH = [φ, χ]. (2.11)

From (2.4) and (2.7)–(2.11), we can see the nilpotency of Q up to an infinitesimal gauge trans-
formation with the parameter φ,

Q2 = −iδφ. (2.12)

By using this Q, the action can also be recast as a Q-exact form [50,51]:

Scont = Q
1

2g2

∫
d2x �cont(x), (2.13)

where

�cont(x) ≡ tr

⎡
⎣1

4
η[φ, φ̄] − i

2∑
μ=1

ψμDμφ̄ + χ(H − 2iF12)

⎤
⎦ . (2.14)

We emphasize that the action (2.13) is just a rewriting of (2.1) with a different notation, and hence 
it is invariant under the full of the original supersymmetry transformations. The important point 
is that the Q-invariance is manifest in this form because Q satisfies (2.12) and �cont (2.14) is 
gauge invariant. It will be crucial for the lattice construction with keeping Q-symmetry discussed 
below.

2.2. Lattice formulation with an exact supersymmetry

We briefly summarize the lattice formulation given in [7]. The lattice action is defined in a 
Q-exact form, as (2.13) for the continuum counterpart, and possesses the exact Q supersymmetry 
invariance on the lattice.

Let us consider a two-dimensional square lattice with the periodic boundary conditions which 
is denoted by �L ≡ aZL × aZL, where a is the lattice spacing and L is the number of lattice 
sites in each direction. The result of this paper is easily extended to the case of a rectangular 
lattice. Hereafter, the lattice site is expressed as x = (x1, x2), xμ ∈ {a, 2a, · · · , La} (μ = 1, 2). 
The fermions and scalars are defined on the sites, while the gauge fields are promoted to gauge 
group-valued variables Uμ(x) ∈ SU(N) defined on the link connecting x and x + aμ̂ where μ̂
is the unit vector in the μ-direction. For notational simplicity, we often use the same symbols for 
both of each continuum field and its lattice counterpart with keeping the mass dimensions. We 
put the subscripts “cont” and “lat” to distinguish them when needed.

The gauge transformations of the link fields Uμ and the other adjoint fields F are given in the 
usual manner:

Uμ(x) → �(x)Uμ(x)�(x + aμ̂)−1, (2.15)

F(x) → �(x)F (x)�(x)−1, (2.16)
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where �(x) = eiω(x) ∈ SU(N) is a gauge transformation function. For later use, we introduce 
the gauge covariant forward (backward) difference operator ∇μ (∇∗

μ) as

∇μF(x) ≡ 1

a

(
Uμ(x)F (x + aμ̂)Uμ(x)−1 − F(x)

)
, (2.17)

∇∗
μF(x) ≡ 1

a

(
F(x) − Uμ(x − aμ̂)−1F(x − aμ̂)Uμ(x − aμ̂)

)
. (2.18)

The covariant difference operators (2.17) and (2.18) are covariant under the lattice gauge trans-
formations, (2.15) and (2.16), as their names suggest. The plaquette field,

Uμν(x) = Uμ(x)Uν(x + aμ̂)Uμ(x + aν̂)−1Uν(x)−1, (2.19)

is another important gauge covariant quantity.
If we use a naive relation Uμ(x) = eiaAμ(x) and send a to zero,4 the difference operators (2.17)

and (2.18) coincide with the correct covariant derivative (2.2), and the plaquette field reproduces 
the continuum field tensor (2.3) as U12(x) = 1 + ia2F12(x) +O(a3). Moreover, the infinitesimal 
form of the lattice gauge transformations,

δωUμ(x) = −ia∇μω(x)Uμ(x), δωF (x) = i[ω(x),F (x)], (2.20)

also reproduce the correct continuum limit (2.4).
The Q-transformation is realized on the lattice [7] by

QUμ(x) = iaψμ(x)Uμ(x), (2.21)

Qψμ(x) = i∇μφ(x) + iaψμ(x)ψμ(x), (2.22)

Qφ(x) = 0, (2.23)

Qφ̄(x) = η(x), Qη(x) = [φ(x), φ̄(x)], (2.24)

Qχ(x) = H(x), QH(x) = [φ(x), χ(x)]. (2.25)

Note that the transformation above remains nilpotent up to an infinitesimal lattice gauge trans-
formation (2.20) with the parameter φ(x) on the lattice:

Q2 = −iδφ. (2.26)

It reproduces the transformation rule in the continuum theory, (2.7)–(2.10), after taking the con-
tinuum limit. With use of (2.21)–(2.25), the action (2.13) is transcribed to the lattice action:

Slat ≡ Q
a2

2g2

∑
x∈�L

�lat(x) (2.27)

with

�lat(x) ≡ tr

{
1

4
η(x)[φ(x), φ̄(x)] − i

2∑
μ=1

ψμ(x)∇μφ̄(x) + χ(x)

(
H(x) − i

a2 �TL(x)

)}
,

(2.28)

where �TL(x) is a lattice version of the field tensor (2.3) satisfying �TL(x) → 2a2F12(x) as 
a → 0, and explicitly given in what follows.

4 More detailed analysis with an improved relation (2.35) is given in the next subsection.
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In discussing the continuum limit, the plaquette field is usually expanded around unity. In the 
current case, we need to be careful about this point. After integrating the auxiliary field H , the 
lattice gauge action becomes

SG = 1

8g2a2

∑
x∈�L

tr (�2
TL(x)), (2.29)

and one finds that

�TL(x) = 0, for all x ∈ �L, (2.30)

gives the vacuum configurations corresponding to the continuum limit (a goes to zero with g
fixed). If the vacuum configuration is unique and gives U12(x) = 1N , one can expand the pla-
quette field around unity and confirm that the lattice action reproduces the continuum one. If it 
is not the case, the lattice action is not guaranteed to provide the desired continuum action in 
general. For instance, for SU(2), a naive choice �TL(x) = −i (U12(x) − U21(x)) does not lead 
to the unique vacuum U12(x) = 12. Actually, another vacuum U12(x) = −12 satisfies (2.30) as 
well and causes an obstacle for taking the correct continuum limit. In order to reproduce the 
correct continuum gauge action, �TL(x) should be chosen so that the gauge action (2.29) has no 
nontrivial minima other than U12(x) = 1N .

Two possibilities for desired lattice field tensor have been discussed in [8] and [52]. Since the 
traceless field �TL is generally given by

�TL(x) ≡ �(x) −
(

1

N
tr�(x)

)
1N, (2.31)

we can use � for defining �TL. One possibility is

�1(x) =
{ −i(U12(x)−U21(x))

1− 1
ε2 ‖1−U12(x)‖2 for ‖1 − U12(x)‖ < ε,

∞ otherwise,
(2.32)

where ε is a positive number chosen in the range 0 < ε < 2
√

2 for N = 2, 3, 4 and 0 < ε <

2
√

N sin( π
N

) for N ≥ 5. The other possibility is

�2(x) = 4i

M
· 2 − U12(x)M − U21(x)M

U12(x)M − U21(x)M
, (2.33)

with M being an integer satisfying 2M ≥ N . When M is even (M = 2m), (2.33) can be recast as

�2(x) = −2i

m
· U12(x)m − U21(x)m

U12(x)m + U21(x)m
, (2.34)

which would be more convenient for numerical simulation.
Note that the r.h.s. in (2.33) is a hermitian matrix since the denominator and the numerator 

commute with each other. In both cases, only the single vacuum U12 = 1N is allowed, and by 
expanding the plaquette field around unity, we can verify that �i,TL(x) = 2a2F12(x) +O(a3).

Thus, we can construct the continuum limit of the lattice action (2.27) with (2.32) or (2.33)
and verify that it does coincide with the action (2.1) via (2.13) and (2.14). The lattice action 
is exactly invariant under the lattice Q-transformation (2.21)–(2.25) thanks to the nilpotency 
of Q, (2.26). The perturbative power counting theorem tells us that any relevant supersymmetry 
breaking operators are forbidden by the Q-symmetry and the internal U(1)R-symmetry [7], and 
all the supersymmetries are shown to be restored at least in the perturbation theory.
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The lattice action can be used for the numerical simulations, since the same forward differ-
ence operators employed in (2.22) and (2.28) yield a semi-positive boson action which is suitable 
for the Monte-Carlo method. Numerical results indicate that the restoration of the full supersym-
metries does occur beyond the perturbation theory [21–24].

2.3. Classical continuum limit

The action (2.1) is correctly reproduced from the lattice action (2.27) as we take the lattice 
spacing to zero, as seen in the previous subsection. In this subsection, in order to find a proper 
O(a) improvement procedure, we study the classical continuum limit more precisely by expand-
ing various quantities (difference operators, plaquette field, and Q-transformation) in the lattice 
spacing, and determine the order at which the first deviation terms from the continuum theory 
appear in the expansion.

The lattice fields are not defined on the continuum spacetime but on the lattice. To expand 
the fields in the lattice spacing a, we first embed the lattice in the continuum spacetime and 
regard the lattice functions as smooth functions defined on the continuum spacetime. In order to 
associate the link fields to the continuum gauge fields, we employ the midpoint prescription

Uμ(x) = eiaAμ(xc), (2.35)

where xc = x + (a/2)μ̂. The link field can be interpreted as the Wilson line,

Uμ(x) = P ei
∫ a

0 dt Aμ(x+tμ̂)

≡ 1 + i

a∫
0

dt Aμ(x + tμ̂) + i2

a∫
0

dt

a∫
0

ds θ(s − t)Aμ(x + tμ̂)Aμ(x + sμ̂) + · · · ,

(2.36)

when the lattice is embedded in the continuum spacetime. (2.35) is obtained by expanding the 
r.h.s. in a up to O(a2). Namely, the midpoint prescription reproduces the continuum gauge trans-
formation up to this order, Uμ(x) = eiaAμ(xc)+O(a3). It is straightforward to increase the precision 
by proceeding the expansion in a.5 We identify the other adjoint lattice fields (scalar and fermi 
fields) as the fields on the embedded points where they are defined. Under these identifications, 
we obtain smooth functions associated with the lattice fields by smoothly interpolating those 
fields on entire continuum spacetime. Thus, the expansion with respect to the lattice spacing 
can be simply performed by the Taylor expansion. For instance, we can expand a function f (x)

around the midpoint xc = x + (a/2)μ̂:

f (x) = f (xc) − a

2
∂μf (xc) + a2

8
∂2
μf (xc) +O(a3). (2.37)

By using the identities for ∇μ and arbitrary deformation δ:

∇μf (x) = Dc
μ f (xc) + ia

2
[Aμ(xc),D

c
μ f (xc)] +O(a2) (2.38)

5 For example, we have

Uμ(x) = exp

[
iaAμ(xc) + i

a3

24
∂2
μAμ(xc) − a3

12
[Aμ(xc), ∂μAμ(xc)] +O(a4)

]
.
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with Dc
μ = ∂μ + i[Aμ(xc), · ], and

δA = δeA · e−A − 1

2
[A,δeA · e−A] +O(A3), (2.39)

we find that the lattice gauge transformation (2.20) is automatically O(a)-improved as

δlat, ω = δcont, ω +O(a2). (2.40)

On the other hand, the O(a) improvement of the lattice Q-transformation (2.21)–(2.25) is not 
automatic. Indeed, the Q-transformation of ψμ (2.22) has a quadratic O(a)-term of the fermion 
and the unimproved forward difference operator that is expanded as

∇μ = Dμ + a

2
D2

μ +O(a2). (2.41)

The Q-transformation of the gauge fields also has the non-zero O(a)-correction. Hence, the total 
Q-transformation satisfies

Qlat = Qcont +O(a), (2.42)

although those of the other fields retain their continuum forms.6

Similarly, the integrand �lat (2.28) behaves as

�lat(x) = �cont(x) +O(a), (2.43)

since the O(a)-terms come from the forward difference operator (2.41) and the unimproved 
plaquette field,

U12(x) = exp

(
ia2F12(x) + i

a3

2
(D1 + D2)F12(x) +O(a4)

)
. (2.44)

Note that the O(a)-correction does not cancel even if we take the combination U12 − U21 as 
in �.

We thus find that the total lattice action is

Slat = Scont +O(a), (2.45)

because of (2.42) and (2.43) with (2.27). In order that the lattice action coincides with the con-
tinuum action up to O(a2) terms, we have to improve the covariant difference operator, the field 
tensor and the lattice Q-transformation with keeping the nilpotency.

3. Method of tree-level O(a) improvement

In the last section, we have seen that the lattice gauge transformation is already O(a)-im-
proved while Q and �lat have the O(a)-corrections, (2.42) and (2.43), and thus the resultant 
action (2.27) produces the continuum one up to O(a) terms. In this section, we will explain our 
strategy to improve Q and �lat so that Simp

lat = Scont + O(a2) is obtained. The explicit form of 
the tree-level O(a)-improved action will be given in the next section.

6 Somewhat surprisingly, the O(a)-term in (2.42) vanishes when applying the lattice Q-transformation twice, because 
both the continuum and the lattice gauge transformations with the parameter φ satisfy (2.40).
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3.1. Locality

Before going to the detail of the strategy, we should mention on the locality condition we 
employ throughout this paper. Indeed, the improvement will be performed with keeping the lo-
cality of the Q-transformation in the sense that long-range interactions in the lattice unit are 
suppressed, at least, by the exponential of the distance.

First, let us define ultra-local operators and exponentially local ones. Suppose that the lattice 
size is infinite and the sites are labeled by integers, xμ ∈ aZ, and ϕα(x) is a lattice field with finite 
internal index α = 1, 2, · · · , Ni . In the present case, Ni = N2 − 1 since ϕ(x) is expanded by a 

basis of su(N) generators: ϕ(x) =∑N2−1
α=1 ϕα(x)Tα . An operator R acting to ϕ(x) is formally 

represented as a kernel:

(Rϕ)α(x) =
∑
y, β

Rαβ(x, y)ϕβ(y). (3.1)

The kernel is an infinite dimensional matrix with the row α, x and the column β, y. In the 
following and in Appendix B, R(x, y) denotes the Ni × Ni matrix with respect to the internal 
index.

The ultra-local operator is defined by

R(x, y) = 0, for ‖x − y‖1 > ar, (3.2)

where the localization range r is a fixed natural number.7 For instance, the forward and the 
backward difference operators are ultra-local with the localization range one. The kernel of an 
ultra-local operator forms a banded diagonal matrix, which is suited for numerical applications.

On the other hand, R is referred to as an exponentially local operator if there exist positive 
constants C and κ such that

|Rαβ(x, y)| ≤ C e− κ‖x−y‖1
a . (3.3)

As is well-known, the overlap Dirac operator [53,54] satisfies this type of locality [55]. It is 
obvious that any ultra-local operator satisfies (3.3), but the converse is not true in general. The 
exponential locality is therefore a milder condition as the locality.

In the continuum limit, both locality conditions reproduce a local continuum field theory with 
finite number of derivatives contained in its classical action, because there are no contributions 
from y being separated from x by a finite physical length as a → 0. Also in the point of view 
of the renormalization group and the universality hypothesis [48,49,55], the exponential locality 
is allowed as a locality condition of the lattice theory having the desired continuum limit. We 
therefore employ the exponential locality to construct the O(a)-improved theory in this paper.

3.2. Q-transformation

Among the Q-transformations (2.21)–(2.25), we have to improve only the two transforma-
tions QUμ (2.21) and Qψμ (2.22) since the others (2.23)–(2.25) coincide with their continuum 
forms and are irrelevant to the present purpose.

7 As a definition of the distance, we use the “taxi driver distance”: ‖x − y‖1 ≡∑μ |xμ − yμ|. For the Euclid distance 
‖x − y‖2 ≡

√∑
μ(xμ − yμ)2, the following argument will also be similar.



276 M. Hanada et al. / Nuclear Physics B 929 (2018) 266–297

Here we should point out that, even if we give an improved transformation of Uμ, it is not clear 
a-priori if we can define a modified transformation of ψμ that is consistent with the nilpotency 
of Q (2.26). Furthermore, even though it is possible, it is not yet clear whether the transformation 
of ψμ satisfies the locality. The following lemma is crucial to give answers to these points:

Lemma. Let fμ(x) be a function that depends on (Uλ, ψλ, φ) with the same gauge transforma-
tion property as Uμ(x), and suppose that

QUμ(x) = fμ(x). (3.4)

Let gμ(x) be a function that depends on (Uλ, QUλ, φ) with the same gauge transformation 
property as ψμ(x). If (3.4) can be solved in term of ψμ(x) as follows:

ψμ(x) = gμ(x), (3.5)

then one can consistently define the Q-transformation by (3.4) and

Qψμ(x) =
∑
y, ν

[
QUν(y) · δ

δUν(y)
− iδφUν(y) · δ

δ(QUν(y))

]
gμ(x), (3.6)

Qφ(x) = 0, (3.7)

so that Q2 = −iδφ for all fields.

Note that, for the original transformations (2.21) and (2.22), the r.h.s. of QUμ(x) actually 
defines such a function fμ(x). In that case, gμ(x) ≡ − i

a
(QUμ(x))Uμ(x)−1 that is identical 

to ψμ(x). This lemma actually holds in general frameworks with the exact gauge invariance, 
including but not limited to the lattice gauge theory. We give a proof in Appendix A and simply 
use the result here.8

Let us consider a possible deformation of Q based on this lemma. Suppose that an improved 
transformation takes the form,

QimpUμ(x) = ia(Rμψμ(x))Uμ(x), (3.8)

where Rμ is an operator which improves the Q-transformation of Uμ(x). In this case, gμ in the 
lemma is formally given by

gμ =R−1
μ

{
− i

a
(QimpUμ)U−1

μ

}
, (3.9)

to express ψμ as (3.5) and we have the correct transformation (3.6). The transformation of ψμ

thus becomes

Qimpψμ(x) = iR−1
μ ∇μφ(x) + ia

∑
y,ν

(Rνψν(y))Uν(y) · δ

δUν(y)
gμ(Uλ,Q

impUλ;x).

(3.10)

8 The essential point of the proof is that the r.h.s. of the expression (3.6) is identified with Qgμ once −iδφUν in the 
second term is replaced by Q2Uν . This implies Q2 = −iδφ for Uμ . The nilpotency is also satisfied for QUμ since Q
commutes with δφ , that is, Q2(QUμ) = Q(Q2Uμ) = −iQδφUμ = −iδφ(QUμ). In addition, we find that Q2 = −iδφ

for ψμ because ψμ is given by gμ that is a function of Uν and QUν for which Q2 = −iδφ was already satisfied.
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Here we find that one cannot use an arbitrary Rμ, because Rμ must not have the zero-eigenvalue 
in order to have a well-defined inverse.

Keeping these points in mind, let us consider the improvement of QUμ and Qψμ in detail. In 
contrast to the case of the gauge transformation (2.40), the reason why the original transformation 
(2.21) has an O(a) correction is simple: The gauge field Aμ(x) is defined on the midpoint while 
the corresponding fermionic field ψμ(x) is defined on a site. Hence a heuristic choice of the 
improved transformation would be

Q
imp
naiveUμ(x) = ia

2

(
ψμ(x)Uμ(x) + Uμ(x)ψμ(x + aμ̂)

)
, (3.11)

which corresponds to

Rnaive
μ = 1 + a

2
∇μ. (3.12)

Indeed, we can show that (3.11) turns out to have the desirable property

Q
imp
naiveAμ(x) = ψμ(x) +O(a2) (3.13)

from (2.37), (2.38) and (2.39) with the midpoint prescription (2.35). However, this choice is too 
naive. In fact, since the eigenvalues of a∇μ are parametrized by

−1 + eiθ (θ ∈R), (3.14)

(3.12) has zeros in its spectrum.9

This suggests that

Rμ = 1 + a

2
∇μ − ra2∇μ∇∗

μ (r > 0) (3.15)

is a candidate for our desired solution improving Q-transformations up to O(a). In contrast 
to (3.12), the third term (the Wilson-term) lifts the zero-mode with keeping the small a behavior 
unchanged as long as r �= 0. (Note that the case r < 0 is possible for the purpose of this sec-
tion, but it will be rejected because it leads to an incorrect fermion measure as we will see in 
section 4.) In this case, R−1

μ is exponentially local, because one can show that an ultra-local op-
erator Rμ, whose spectrum is bounded by an upper and a non-zero lower bounds, has an inverse 
being exponentially local. Details including the definitions of the terminologies are presented in 
Appendix B.3.10 We thus have the O(a)-improved transformation for the link fields within the 
locality principle.

The lemma also guarantees that the Q-transformation of the fermi fields ψμ (3.6) are auto-
matically improved in the case that both of the Q-transformation and the gauge transformation 
δφ of Uμ are improved. In fact, (3.4) and (3.5) have the same information, and thus the expansion 
of gμ in a should reproduce the counterpart of the continuum theory without the error of O(a), 
from the assumption on the improvement of Uμ.

9 (3.14) is understood from the identity a2∇∗
μ∇μ = a∇μ − a∇∗

μ and the relation ∇∗
μ = −∇†

μ with respect to the 
inner product of su(N)-valued functions: (f, g) ≡∑x∈�L

tr
(
f (x)† g(x)

)
. ∇μ and ∇∗

μ mutually commute and can be 
simultaneously diagonalized by a unitary transformation.
10 This situation reminds us the locality of the overlap Dirac operator. Unlike the Wilson operator D that is ultra-local, 
the overlap operator is given by the inverse square root of D†D of which the locality is not immediately obvious. In [55], 
it is proven that the overlap operator is indeed local with exponentially decaying tails if the eigenvalues of D†D are 
bounded from above and below. We can apply the same logic to the present case.
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Of course, we can explicitly verify that (3.10) coincides to that of the continuum theory (2.8)
up to O(a). In the improved transformation, the forward difference operator in the original trans-
formation (2.22) is replaced by R−1

μ ∇μ that provides the improvement because of the expansion

R−1
μ ∇μ = Dμ +O(a2), (3.16)

and the fermion bilinear term in (2.22) does not appear at the order of a as is seen in the following. 
We may use 1 + a

2 ∇μ and 1 − a
2 ∇∗

μ as Rμ and R−1
μ respectively, within the precision of O(a). 

Then, the second term of (3.10) is shown to be

i

2a

{
QimpUμ(x)QimpU−1

μ (x) − QimpU−1
μ (x − aμ̂)QimpUμ(x − aμ̂)

}
+O(a2). (3.17)

Although this seems to be O(a) at the first sight since QUμ is of the order the lattice spacing, the 
leading contributions in the parenthesis cancel each other. We thus see that (3.10) is improved up 
to the desired order.

Therefore, for given Rμ, (3.15) or any other choices listed in Appendix B, the transformations 
(3.8) and (3.10) with (2.23)–(2.25) are local and satisfy both (2.26) and

Q
imp

lat = Qcont +O(a2), (3.18)

for all the fields.

3.3. The integrand �

In this section, we will improve �lat, in particular, the difference operator and the lattice field 
tensor appearing there.

As we have seen in (3.16), the forward difference operator (2.41) is improved by multiply-
ing R−1

μ . Since the plaquette field is similarly expanded as (2.44), its improvement is achieved 
analogously:

Uimp
μν (x) ≡R12Uμν(x), (3.19)

where we adopt

R12 = 1 − a

2
(∇1 + ∇2). (3.20)

Note that the improvement factor R12 is common for U12 and U21, but (3.20) is not the unique 
choice. Other possible choices of R12 are given in Appendix B.

The improved � is thus given by

�
imp

lat = tr

{
1

4
η[φ, φ̄] − i

2∑
μ=1

ψμ ∇ imp
μ φ̄ + χ

(
H − i

a2 �
imp
TL

)}
, (3.21)

where

∇ imp
μ =R−1

μ ∇μ, (3.22)

�
imp
TL (x) =R12�TL(x), (3.23)

for the unimproved �TL, (2.32) or (2.33). Here, Rμ appearing in (3.22) should be taken as the 
same as those used in the Q-transformations, (3.8) and (3.10), in order to make the bosonic part 
of the action semi-positive. Note that, since R12 is invertible, the field equation �imp

TL = 0 is 
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identical with (2.30). Therefore we can use the same choice (2.32) or (2.33) to forbid the extra 
vacua even in this case.

Now it is easy to see that

�
imp

lat (x) = �cont(x) +O(a2). (3.24)

The improved theory is defined by both the improved Q-transformation (3.8) and (3.10) with 
(3.15) and the improved �(x) (3.21).

4. Fermion doublers and path-integral measures in improved theory

In this section, we first summarize the O(a)-improved lattice action explained in the pre-
vious section. After that, we show the absence of the fermion doublers and give appropriate 
Qimp-invariant path-integral measures.

4.1. Summary of the improved theory

The improved action obtained in the previous section is given by

S
imp

lat = Qimp a2

2g2

∑
x∈�L

�
imp

lat (x), (4.1)

�
imp

lat = tr

{
1

4
η[φ, φ̄] − i

2∑
μ=1

ψμ R−1
μ ∇μφ̄ + χ

(
H − i

a2R12�TL

)}
, (4.2)

where Rμ and R12 are given, for example, by

Rμ = 1 + a

2
∇μ − ra2∇μ∇∗

μ (r > 0), (4.3)

R12 = 1 − a

2
(∇1 + ∇2). (4.4)

Note that, as mentioned in the previous section, these factors are not unique and other possible 
choices are summarized in appendices B.1 and B.2.

The improved Q-transformations are expressed as

QimpUμ(x) = iaψ ′
μ(x)Uμ(x), (4.5)

Qimpψ ′
μ(x) = i∇μφ(x) + iaψ ′

μ(x)ψ ′
μ(x), (4.6)

Qimpφ(x) = 0, (4.7)

Qimpφ̄(x) = η(x), Qimpη(x) = [φ(x), φ̄(x)], (4.8)

Qimpχ(x) = H(x), QimpH(x) = [φ(x), χ(x)] (4.9)

in terms of

ψ ′
μ(x) ≡Rμψμ(x). (4.10)

The first two transformations are built in section 3.2, (3.8) and (3.10) with (3.9) for a given Rμ. 
The others are the same with the continuum transformations (2.23)–(2.25). These transformations 
obey (Qimp)2 = −iδφ as in the unimproved theory, and the improved action retains the invariance 
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of the exact supersymmetry.11 Note that the improved transformations are identical with the 
original transformations (2.21)–(2.25) under the replacement of ψμ by ψ ′

μ.
The improved action (4.1) coincides with the unimproved lattice action given in [7] for Rμ =

R12 = 1, and the O(a) terms of Rμ and R12 provide the improvement. As we have already 
shown in the last section, Qimp and �imp reproduce the continuum Q and � with no O(a) error, 
respectively. So, the improved action indeed satisfies Simp

lat = Scont +O(a2) as a → 0.
As with the unimproved theory, the action (4.1) is exactly invariant under the axial 

U(1)R-transformation [7] (as well as Qimp), because the multiplication by Rμ or R12 does 
not affect the transformation properties. So we can conclude that the same perturbative argu-
ments hold in this case, and all of the supersymmetries are restored in the continuum limit at the 
quantum level, at least, in the perturbation theory.

In order to define the quantum theory, we need to specify not only the action but also the 
path-integral measure. There are two candidates; the natural measure,

Dϕnatural ≡
∏
x

dφ(x)dφ̄(x)dH(x)dχ(x)dη(x)
∏
μ

dUμ(x)dψμ(x), (4.11)

and the manifestly Qimp-invariant measure,

Dϕ ≡
∏
x

dφ(x)dφ̄(x)dH(x)dχ(x)dη(x)
∏
μ

dUμ(x)dψ ′
μ(x)

=
∏
x

dφ(x)dφ̄(x)dH(x)dχ(x)dη(x)
∏
μ

dUμ(x)dψμ(x) × det(Rμ)−1, (4.12)

where dUμ(x) denotes the SU(N) Haar measure, and the measure of the adjoint fields 
F(x) =∑α Fα(x)Tα is defined as dF(x) ≡∏α dFα(x). The expression dφ(x)dφ̄(x) means 
that the usual measure is used for the real and imaginary parts of the complex field φ(x). The 
Qimp-invariance of (4.12) follows from the fact that the natural measure (4.11) is invariant under 
(2.21)–(2.25) [12].

In conclusion, we can use any of them. In fact, the difference of the two measures is only 
the factor det(Rμ)−1 behaving as const. × (1 + O(e−�/a)) (� = La is the physical size of the 
system) in the continuum limit at least for R(±)

μ given in (B.1) and (B.2), as we will show in 
section 4.4. Therefore, even if the natural measure (4.11) breaks the Qimp symmetry explicitly, it 
is negligible in the continuum limit. In the same way, the factor det(Rμ)−1 in the Qimp-invariant 
measure (4.12) does not affect the continuum limit of the improved theory.

Here we make a comment that there is an interesting exception: For R(e)
μ given in (B.3), (4.11)

is identical with (4.12) since det(R(e)
μ ) = 1 as seen in the last paragraph in Appendix B.1. Then, 

the natural measure (4.11) is also Qimp-invariant.

4.2. Convenient expressions in numerical simulations

The standard Monte-Carlo simulation is applicable for the present improved action because 
the boson action is semi-positive definite. Of course, it is for the case that the same Rμ is chosen 
in (4.2) and (4.5). However the action with (4.3) has the exponentially local interactions and the 
actual numerical computations would demand considerable tasks.

11 Conversely, once QimpUμ is defined by (4.5), the transformation law for ψμ is uniquely determined under the 
constraint (Qimp)2 = −iδφ .
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We can avoid this difficulty by choosing such Rμ that its inverse becomes ultra-local like

Rμ =R(−)
μ ≡

(
1 − a

2
∇∗

μ − ra2∇∗
μ∇μ

)−1
(r > 0), (4.13)

as well as the ultra-local R12 given in (4.4).12 Then, in addition to the ultra-local transformations 
(4.5)–(4.9), the integrand �imp

lat becomes also ultra-local:

�
imp

lat = tr

{
1

4
η[φ, φ̄] − i

2∑
μ=1

(R−1
μ ψ ′

μ) (R−1
μ ∇μφ̄) + χ

(
H − i

a2R12�TL)

)}
. (4.14)

We may use these field variables ψ ′
μ with (4.13) and (4.12) to define the improved theory 

used in the Monte-Carlo simulations. However, we must use ψμ to define observables because 
the tree-level O(a) improvement is achieved for ψμ rather than ψ ′

μ.
Somewhat surprisingly, instead of (4.13), if we take

Rμ =R(e)
μ ≡ exp

(a

2
∇(s)

μ

)
, (4.15)

where ∇(s)
μ = 1

2 (∇μ + ∇∗
μ), the situation becomes much simpler thanks to the property RT

μ =
R−1

μ . The integrand �imp

lat becomes

�
imp

lat = tr

{
1

4
η[φ, φ̄] − i

2∑
μ=1

ψ ′
μ ∇μφ̄ + χ

(
H − i

a2R12�TL

)}
(4.16)

with (4.4). Of course, also in this case, the improved lattice action is given by an ultra-local form. 
The Qimp-transformations are the same with those of the unimproved theory and the integrand 
(4.16) is also mostly the same with the original one. The O(a) improvement is then encoded only 
in (4.10) and the definition of the improved lattice field tensor �imp

TL =R12�TL.
In Appendix C, we present the explicit form of the lattice action obtained by acting Qimp

to �
imp

lat .

4.3. Absence of the fermion doublers

The doubler modes do not exist in the bosonic sector of the improved theory because the 
kinetic terms for the scalar and the gauge fields are defined by the forward difference operator 
with invertible Rμ and R12. The exact supersymmetry implies that the fermionic sector should 
also be free from the doubling problem. We will show it by examining the free lattice Dirac 
operator, explicitly.

The fermion kinetic terms of the improved free theory for �1 (2.32) and �2 (2.33) are given 
by

S
imp

lat, F = a2

2g2

∑
x∈�L

tr

⎡
⎣i

2∑
μ=1

ψμ(x)�̃μη(x) + 2iχ̃(x)
(
�̃1ψ2(x) − �̃2ψ1(x)

)⎤⎦ , (4.17)

12 Here and in (4.16), we can also use more general (B.10) with r > 1
4 as R12.
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where

�̃μ ≡
(
R(0)

μ

)−1
�μ, χ̃(x) ≡ (R(0)

1 R(0)
2 R(0)

12 )T χ(x), (4.18)

with the forward and backward difference operators,

�μf (x) ≡ 1

a

(
f (x + aμ̂) − f (x)

)
, (4.19)

�∗
μf (x) ≡ 1

a

(
f (x) − f (x − aμ̂)

)
. (4.20)

R(0)
μ and R(0)

12 denote Rμ and R12 with the gauge field turned off, respectively. Namely, for 
simple examples of Rμ (B.1)–(B.3) and R12 (B.9)–(B.11), the covariant operators ∇μ and ∇∗

μ

there are replaced by (4.19) and (4.20), respectively.13 Note that R(0)
μ and R(0)

12 commute with 
each other since they do not depend on the gauge field.

The form of (4.17) is the same as that of the original unimproved lattice model [7,8] which 
has no doubler modes, except R(0)

μ and R(0)
12 are included in the redefinition (4.18). It is clear that 

the improved theory also has no doublers since the improvement factors in (4.18) are invertible 
and do not affect the conclusion in the original model.

Explicitly, in terms of the four-component spinor �̃ ≡ (ψ1,ψ2, χ̃ , 1
2η
)T

, (4.17) is expressed 
as14

S
imp

lat, F = a2

2g2

∑
x∈�L

tr
[
�̃(x)T D̃�̃(x)

]
, (4.21)

where

D̃ ≡
2∑

μ=1

[
−1

2
γμ

(
�̃μ − �̃T

μ

)
− 1

2
Pμ

(
�̃μ + �̃T

μ

)]
, (4.22)

with

γ1 = −iσ1 ⊗ σ1, γ2 = iσ1 ⊗ σ3,

P1 = σ1 ⊗ σ2, P2 = σ2 ⊗ 12 (4.23)

satisfying

{γμ, γν} = −2δμν, {Pμ, Pν} = 2δμν, {γμ, Pν} = 0. (4.24)

Since the Dirac operator (4.22) is Hermitian, we may consider the zero of D̃2 in order to see that 
of D̃. From (4.24), D̃2 =∑2

μ=1 �̃μ�̃T
μ , which means that D̃ vanishes only at the zero of �̃μ

that is nothing but the zero of �μ (the origin in the momentum space) since Rμ are invertible.
In the ordinary Wilson–Dirac operator, fermion doublers are lift by the Wilson term of the 

order of O(a). Since our lattice action is improved and has no O(a) term, the Wilson term 

13 In R(0)
μ and R(0)

12 , the transpose operation denoted by the superscript T maps �μ and �∗
μ to −�∗

μ and −�μ, 
respectively.
14 The transpose operation of �(x) acts only to the spinor indices.
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appearing in (4.22) should be higher order in a.15 Let us see this in the case of R(−)
μ

∣∣∣
r= 1

2

in 

(B.2). The Dirac operator can be written as

D̃ = −1

2

∑
μ

γμ(�μ + �∗
μ) − a

2

∑
μ

Pμ(�μ�∗
μ)

+ a2

4

∑
μ

γμ

(
�μ + �∗

μ

)
(�μ�∗

μ) + a

4

∑
μ

Pμ

(
(�μ)2 + (�∗

μ)2
)

. (4.25)

The first and the second terms are the standard kinetic term and the Wilson term, respectively, 
in the original unimproved model, while the third and fourth terms are generated by the O(a)

improvement. The first term reproduces the naive kinetic term in the continuum limit up to O(a), 
and the third term has the same zeros with those of the first term. Interestingly, the second and 
fourth terms combine to yield the O(a3) Wilson term a

3

4

∑
μ Pμ(�μ�∗

μ)2. Thus, we have

D̃ = −1

2

∑
μ

γμ(�μ + �∗
μ)

(
1 − a2

2
�μ�∗

μ

)
+ a3

4

∑
μ

Pμ(�μ�∗
μ)2, (4.26)

with the second term being the Wilson term in the improved action actually of the order of a3.

4.4. Path-integral measure

In section 4.1, we have defined the path-integral measure (4.12) which is invariant under 
the improved transformations (4.5)–(4.9). In what follows, we show that the factor detRμ is 
irrelevant in the continuum limit a → 0 with keeping the physical length � ≡ La fixed, and the 
natural measure is therefore reproduced without breaking the tree-level O(a) improvement, at 
least, for R(+)

μ and R(−)
μ given in (B.1) and (B.2) as announced.

We only have to evaluate the determinant of R(+)
μ because one can show that

det R(−)
μ =

(
det R(+)

μ

)−1
, (4.27)

as mentioned in Appendix B.1. For simplicity of the explanation, we focus on the case of 
detR(+)

1 . Of course, the same result is obtained for R(+)
2 by interchanging the role of the di-

rections 1 and 2.
The matrix representation of R(+)

μ can be extracted as (3.1) for x, y ∈ �L and α, β =
1, 2, · · · , N2 − 1:

(R(+)
μ )αβ(x, y) = δxρ, yρ

[(
1

2
+ 2r

)
δxμ, yμδαβ +

(
1

2
− r

)
δxμ+a,yμ Ûμ,αβ(x)

−rδxμ−a,yμ Ûμ,βα(y)

]
. (4.28)

15 The factor appearing in the redefinition of χ (4.18) does not affect the O(a) contribution since it behaves as 1 +O(a2)

for any Rμ and R12. Also, it does not lift the doublers in the lattice Dirac operator D which is defined by Simp
lat,F =

a2

2g2

∑
x∈�L

tr (�T D�) where � =
(
ψ1,ψ2, χ, 1

2 η
)T

.
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Here ρ denotes the direction other than μ (ρ = 1 and 2, when μ = 2 and 1, respectively), and 
Ûμ,αβ(x) is the adjoint representation of Uμ(x):

Ûμ,αβ(x) ≡ tr
[
TαUμ(x)TβUμ(x)−1

]
. (4.29)

Likewise, we express the adjoint representation of an SU(N) matrix A by putting a hat as

Âαβ ≡ tr
[
Tα ATβ A−1

]
. (4.30)

Note that (Â−1)αβ = Âβα is always satisfied.
We should note that (4.28) is an M ×M matrix (M ≡ L2(N2 − 1)) which is diagonal with 

respect to the ρ direction. In order to evaluate det R(+)
1 explicitly, we first diagonalize (4.28) in 

the color space. To this end, let us consider a gauge function,

g1(x1, x2) ≡
{

1, (x1 = La)

(P1(x2))
− x1

La U1(0, x2) · · ·U1(x1 − a, x2), (x1 = a,2a, · · · , (L − 1)a)

(4.31)

where P1(x2) is the Polyakov line along the x1-direction:

P1(x2) ≡ U1(0, x2)U1(a, x2) · · ·U1((L − 1)a, x2). (4.32)

Then we can eliminate the x1 dependence of U1(x1, x2) by the gauge transformation with 
g1(x1, x2) as

g1(x1, x2)U1(x1, x2)g1(x1 + a, x2)
−1 = P1(x2)

1/L. (4.33)

This means that Û1(x1, x2) in (4.28) is given by a gauge transformation of (the L-th root of) the 
Polyakov line in the adjoint representation:

Û1(x1, x2) = ĝ1(x1, x2)
−1P̂1(x2)

1/Lĝ1(x1 + a, x2). (4.34)

Recall that the hatted variables mean the adjoint representation of the corresponding unitary 
matrices as mentioned around (4.30).

The eigenvalues of the adjoint Polyakov line P̂1(x2) are given by

p1(x2, α) ∈ S1, for α = 1, · · · ,N2 − 1. (4.35)

Then, P̂1(x2) can be diagonalized as

P̂1(x2) = W1(x2)
−1diag

{
p1(x2,1),p1(x2,2) · · · ,p1(x2,N

2 − 1)
}

W1(x2), (4.36)

where W1(x2) is a unitary matrix with the size of N2 − 1.
Combining (4.34) and (4.36) into Vαβ(x, y) = δx1,y1δx2,y2(W1(x2)ĝ1(x1, x2))αβ , we can diag-

onalize R(+)
1 in (4.28) with respect to the color index α:

(VR(+)
1 V −1)αβ(x, y) = δx2,y2δαβDx2,α(x1, y1), (4.37)

where

Dx2,α(x1, y1) = Aδx1,y1 + Bδx1+a,y1 + Cδx1−a,y1 , (4.38)
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with

A = 1

2
+ 2r, B =

(
1

2
− r

)
(p1(x2, α))

1
L , C = −r(p1(x2, α))−

1
L . (4.39)

Now, the computation of detR(+)
1 reduces to evaluating the determinant of L × L ma-

trix Dx2,α :

det R(+)
1 =

La∏
x2=a

N2−1∏
α=1

det
(
Dx2, α

)
, (4.40)

where Dx2,α in (4.38) is expressed in the form of

Dx2,α =

⎛
⎜⎜⎜⎜⎝

A B C

C
.. .

. . .

. . .
. . . B

B C A

⎞
⎟⎟⎟⎟⎠ . (4.41)

The determinant of the circulant matrix (4.41) can be evaluated straightforwardly (see Ap-
pendix D) and the result is

det(Dx2,α) = ξL+ + ξL− − (−B)L − (−C)L, (4.42)

where ξ± = 1
2

(
A ± √

A2 − 4BC
)

.

We thus find that

det R(+)
1 =

La∏
x2=a

N2−1∏
α=1

(F (r,L) − G(r,L,p1(x2, α)) , (4.43)

where

F(r,L) ≡
(

1 + 4r + √
1 + 16r

4

)L

+
(

1 + 4r − √
1 + 16r

4

)L

, (4.44)

G(r,L,p) ≡
(

r − 1

2

)L

p + rLp−1. (4.45)

G(r, L, p1(x2, α)) carry information of the gauge fields via the phase factor p1(x2, α) (4.35)
whereas F(r, L) does not. We can say that det R(+)

1 is irrelevant in the continuum limit if G
becomes negligible compared with F as a → 0 (keeping � = La fixed). It is straightforward to 
see that G/F = O(e−l/a) as a → 0 for r > 0. We can repeat the same argument for det R(+)

2
and obtain the same conclusion.

Thus, we reach the final point: For r > 0, the Jacobian factor 
∏

μ det R(±)
μ is irrelevant 

in the continuum limit, and both of the measures (4.11) and (4.12) can be used to define the 
O(a)-improved theory.16

16 If radiative corrections are taken into account, the speed of the convergence to the continuum limit could be different.
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5. Conclusion and discussions

In this paper we have discussed tree-level O(a) improvement of a lattice formulation of 2d 
N = (2, 2) super Yang–Mills theory introduced by one of the authors (F. S.) [7]. Technically 
important ingredient is the improvement of the Q-transformation, the term � in (2.27) and the 
path-integral measure. The problem of zero-modes arising in improving the Q-transformation is 
resolved by the use of a kind of the Wilson terms, which leads to the action containing exponen-
tially local terms in general.

In the framework of the Symanzik O(a) improvement [46,47], we should also consider the 
improvement of the effective action at the loop level. Namely, we have to determine O(a) coun-
terterms to be added to the lattice action so that they cancel all of O(a) radiative corrections. 
Thanks to the superrenormalizable property of the theory, investigation at the one-loop level is 
sufficient. This will be reported in the forthcoming publication.

Needless to say, the most important application of this method is the actual numerical sim-
ulations. It is interesting to see how the tree-level improvement discussed here accelerates the 
simulation and how the addition of the one-loop improvement changes the situation.

The same idea can be applied to other theories, with different amount of supersymmetries 
and/or with various matter fields. In particular, the application to a similar lattice formulation 
of 2d N = (4, 4), (8, 8) super Yang–Mills theories that preserves two supercharges [7,8] should 
be straightforward. It would be interesting to consider if the improvement can be generalized 
to other types of supersymmetric lattice formulations [3–5,9]. To a plane wave deformation of 
2d N = (8, 8) super Yang–Mills theory on lattice [37,38], from which 4d N = 4 SYM can 
be obtained without parameter fine tunings, the application of the improvement is worth being 
investigated.
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Appendix A. Proof of Lemma

In this appendix, we prove the lemma in section 3.2. Since the essential points are not lost by 
suppressing Lorentz and sites indices, we show it without them:

Lemma 1. Let f be a function that depends on (U, ψ, φ) with the same gauge transformation 
property as U , and suppose that

QU = f (U,ψ,φ). (A.1)

Let g be a function that depends on (U, QU, φ) with the same gauge transformation property 
as ψ . If (A.1) can be solved in term of ψ as follows:

ψ = g(U,QU,φ), (A.2)
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then one can consistently define the Q-transformation by (A.1) and

Qψ =
[
QU · δ

δU
− iδφU · δ

δ(QU)

]
g(U,QU,φ), (A.3)

Qφ = 0, (A.4)

so that Q2 = −iδφ for all fields.

Proof. We immediately confirm that Q2 = −iδφ for φ since the both sides vanish from (A.4)
and the gauge transformation δφφ = 0. The main task is to show the lemma for U and ψ .

Acting Q to (A.1) leads to

Q2U =
[
QU · δ

δU
+ Qψ · δ

δψ

]
f (U, ψ, φ). (A.5)

Plugging (A.3) into (A.5), we have

Q2U = −iδφU ·
{

δ

δ(QU)
g · δ

δψ
f

}
+ QU ·

{
δ

δU
f + δ

δU
g · δ

δψ
f

}
. (A.6)

Once the variable ψ in f is eliminated by using (A.2), f is a function of U, QU, φ as 
f (U, g(U, QU, φ), φ) which does not actually depend on U and φ because of (A.1). It means 
that, in the r.h.s. of (A.6), the expression inside of the first curly bracket is one and the second 
one vanishes. Thus, we obtain

Q2U = −iδφU. (A.7)

By operating a bosonic transformation Q2 to (A.2), we find

Q2ψ =
[
Q2U · δ

δU
+ Q3U · δ

δ(QU)

]
g(U, QU, φ). (A.8)

Note that Q3U = −iQδφU = −iδφ(QU) from (A.7). It is found that

Q2ψ = −iδφψ. (A.9)

(A.7) and (A.9) establish the statement. �
The remarkable point of the proof above is that it relies only on the algebraic structure of 

Q-transformation. This kind of argument is, therefore, applicable beyond the framework of the 
lattice gauge theory. In particular, U is not needed to be a unitary variable, and x-space is not 
limited to the lattice. If the gauge symmetry is realized in a framework, this lemma allows us to 
construct the Q-transformation satisfying Q2 = −iδφ in it.

Appendix B. Rμ and R12

We present several Rμ and R12 which can be used for improving the lattice Q-transformation 
and the lattice field tensor, respectively.
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B.1. Rμ

In sections 3.2 and 4.4, we have explained that Rμ should obey several conditions: it behaves 
as 1 + a

2 Dμ near the continuum limit, and both of Rμ and its inverse R−1
μ are local. In addition, 

the gauge-field dependence of det(Rμ) rapidly decays when taking the continuum limit.
There are actually infinite solutions for Rμ. We list a few types of Rμ that satisfy the condi-

tions above:

R(+)
μ ≡ 1 + a

2
∇μ − ra2∇∗

μ∇μ (r > 0), (B.1)

R(−)
μ ≡

(
1 − a

2
∇∗

μ − ra2∇∗
μ∇μ

)−1
(r > 0), (B.2)

R(e)
μ ≡ exp

(a

2
∇(s)

μ

)
, (B.3)

where ∇(s)
μ is the covariant symmetric difference operator,

∇(s)
μ ≡ 1

2

(∇μ + ∇∗
μ

)
. (B.4)

These operators have different properties as explained below.
The first one (B.1) is the simplest ultra-local solution which is given in section 3.2. For r = 1

4
and r = 1

2 , (B.1) becomes further simple depending only on the symmetric and the backward 
difference operators linearly, respectively. From the fact that the eigenvalue of a∇μ is expressed 
in the form (3.14), R(+)

μ is bounded in the sense that the absolute value of the singular values has 
the upper and non-zero lower bounds. Namely,

u ≤
(
R(+)

μ

)†
R(+)

μ ≤ v, for u,v > 0, (B.5)

where the inequality is understood as for the eigenvalues of R†R. Lemma 2 given in section B.3
tells us that the ultra-local and bounded operator has a local inversion with an exponentially 
decaying tail:∣∣∣(R(+)

μ )−1(x, y)

∣∣∣≤ C e−ρ |xμ−yμ|/a, (B.6)

where C and ρ are positive constants. So, we can make use of this operator with keeping the prin-
ciple of locality. As shown in section 4.4, det(R(+)

μ ) is Q-invariant up to a strongly suppressed 
term in the continuum limit exp(−l/a) (with the physical size l is fixed in the limit).

In this way, the operator (B.1) correctly improves the Q-transformation and is useful to ex-
plain the method of the tree-level O(a) improvement. However, the numerical application will 
not be easy since the lattice action has an exponentially local interactions because Qψμ yields 
the factor (R(+)

μ )−1 that spreads all over the lattice.
Instead, the second one (B.2) provides an ultra-local action which is suitable for numerical 

applications. As discussed in section 4.2, with the change of variables in the fermion fields ψμ, 
the lattice action is actually expressed as an ultra-local expression. This is because (R(−)

μ )−1 is 
taken to be ultra-local. Since (R(−)

μ )−1 = (R(+)
μ )T is derived from ∇T

μ = −∇∗
μ, R(−)

μ satisfies 
the exponentially locality condition such as (B.6). As seen in section 4.4, the fermion measure 
is also consistently defined as long as r > 0. In this case, we also obtain simple expressions for 
r = 1

4 and r = 1
2 . The latter is convenient in writing the improved action explicitly.
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The third choice R(e)
μ looks complicated for numerical applications but is worth noting since 

it has a trivial determinant:

det R(e)
μ = 1, (B.7)

that is, the measures (4.11) and (4.12) are identical and Qimp-invariant. (B.7) is easily shown 
from (∇(s)

μ )T = −∇(s)
μ , or equivalently, from the fact that R(e)

μ is an orthogonal matrix whose 
determinant is +1 or −1. The sign is fixed because (B.7) holds in the free limit and the sign does 
not change under the continuous deformation of the link fields. Lemma 3 in Appendix B.3 allows 
us to conclude that∣∣∣R(e)

μ (x, y)

∣∣∣≤ C e−ρ |xμ−yμ|/a(|xμ − yμ|/a)! , (B.8)

with positive constants C and ρ = ln 2. Due to the factorial growth of the denominator, R(e)
μ

decays much faster than general exponentially local operators as |xμ − yμ|/a → ∞.

B.2. R12

The lattice field tensor is improved by multiplying R12 which obeys the several conditions as 
with Rμ. As seen in section 3.3, R12 should behaves as 1 − a

2 (D1 + D2) near the continuum 
limit, and should be local and invertible to lead to the correct continuum theory around the unique 
vacuum. There are also infinite possibilities satisfying these conditions.

We give a few R12 which are similar to Rμ (B.1)–(B.3):

R(+)
12 ≡

⎡
⎣1 + a

2

2∑
μ=1

∇μ − ra2
2∑

μ=1

∇∗
μ∇μ

⎤
⎦

−1

, (B.9)

R(−)
12 ≡ 1 − a

2

2∑
μ=1

∇∗
μ − ra2

2∑
μ=1

∇∗
μ∇μ, (B.10)

R(e)
12 ≡ exp

⎛
⎝−a

2

2∑
μ=1

∇(s)
μ

⎞
⎠ . (B.11)

These operators coincide with each other up to O(a), that is, they improve �TL to the order as 
shown in section 3.3.17 We can show that (B.9) and the inversion of (B.10) exist for r > 1/4 as 
follows. For an operator Zμ defined as

17 These operators maintain the reflection symmetry of the original lattice action (2.27): x = (x1, x2) → x̃ ≡ (x2, x1)

with

(U1(x), U2(x)) → (U2(x̃),U1(x̃))

(ψ1(x), ψ2(x)) → (ψ2(x̃),ψ1(x̃))

(H(x),χ(x)) → (−H(x̃),−χ(x̃))

(φ(x), φ̄(x), η(x)) → (φ(x̃), φ̄(x̃), η(x̃)). (B.12)
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Zμϕ(x) = rUμ(x)ϕ(x + aμ̂)Uμ(x)−1 −
(

1

2
− r

)
Uμ(x − aμ̂)−1ϕ(x − aμ̂)Uμ(x − aμ̂)

(B.13)

for any adjoint field ϕ(x), whose induced norm18 is less than or equal to |r| + | 1
2 − r|. Then,

R(−)
12 = 4r − Z1 − Z2 (B.14)

are shown to have no zeros for r > 1/4. The existence of (B.9) obeys (R(+)
12 )−1 = (R(−)

12 )T . Note 
that (B.9) and (B.11) are local operators from Lemmas 2 and 3 given in the next subsection.

For r = 1
2 , R(±)

12 reduce to simpler expressions given with the backward (or the forward) 

operators, respectively. In particular, R(−)
12 is convenient to write the ultra-local action with R(−)

μ

(B.2) as given in Appendix C.

B.3. Locality of R

The locality of operators is discussed in detail. We present the locality conditions for the 
inverse (the exponential) of an ultra-local operator in Lemma 2 (Lemma 3). These give the solid 
theoretical grounds of the tree-level O(a) improvement with Rμ and R12 in this paper.

For an ultra-local operator R, it is easy to show that R† and R†R are also ultra-local. In
Lemma 2, we show that if R†R has the upper and non-zero lower bounds, R−1 satisfies the 
exponential locality condition. Although this can be shown by applying an argument in [55], we 
present a proof to make this paper self-contained as much as possible.

Lemma 2. If R is an ultra-local operator that satisfies, for u, v > 0,

u ≤ R†R ≤ v, (B.15)

where the inequality stands for the eigenvalues, R−1 is exponentially local.

Proof. The locality of R−1 follows from that of (R†R)−1 because R−1 = (R†R)−1R†. To study 
the locality of (R†R)−1, let us set

Z ≡ 2

u − v

(
R†R − u + v

2

)
, (B.16)

whose eigenvalues have the absolute value not exceeding one. Then, with e−θ ≡ v−u
u+v

< 1, we 
can show

(R†R)−1 = 2

u + v

∞∑
n=0

e−nθZn, (B.17)

by expanding (R†R)−1 = 2
u+v

(
1 − e−θZ

)−1
with respect to Z.

18 Zμ and ϕ can be regarded as a matrix of the size M = (N2 − 1)L2 and an M-dimensional vector, respectively. For 
any non-zero M-dimensional vector �u with a norm ‖�u‖ =

√
�u† �u, the induced norm of an M ×M matrix A is defined 

by ‖A‖ind ≡ max�u ‖A�u‖
‖�u‖ .



M. Hanada et al. / Nuclear Physics B 929 (2018) 266–297 291

Since Z is ultra-local from the assumption, there is a positive constant M such that 
(Zn)(x, y) = 0 for n < M‖x − y‖1/a.19 Thus,

(R†R)−1(x, y) = 2

u + v

∞∑
n=M‖x−y‖1/a

e−nθZn(x, y). (B.18)

We can easily show that20

∣∣Zαβ(x, y)
∣∣≤ 1, (B.20)

and finally obtain∣∣∣(R†R)−1
αβ (x, y)

∣∣∣≤ C e−ρ‖x−y‖1/a, (B.21)

where C and ρ = Mθ are constants independent of the lattice spacing. Namely, (R†R)−1 is 
exponentially local. So, we can conclude that R−1 satisfies the locality in the same sense. �

The operator eR is also useful to understand our formulation. The following lemma tells us 
the condition on R under which eR is local.

Lemma 3. If R is an ultra-local operator whose singular values have the upper bound w > 0, 
eR is local in the sense that at long distance it decays faster than the exponential.

Proof. Instead of (B.17), we have

eR =
∞∑

n=0

1

n!R
n. (B.22)

Since (Rn)(x, y) = 0 for n < M‖x − y‖1/a for a positive constant M , the kernel representation 
of (B.22) is

eR(x, y) =
∞∑

n=M‖x−y‖1/a

1

n!R
n(x, y). (B.23)

Noting that 
∣∣(R)αβ(x, y)

∣∣≤ w from the assumption, we obtain

|(eR)αβ(x, y)| ≤ C
wM‖x−y‖1/a

(M‖x − y‖1/a)! , (B.24)

19 M ∼ 1/r where r is the range of the ultra-locality of Z.
20 Let W be an M × M matrix whose singular values have the upper bound w. For a norm of complex vectors 
‖�u‖ ≡

√
�u† �u, it is found that ‖W �u‖ ≤ w‖�u‖ holds for any vector �u ∈ C

M. Then, for the matrix elements of W , we can 
easily see

√√√√M∑
I=1

|WIJ |2 ≤ w for all J, (B.19)

by taking the unit vectors (�eJ )I ≡ δIJ as �u, and find that |WIJ | ≤ w.
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where C is a positive constant. Using an identity log(n!) ≥ κn logn for n � 1 with 0 < ∃κ < 1, 
we find that

|(eR)αβ(x, y)| � C′e−κ
‖x−y‖1

a
log(

‖x−y‖1
a

), (B.25)

at large distance ‖x − y‖1/a � 1, where C′ and κ are positive constants. Since e−n log n is larger 
than e−n for n � 1, eR decays faster than the exponential at large distance. �
Appendix C. Explicit form of the lattice action

In this appendix, we present the explicit form of the lattice action (4.1) after performing 
Qimp-transformations. Before seeing it, we also present the case of the unimproved lattice action 
to clarify the differences arising in the improvement.

The action is divided as

S = SB + SF + SY, (C.1)

where SB is the boson action, and SF and SY are the fermion actions which include kinetic 
terms and the Yukawa interaction terms, respectively. In the continuum theory with the twisted 
variables,

SB = 1

2g2

∫
d2x tr

{
H 2 − 2iHF12 +

2∑
μ=1

DμφDμφ̄ + 1

4
[φ, φ̄]2

}
, (C.2)

SF = 1

2g2

∫
d2x tr

{
i

2∑
μ=1

ψμDμη + 2iχ(D1ψ2 − D2ψ1)

}
, (C.3)

SY = 1

2g2

∫
d2x tr

{
−1

4
η[φ,η] − χ[φ,χ] +

2∑
μ=1

ψμ[φ̄,ψμ]
}
. (C.4)

In contrast to the continuum theory, this classification would not be strict on the lattice since 
the lattice action has higher order terms whose types are unclear. At least, we will present one 
possibility for the lattice actions Slat B, Slat F and Slat Y such that they reproduce the continuum 
counterparts SB, SF and SY, respectively.

In the unimproved lattice model, we have

Slat B = a2

2g2

∑
x∈�L

tr

⎧⎨
⎩H 2 − i

a2 H�TL +
2∑

μ=1

∇μφ∇μφ̄ + 1

4
[φ, φ̄]2

⎫⎬
⎭ , (C.5)

Slat F = a2

2g2

∑
x∈�L

tr

⎧⎨
⎩i

2∑
μ=1

ψμ∇μη + i

a2 χQ�TL

⎫⎬
⎭ , (C.6)

Slat Y = a2

2g2

∑
x∈�L

tr

⎧⎨
⎩−1

4
η[φ,η] − χ[φ,χ] + 1

2

2∑
μ=1

ψμ[Uμφ̄U−1
μ + φ̄,ψμ]

⎫⎬
⎭ . (C.7)

The term Q�TL is quite complicated. Instead of giving it explicitly, let us present Q� since 
Q�TL(x) = Q�(x) − { 1

N
tr (Q�(x))

}
1N . For �1 and �2, which are given in (2.32) and (2.34), 

respectively, Q� is given by
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Q�1(x) = a2

1 − 1
ε2 ‖1 − U12(x)‖2

×
{
�12(x) − �21(x) − i

ε2 tr {�12(x) + �21(x)}�1(x)

}
, (C.8)

for ‖1 − U12(x)‖ < ε, and

Q�2(x) = 2a2

m
(U12(x)m + U21(x)m)−1

×
m−1∑
k=0

{
U12(x)k�12(x)U12(x)m−k−1 − U21(x)k�21(x)U21(x)m−k−1

− im

2

(
U12(x)k�12(x)U12(x)m−k−1 + U21(x)k�21(x)U21(x)m−k−1

)
�2(x)

}
,

(C.9)

where

�μν(x) ≡ ∇μψν(x)Uμν(x) − Uμν(x)∇νψμ(x) + 1

a

[
ψ1(x) + ψ2(x),Uμν(x)

]
. (C.10)

Note that QUμν(x) = ia2�μν(x).
For the improved lattice action, we use the variable ψ ′

μ in (4.10) that makes the expression as 
simple as possible. For some special cases, the action is written in an ultra-local form in terms of 
ψ ′

μ. The Qimp-transformations (4.5)–(4.9) applied to (4.14) leads to

S
imp

lat B = a2

2g2

∑
x∈�L

tr

⎧⎨
⎩H 2 − i

a2 HR12�TL +
2∑

μ=1

∇μφ S(Rμ)∇μφ̄ + 1

4
[φ, φ̄]2

⎫⎬
⎭ , (C.11)

S
imp

lat F = a2

2g2

∑
x∈�L

tr

{
i

2∑
μ=1

ψ ′
μ S(Rμ)∇μη + i

a2 χ R12 Qimp�TL

+ i

a2 χ(QimpR12)�TL

}
, (C.12)

S
imp

lat Y = a2

2g2

∑
x∈�L

tr

⎧⎨
⎩−1

4
η[φ,η] − χ[φ,χ] + i

2∑
μ=1

ψ ′
μ(QimpS(Rμ))∇μφ̄

+
2∑

μ=1

ψ ′
μ[Uμφ̄U−1

μ ,S(Rμ)ψ ′
μ] − a

2

2∑
μ=1

ψ ′
μ[S(Rμ)∇μφ̄,ψ ′

μ]
⎫⎬
⎭ , (C.13)

where

S(R) = (RRT )−1, (C.14)

and Qimp�TL for �i(i = 1, 2) are given by Q� in (C.8) and (C.9) with ψμ replaced by ψ ′
μ. 

The Qimp-transformations for Rμ and R12 remain unperformed since they are not determined 
in general.
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The improved action becomes ultra-local for R(−)
μ and R(−)

12 given in (B.2) and (B.10). In the 
case of

R(−)
μ

∣∣∣
r= 1

2

=
(

1 − a

2
∇μ

)−1
, (C.15)

R(−)
12

∣∣∣
r= 1

2

= 1 − a

2

2∑
μ=1

∇μ, (C.16)

we find that

S
imp

lat B = a2

2g2

∑
x∈�L

tr

⎧⎨
⎩H 2 − i

a2 H

⎛
⎝2�TL − 1

2

2∑
μ=1

Uμ�TLU−1
μ

⎞
⎠

+ 1

4

2∑
μ=1

(
3∇μφ − ∇∗

μφ
) (

3∇μφ̄ − ∇∗
μφ̄
)+ 1

4
[φ, φ̄]2

⎫⎬
⎭ , (C.17)

S
imp

lat F = a2

2g2

∑
x∈�L

tr

⎧⎨
⎩i

2∑
μ=1

ψ ′
μ

(
1 − 3a2

4
∇μ∇∗

μ

)
∇μη + i

a2 χ

⎛
⎝1 − a

2

2∑
μ=1

∇μ

⎞
⎠Qimp�TL

− 1

2a

2∑
μ=1

χ
[
Uμ�TLU−1

μ ,ψ ′
μ

]⎫⎬
⎭ , (C.18)

S
imp

lat Y = a2

2g2

∑
x∈�L

tr

{
−1

4
η[φ,η] − χ[φ,χ]

+ 1

8

2∑
μ=1

ψ ′
μ

[
13φ̄ + 13Uμφ̄U−1

μ − 3U−1
μ φ̄Uμ − 3UμUμφ̄U−1

μ U−1
μ ,ψ ′

μ

]

− 3

4

2∑
μ=1

ψ ′
μ[Uμφ̄U−1

μ + U−1
μ φ̄Uμ,U−1

μ ψ ′
μUμ]

}
, (C.19)

where Qimp�TL for �i(i = 1, 2) are again given by Q� in (C.8) and (C.9) with the replacement 
of ψμ by ψ ′

μ. These actions are clearly ultra-local and suitable for numerical simulations.
We can show that the Yukawa interactions of the improved lattice action coincide with those 

of the unimproved one for (B.3) since S(R(e)
μ ) = 1. Then we can show that

S
imp

lat B = Slat B|�→�imp , (C.20)

S
imp

lat F = Slat F|ψμ→ψ ′
μ, Q�→Qimp�imp , (C.21)

S
imp

lat Y = Slat Y|ψμ→ψ ′
μ
, (C.22)

where

�imp =R12�. (C.23)

The difference is only from the definition of the improved lattice field tensor �imp given via R12. 
Furthermore, if we use (B.11) for R12 and integrate the auxiliary field H , the factor R12 disap-
pears in the boson action since S(R(e)

12 ) = 1. In other words, the improved actions are the same 
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with those of the unimproved theory for the boson and the Yukawa interactions. The difference 
remains only in the fermion kinetic term relevant to χ . This would have some theoretical impor-
tance and should be studied further.

Appendix D. Evaluation of the determinant in (4.42)

In this appendix, we calculate the determinant of the L × L circulant matrix,

RL =

⎛
⎜⎜⎜⎜⎝

A B C

C
.. .

. . .

. . .
. . . B

B C A

⎞
⎟⎟⎟⎟⎠ , (D.1)

for constant A, B and C. To this end, it is convenient to introduce a purely tridiagonal matrix:

QL ≡

⎛
⎜⎜⎜⎜⎝

A B

C
.. .

. . .

. . .
. . . B

C A

⎞
⎟⎟⎟⎟⎠ . (D.2)

In computing detRL, the cofactor expansion with respect to the first and second rows or 
columns gives

detRL = AdetQL−1 − 2BC detQL−2 − (−B)L − (−C)L. (D.3)

Similarly,

detQL = AdetQL−1 − BC detQL−2. (D.4)

Defining the solutions of the quadratic equation x2 − Ax + BC = 0 as

ξ± ≡ 1

2

(
A ±

√
A2 − 4BC

)
, (D.5)

the recursion equation (D.4) is solved as

detQL =
{

(L + 1)ξL+ if A2 = 4BC

ξL+1+ −ξL+1−
ξ+−ξ− otherwise.

(D.6)

Plugging this to (D.3) leads to the simple expression

detRL = ξL+ + ξL− − (−B)L − (−C)L. (D.7)

References

[1] N. Seiberg, E. Witten, Electric–magnetic duality, monopole condensation, and confinement in N = 2 supersymmet-
ric Yang–Mills theory, Nucl. Phys. B 426 (1994) 19–52, arXiv :hep -th /9407087. Erratum: Nucl. Phys. B 430 (1994) 
485.

[2] N. Seiberg, Electric–magnetic duality in supersymmetric non-Abelian gauge theories, Nucl. Phys. B 435 (1995) 
129–146, arXiv :hep -th /9411149.

http://refhub.elsevier.com/S0550-3213(18)30047-6/bib536569626572673A313939347273s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib536569626572673A313939347273s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib536569626572673A313939347273s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib536569626572673A313939347071s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib536569626572673A313939347071s1


296 M. Hanada et al. / Nuclear Physics B 929 (2018) 266–297

[3] D.B. Kaplan, E. Katz, M. Ünsal, Supersymmetry on a spatial lattice, J. High Energy Phys. 05 (2003) 037, arXiv :
hep -lat /0206019.

[4] S. Catterall, Lattice supersymmetry and topological field theory, J. High Energy Phys. 05 (2003) 038, arXiv :hep -
lat /0301028.

[5] A.G. Cohen, D.B. Kaplan, E. Katz, M. Ünsal, Supersymmetry on a Euclidean spacetime lattice. I: a target theory 
with four supercharges, J. High Energy Phys. 08 (2003) 024, arXiv :hep -lat /0302017.

[6] A.G. Cohen, D.B. Kaplan, E. Katz, M. Ünsal, Supersymmetry on a Euclidean spacetime lattice. II: target theories 
with eight supercharges, J. High Energy Phys. 12 (2003) 031, arXiv :hep -lat /0307012.

[7] F. Sugino, A lattice formulation of super Yang–Mills theories with exact supersymmetry, J. High Energy Phys. 01 
(2004) 015, arXiv :hep -lat /0311021.

[8] F. Sugino, Super Yang–Mills theories on the two-dimensional lattice with exact supersymmetry, J. High Energy 
Phys. 03 (2004) 067, arXiv :hep -lat /0401017.

[9] A. D’Adda, I. Kanamori, N. Kawamoto, K. Nagata, Twisted superspace on a lattice, Nucl. Phys. B 707 (2005) 
100–144, arXiv :hep -lat /0406029.

[10] F. Sugino, Various super Yang–Mills theories with exact supersymmetry on the lattice, J. High Energy Phys. 01 
(2005) 016, arXiv :hep -lat /0410035.

[11] D.B. Kaplan, M. Ünsal, A Euclidean lattice construction of supersymmetric Yang–Mills theories with sixteen su-
percharges, J. High Energy Phys. 09 (2005) 042, arXiv :hep -lat /0503039.

[12] F. Sugino, Two-dimensional compact N = (2, 2) lattice super Yang–Mills theory with exact supersymmetry, Phys. 
Lett. B 635 (2006) 218–224, arXiv :hep -lat /0601024.

[13] M.G. Endres, D.B. Kaplan, Lattice formulation of (2, 2) supersymmetric gauge theories with matter fields, J. High 
Energy Phys. 10 (2006) 076, arXiv :hep -lat /0604012.

[14] J. Giedt, Quiver lattice supersymmetric matter, D1/D5 branes and AdS(3)/CFT(2), arXiv :hep -lat /0605004.
[15] S. Catterall, From twisted supersymmetry to orbifold lattices, J. High Energy Phys. 01 (2008) 048, arXiv :0712 .2532.
[16] S. Matsuura, Two-dimensional N = (2, 2) supersymmetric lattice gauge theory with matter fields in the fundamental 

representation, J. High Energy Phys. 0807 (2008) 127, arXiv :0805 .4491.
[17] F. Sugino, Lattice formulation of two-dimensional N = (2, 2) SQCD with exact supersymmetry, Nucl. Phys. B 808 

(2009) 292–325, arXiv :0807 .2683.
[18] Y. Kikukawa, F. Sugino, Ginsparg–Wilson formulation of 2D N = (2, 2) SQCD with exact lattice supersymmetry, 

Nucl. Phys. B 819 (2009) 76–115, arXiv :0811 .0916.
[19] D. Kadoh, F. Sugino, H. Suzuki, Lattice formulation of 2D N = (2, 2) SQCD based on the B model twist, Nucl. 

Phys. B 820 (2009) 99–115, arXiv :0903 .5398.
[20] I. Kanamori, Lattice formulation of two-dimensional N = (2, 2) super Yang–Mills with SU(N) gauge group, J. High 

Energy Phys. 07 (2012) 021, arXiv :1202 .2101.
[21] I. Kanamori, H. Suzuki, Restoration of supersymmetry on the lattice: two-dimensional N = (2, 2) supersymmetric 

Yang–Mills theory, Nucl. Phys. B 811 (2009) 420–437, arXiv :0809 .2856.
[22] I. Kanamori, H. Suzuki, Some physics of the two-dimensional N = (2, 2) supersymmetric Yang–Mills theory: 

lattice Monte Carlo study, Phys. Lett. B 672 (2009) 307–311, arXiv :0811 .2851.
[23] M. Hanada, I. Kanamori, Lattice study of two-dimensional N = (2, 2) super Yang–Mills at large-N , Phys. Rev. D 

80 (2009) 065014, arXiv :0907 .4966.
[24] M. Hanada, I. Kanamori, Absence of sign problem in two-dimensional N = (2, 2) super Yang–Mills on lattice, 

J. High Energy Phys. 01 (2011) 058, arXiv :1010 .2948.
[25] S. Catterall, R. Galvez, A. Joseph, D. Mehta, On the sign problem in 2D lattice super Yang–Mills, J. High Energy 

Phys. 01 (2012) 108, arXiv :1112 .3588.
[26] S. Catterall, A. Joseph, T. Wiseman, Thermal phases of D1-branes on a circle from lattice super Yang–Mills, J. High 

Energy Phys. 12 (2010) 022, arXiv :1008 .4964.
[27] E. Giguére, D. Kadoh, Restoration of supersymmetry in two-dimensional SYM with sixteen supercharges on the 

lattice, J. High Energy Phys. 05 (2015) 082, arXiv :1503 .04416.
[28] D. Kadoh, Precision test of the gauge/gravity duality in two-dimensional N = (8, 8) SYM, PoS LATTICE 2016 

(2017) 033, arXiv :1702 .01615.
[29] S. Catterall, R.G. Jha, D. Schaich, T. Wiseman, Testing holography using lattice super-Yang–Mills on a 2-torus, 

arXiv :1709 .07025.
[30] H. Suzuki, Y. Taniguchi, Two-dimensional N = (2, 2) super Yang–Mills theory on the lattice via dimensional re-

duction, J. High Energy Phys. 0510 (2005) 082, arXiv :hep -lat /0507019.
[31] D. August, B. Wellegehausen, A. Wipf, Spectroscopy of two dimensional N = 2 super Yang Mills theory, PoS 

LATTICE 2016 (2016) 234, arXiv :1611 .00551.

http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B61706C616E3A323030327776s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B61706C616E3A323030327776s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib436174746572616C6C3A323030337764s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib436174746572616C6C3A323030337764s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib436F68656E3A323030337865s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib436F68656E3A323030337865s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib436F68656E3A323030337177s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib436F68656E3A323030337177s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib537567696E6F3A323030337962s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib537567696E6F3A323030337962s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib537567696E6F3A323030347164s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib537567696E6F3A323030347164s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib44416464613A323030346A62s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib44416464613A323030346A62s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib537567696E6F3A323030347576s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib537567696E6F3A323030347576s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B61706C616E3A323030357461s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B61706C616E3A323030357461s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib537567696E6F3A323030367566s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib537567696E6F3A323030367566s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib456E647265733A323030366963s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib456E647265733A323030366963s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib47696564743A323030366464s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib436174746572616C6C3A323030376B6Es1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4D617473757572613A32303038636661s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4D617473757572613A32303038636661s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib537567696E6F3A323030387970s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib537567696E6F3A323030387970s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B696B756B6177613A323030387877s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B696B756B6177613A323030387877s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B61646F683A323030397966s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B61646F683A323030397966s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B616E616D6F72693A323031326574s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B616E616D6F72693A323031326574s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B616E616D6F72693A32303038626Bs1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B616E616D6F72693A32303038626Bs1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B616E616D6F72693A323030387979s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B616E616D6F72693A323030387979s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib48616E6164613A323030396871s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib48616E6164613A323030396871s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib48616E6164613A323031307167s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib48616E6164613A323031307167s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib436174746572616C6C3A323031316161s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib436174746572616C6C3A323031316161s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib436174746572616C6C3A323031306678s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib436174746572616C6C3A323031306678s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib476967756572653A32303135636761s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib476967756572653A32303135636761s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B61646F683A323031376D636As1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B61646F683A323031376D636As1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib436174746572616C6C3A323031376C7562s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib436174746572616C6C3A323031376C7562s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib53757A756B693A323030356478s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib53757A756B693A323030356478s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4175677573743A323031366F7266s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4175677573743A323031366F7266s1


M. Hanada et al. / Nuclear Physics B 929 (2018) 266–297 297

[32] D. August, B. Wellegehausen, A. Wipf, Two-dimensional N = 2 super-Yang–Mills theory, arXiv :1711 .01109.
[33] I. Montvay, An algorithm for gluinos on the lattice, Nucl. Phys. B 466 (1996) 259–284, arXiv :hep -lat /9510042.
[34] I. Montvay, Supersymmetric Yang–Mills theory on the lattice, Int. J. Mod. Phys. A 17 (2002) 2377–2412, arXiv :

hep -lat /0112007.
[35] G. Bergner, P. Giudice, G. Münster, I. Montvay, S. Piemonte, The light bound states of supersymmetric SU(2) 

Yang–Mills theory, J. High Energy Phys. 1603 (2016) 080, arXiv :1512 .07014.
[36] S. Ali, et al., Improved results for the mass spectrum of N = 1 supersymmetric SU(3) Yang–Mills, theory, arXiv :

1710 .07105.
[37] M. Hanada, S. Matsuura, F. Sugino, Two-dimensional lattice for four-dimensional N = 4 supersymmetric Yang–

Mills, Prog. Theor. Phys. 126 (2011) 597–611, arXiv :1004 .5513.
[38] M. Hanada, A proposal of a fine tuning free formulation of 4d N = 4 super Yang–Mills, J. High Energy Phys. 1011 

(2010) 112, arXiv :1009 .0901.
[39] R.C. Myers, Dielectric branes, J. High Energy Phys. 9912 (1999) 022, arXiv :hep -th /9910053.
[40] J.M. Maldacena, M.M. Sheikh-Jabbari, M. Van Raamsdonk, Transverse five-branes in matrix theory, J. High Energy 

Phys. 01 (2003) 038, arXiv :hep -th /0211139.
[41] S. Matsuura, T. Misumi, K. Ohta, Topologically twisted N = (2, 2) supersymmetric Yang–Mills theory on an arbi-

trary discretized Riemann surface, PTEP 2014 (12) (2014) 123B01, arXiv :1408 .6998.
[42] S. Matsuura, T. Misumi, K. Ohta, Exact results in discretized gauge theories, PTEP 2015 (3) (2015) 033B07, arXiv :

1411 .4466.
[43] D. Kadoh, Recent progress in lattice supersymmetry: from lattice gauge theory to black holes, PoS LATTICE2015 

(2016) 017, arXiv :1607 .01170.
[44] S. Kamata, S. Matsuura, T. Misumi, K. Ohta, Anomaly and sign problem in N = (2, 2) SYM on polyhedra: numer-

ical analysis, PTEP 2016 (12) (2016) 123B01, arXiv :1607 .01260.
[45] S. Kamata, S. Matsuura, T. Misumi, K. Ohta, Numerical analysis of discretized N = (2, 2) SYM on polyhedra, PoS 

LATTICE2016 (2016) 210, arXiv :1612 .01968, 2016.
[46] K. Symanzik, Cutoff dependence in lattice φ4 in four-dimensions theory, NATO Sci. Ser. B 59 (1980) 313–330.
[47] P.H. Weisz, Renormalization and lattice artifacts, arXiv :1004 .3462.
[48] K.G. Wilson, J.B. Kogut, The Renormalization group and the epsilon expansion, Phys. Rep. 12 (1974) 75–200.
[49] F. Niedermayer, Exact chiral symmetry, topological charge and related topics, Nucl. Phys. Proc. Suppl. 73 (1999) 

105–119, arXiv :hep -lat /9810026.
[50] E. Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988) 353–386.
[51] E. Witten, Introduction to cohomological field theories, Int. J. Mod. Phys. A 6 (1991) 2775–2792.
[52] S. Matsuura, F. Sugino, Lattice formulation for 2d = (2, 2), (4, 4) super Yang–Mills theories without admissibility 

conditions, J. High Energy Phys. 1404 (2014) 088, arXiv :1402 .0952.
[53] H. Neuberger, Exactly massless quarks on the lattice, Phys. Lett. B 417 (1998) 141–144, arXiv :hep -lat /9707022.
[54] H. Neuberger, More about exactly massless quarks on the lattice, Phys. Lett. B 427 (1998) 353–355, arXiv :hep -lat /

9801031.
[55] P. Hernández, K. Jansen, M. Lüscher, Locality properties of Neuberger’s lattice Dirac operator, Nucl. Phys. B 552 

(1999) 363–378, arXiv :hep -lat /9808010.
[56] E. Berkowitz, E. Rinaldi, M. Hanada, G. Ishiki, S. Shimasaki, P. Vranas, Precision lattice test of the gauge/gravity 

duality at large-N , Phys. Rev. D 94 (9) (2016) 094501, arXiv :1606 .04951.

http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4175677573743A32303137656F78s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4D6F6E747661793A313939356561s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4D6F6E747661793A32303031616As1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4D6F6E747661793A32303031616As1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib426572676E65723A3230313561647As1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib426572676E65723A3230313561647As1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib416C693A32303137696A78s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib416C693A32303137696A78s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib48616E6164613A323031306B74s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib48616E6164613A323031306B74s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib48616E6164613A323031306773s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib48616E6164613A323031306773s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4D796572733A313939397073s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4D616C646163656E613A323030327262s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4D616C646163656E613A323030327262s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4D617473757572613A323031346B6861s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4D617473757572613A323031346B6861s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4D617473757572613A323031346E6761s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4D617473757572613A323031346E6761s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B61646F683A32303136656A75s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B61646F683A32303136656A75s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B616D6174613A32303136786D75s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B616D6174613A32303136786D75s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B616D6174613A32303136727169s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4B616D6174613A32303136727169s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib53796D616E7A696B3A313937397068s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib576569737A3A323031306E72s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib57696C736F6E3A313937336A6As1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4E69656465726D617965723A313939386269s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4E69656465726D617965723A313939386269s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib57697474656E3A313938387A65s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib57697474656E3A313939306273s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4D617473757572613A32303134707561s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4D617473757572613A32303134707561s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4E65756265726765723A313939376670s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4E65756265726765723A313939387776s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4E65756265726765723A313939387776s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4865726E616E64657A3A313939386574s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4865726E616E64657A3A313939386574s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4265726B6F7769747A3A323031366A6C71s1
http://refhub.elsevier.com/S0550-3213(18)30047-6/bib4265726B6F7769747A3A323031366A6C71s1

	O(a) improvement of 2D N=(2,2) lattice SYM theory
	1 Introduction
	2 Original lattice formulation
	2.1 Continuum theory
	2.2 Lattice formulation with an exact supersymmetry
	2.3 Classical continuum limit

	3 Method of tree-level O(a) improvement
	3.1 Locality
	3.2 Q-transformation
	3.3 The integrand Ξ

	4 Fermion doublers and path-integral measures in improved theory
	4.1 Summary of the improved theory
	4.2 Convenient expressions in numerical simulations
	4.3 Absence of the fermion doublers
	4.4 Path-integral measure

	5 Conclusion and discussions
	Acknowledgements
	Appendix A Proof of Lemma
	Appendix B Rμ and R12
	B.1 Rμ
	B.2 R12
	B.3 Locality of R

	Appendix C Explicit form of the lattice action
	Appendix D Evaluation of the determinant in (4.42)
	References


