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SUMMARY

Genes specifically expressed in neurons contain
members with extended long introns. Longer genes
present a problem with respect to fulfilment of gene
length transcription, and evidence suggests that dys-
regulation of long genes is a mechanism underlying
neurodegenerative and psychiatric disorders. Here,
we report the discovery that RNA-binding protein
Sfpq is a critical factor for maintaining transcriptional
elongation of long genes. We demonstrate that Sfpq
co-transcriptionally binds to long introns and is
required for sustaining long-gene transcription by
RNA polymerase II through mediating the interaction
of cyclin-dependent kinase9with the elongation com-
plex. Phenotypically,Sfpqdisruption causedneuronal
apoptosis in developing mouse brains. Expression
analysis of Sfpq-regulated genes revealed specific
downregulationofdevelopmentally essential neuronal
genes longer than 100 kb in Sfpq-disrupted brains;
those genes are enriched in associations with neuro-
degenerative and psychiatric diseases. The identified
molecular machinery yields directions for targeted in-
vestigations of the association between long-gene
transcriptopathy and neuronal diseases.

INTRODUCTION

From an evolutionary perspective, the pre-mRNA transcripts of

vertebrates are comparatively expanded, and, in mammals,

genes preferentially expressed in the brain have significantly

longer introns (Gabel et al., 2015; Polymenidou et al., 2011).

Given that the basic machinery of transcription is retained be-

tween lower and higher organisms but that mammalian genes

expressed in the brain are significantly longer, it stands to reason

that higher organisms would be more vulnerable to the dysregu-

lation of gene processing and that some extended machinery

provides augmented support for transcription in higher organ-

isms (Oh et al., 2017). Thus far, mutations of FUS and TDP-43,

two RNA-binding protein (RBP) genes regulating long intron-

containing genes, have been implicated for their association

with amyotrophic lateral sclerosis (ALS) and frontotemporal

lobar degeneration (FTLD) (Cortese et al., 2014; Lagier-Tourenne

et al., 2012; Polymenidou et al., 2011; Rogelj et al., 2012). Inhibi-

tion of topoisomerases also reduces transcription of long genes

and has been linked to autism spectrum disorder (ASD) (King

et al., 2013). These observations have yielded the hypothesis

that some neurodegenerative and psychiatric diseases are in

fact long-gene diseases or long genopathies. Yet, it has re-

mained unclear what mechanism specifically regulates long

genes to ensure their long-distance transcription.

Herewe focused on neuronal RBPSfpq (proline/glutamine rich,

also known as PSF; Patton et al., 1993), which has been increas-

ingly recognized for its roles in ALS (Thomas-Jinu et al., 2017),

FTLD (Ishigaki et al., 2017), and ASD (Chang et al., 2015; O’Roak

et al., 2012), suggesting its connection in some way with long

genopathies. SfpqhasRNA recognitionmotifs (RRMs) and it plays

multiple roles, such as mRNA processing, transcriptional regula-

tion, and DNA repair (see the review Yarosh et al., 2015), though

its in vivo functions have yet to be clarified. By generating Sfpq-

knockout mice and performing in vivo and molecular analyses,

we identifiedSfpqasakey regulator of longneuronal geneexpres-

sion and mechanisms underlying its regulatory role.

RESULTS

Sfpq Is Expressed in Newly Generated Neurons during
Development
To elucidate the functions of Sfpq during development, the

expression profile of Sfpq was analyzed. To assess expression
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at a macroscopic level at an appropriate intermediate point in

development, whole mouse embryos at embryonic day 14.5

(E14.5) were analyzed. Sfpqwas robustly expressed in the whole

CNS, including the spinal cord, consistent with previous descrip-

tions (Chanas-Sacré et al., 1999; Lowery et al., 2007), and weak

expression was detected in the heart, diaphragm, lung, and kid-

ney (Figure S1A). In the cerebral cortex, Sfpqwas specifically ex-

pressed on the pial surface, a site of the developing cortical plate

(Figure S1A, panel Ctx). Next, a focused analysis of time-depen-

dent Sfpq expression in developing mouse brains was per-

formed (Figure 1A). Expression of Sfpq mRNA was evident

from E12.5–E13.5, especially around the pial and apical surfaces

of the developing cerebral cortex, the cortical hem (hem), and the

subpallium (SP). Sfpq expression strengthened and increased in

density on the pial surface of the cerebral cortex at E14.5. At this

time,Sfpq expressionwas also observed in developing thalamus

(Th) and hypothalamus (HT).Sfpqwas detected as a robust band

on the superficial region of the developing cerebral cortex by

E15.5, intensified by E18.5, and was diminished by post-natal

day 0 (P0). These expression patterns seemed to coincide with

the distribution of newly generated neurons, including in the

developing cortical plate.

To further assess Sfpq-expressing cells with the markers for

neuronal progenitors or differentiated neurons in the cortical

plate, using bromodeoxyuridine (BrdU) or TuJ1 (class III

b-tubulin), respectively (Figure 1B). From E12.5 to E13.5, Sfpq

expression was scattered in the superficial region just beneath

the marginal zone, indicating its expression in nascent cortical

plate neurons (CP).Sfpq expressionwas not observed in the pre-

plate (PP, containing early born neurons) at E12.5. Sfpq expres-

sion was also detected in cells adjacent to the apical surface at

the bottom of the ventricular zone, indicating its expression in

radial glia neural progenitor cells. At E14.5, Sfpq expression

became evident in accumulating layers of cortical plate neurons,

and its expression increased until E15.5 in accordance with

cortical plate development. No obviousSfpq expression was de-

tected at migrating cortical neurons in the intermediate zone (IZ)

between E14.5 and E15.5. Immunohistochemical analysis using

a raised antibody for Sfpq indicated mRNA expression to be

consistent with protein expression (Figures 1C and S1A). These

expression profiles indicated that Sfpq was specifically induced

in maturating neurons that had reached the cortical plate after

migration.

Sfpq Co-transcriptionally Binds across the Entire
Length of Pre-mRNAs
We next asked what mRNA processing is regulated by Sfpq in

maturing neurons, and thus we executed in vivo crosslinking

and immunoprecipitation (CLIP) analysis followed by high-

throughput sequencing (CLIP-seq) to identify regulatory target

RNAs of Sfpq in the embryonic mouse brain. CLIP-seq studies

were performed using whole embryonic mouse brain taken at

E14.5. A band of endogenous Sfpq-mRNA complexes above

100 kDawas confirmed by IP sample radiolabeling and was sub-

jected to sequencing (Figure 2A). Sfpq binding was observed

along the entire length of pre-mRNA, and the binding density

was high on long introns, especially in 50 regions of Sfpq-bound

genes, as exemplified byDcc andCtnna2 (Figure 2B, CLIP tags).

This binding pattern resembled the well-known sawtooth

pattern, as has been observed for FUS (Lagier-Tourenne et al.,

2012; Rogelj et al., 2012).

As a control for the CLIP experiment, a size-matched input

control (SMInput) (Van Nostrand et al., 2016) was adopted

instead of normal IgG. Sfpq-binding peaks were separated into

2 groups using binding sequence mapping p values and fold

enrichment of Sfpq CLIP versus SMInput. This yielded a highly

stringent Sfpq-binding peak group (High-S peaks, fold change

of CLIP/SMInput [FC] R 2, p < 0.01) and a secondary binding

peak group (Low-S peaks, FC < 2, p < 0.01) found in both repli-

cates. Positional distribution of Sfpq-binding peaks normalized

to total expressed RNA showed that both High-S and Low-S

Sfpq-binding regions were predominantly in introns (Figure 2C).

Intron-binding peaks were dominantly located near the 50 end in

High-S peaks, with reductions in peaks toward the 30 end (Fig-

ure 2D). This result is consistent with co-transcriptional recruit-

ment of Sfpq to newly synthesized pre-mRNAs, as previously

observed with FUS (Lagier-Tourenne et al., 2012; Rogelj et al.,

2012).

We next tried to identify Sfpq-binding motifs. Putative Sfpq-

binding motifs in mRNAs are GA-rich (Cho et al., 2014; Peng

et al., 2002), GU-rich (Ray et al., 2013), AU-rich sequences (Bux-

adé et al., 2008) or stem structures (Peng et al., 2002; Ray et al.,

2011). We examined whether broad Sfpq binding to pre-mRNAs

possesses these target specificities. In our Multiple Expectation-

Maximimization for Motif Elicitation (MEME) analysis, GA repeats

in High-S peaks as well as GA and CA repeats in Low-S peaks

were identified as significantly enriched motifs (Figure S2A),

and these motifs were significantly enriched in the centers of

binding peaks (Figure S2B). Next, we examined the distribution

of GA and CA repeats in introns, and we found that both GA

and CA repeats were homogeneously distributed along introns.

Further, the frequency of these repeats was higher in long introns

(R100 kb) than in short introns (<10 kb) (Figure S2C). These re-

sults indicate that Sfpq preferentially binds to long introns by uti-

lizing non-strict-binding sequences in target pre-mRNAs.

Loss of Sfpq Specifically Downregulates Long Genes in
the Developing Brain
Control E13.5 cerebral cortex tissues contained expression of

13,834 genes, with 11,286 (81.6%) demonstrating Sfpq binding

by CLIP-seq. We developed conditional Sfpq-deletion mutant

mice for differential evaluation (Figures S1B and S1C), and we

performed in vivo transcriptome profiling of Sfpq-null (knockout

[KO]) brains. The downregulation of Sfpq in KO brains was

confirmed by mRNA sequencing (mRNA-seq), indicating an

mRNA level of 10.5% compared to control brains, and a relative

protein level of �30% was confirmed by western blotting (WB).

A total of 192 genes were downregulated and 46 genes were

upregulated in KO brains (FC% 0.33 and FCR 3.0, respectively;

adjusted p value < 0.01, DESeq2). To systematically extract

Sfpq-bound regulatory target genes, we examined the correla-

tion between counts of Sfpq-binding peaks and gene expression

changes. 152/192 (79%) of the significantly downregulated

genes had High-S peaks, but no correlation was observed

between counts of peaks and fold change (Figure S3A).

Analysis of correlation between counts of Low-S peaks and
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Figure 1. Sfpq mRNA Expression in Newly

Generated Neurons during Brain Develop-

ment

(A) Digoxigenin-labeled coronal sections sub-

jected to in situ hybridization for Sfpq at E12.5,

E13.5, E14.5, E15.5, E16.5, E18.5, and P0. Scale

bar, 500 mm.

(B) Higher magnifications of the boxed areas in (A).

Tissues were immunostained with antibodies

against BrdU (green) and Tuj1 (red) and counter-

stained with DAPI, as shown in adjacent panel

sections. Scale bar, 50 mm.

(C) Immunostaining of Sfpq (Red) and Tuj1 (tur-

quoise) and counterstaining with DAPI at E15.5.

Scale bar, 50 mm.
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downregulated genes was also negative (Figure S3B). However,

augmenting High-S peak presence with a threshold of 32 Low-S

peak calls or more retained 93% (141/152) of High-S peak

genes, and it resulted in improved enrichment of downregulated

genes in KObrains (Figures S3C and S3D). The peak-FC analysis

was cross-checked against pre-mRNA length. As gene length

increased from 100 kb and beyond in KO brains, the FC of the

qualified genes tended to be more negative (Figure 3A). This

result indicated that both High-S Sfpq-binding peaks and broad

Low-S peaks on entire introns, as observed in Figure 2B, were

functionally significant for long pre-mRNA expression; it sug-

gests the susceptibility of downregulation increases with gene

length. Sfpq-regulatory target genes identified by FC and quali-

fied bindings had lengths ranging from 58 kb to 1.55 Mb, with a

median length of 325.5 kb; 95.7% (135/141) were longer than

100 kb (Figures S3E and S3F). We have termed this specific

downregulation of extra-long genes in Sfpq-KO brains as long-

gene transcriptopathy.

Loss of Sfpq Impairs Transcriptional Elongation
Accompanied by a Gradual Decrease of Pol II Density
To decipher the regulatory mechanism of long-gene pre-mRNA

expression by Sfpq, we examined pre-mRNA levels by employ-

ing rRNA-depleted RNA sequencing (Ribo(-) RNA-seq). Fig-

ure 3B shows the pre-mRNA expression of representative genes

Dcc andCtnna2 in KO and control brains, which are each 1.1Mb

in length. To clearly detect changes in pre-mRNA expression, we

determined pre-mRNA ratios between KO and control brains

along the span of their lengths (Figure 3B). Interestingly, pre-

mRNA expression was not downregulated in the 50 region of

pre-mRNAs for Dcc (ratio z1.0), and it was upregulated in the

50 region for Ctnna2 (ratio > 1.0) in KO brains. Expression ratios

decreased along the 50 end to the middle of transcripts, espe-

cially in long introns (ratio < 1.0), and they plateaued out from

the middle of transcripts to the 30 end.
We next examined whether the 50-to-30 downregulation of pre-

mRNAs was observed in all genes yielding High-S peaks in the

Sfpq CLIP-seq analysis. Genes were assessed for pre-mRNA

levels along the span of their lengths. For genes <100 kb, there

was little change of upregulation in the 50 region, and downregu-

lation in the 30 region of pre-mRNAs was observed in KO brains

compared to controls (Figure 4A, 1,538 genes). In contrast, for

genes R100 kb, relative pre-mRNA levels in KO brains were

slightly increased for the 50 region, as exemplified by Ctnna2,

but they were significantly reduced after 100 kb (Figure 4A,

1,004 genes). Longer genes were divided into regions at regular

intervals, and the fraction of reduced expression was shown to

increase as position tended to the 30 end (Figure 4A, upper right

panel). These data indicated that the loss of Sfpq widely

impaired the expression of Sfpq-binding genes and caused a

gradual decrease of pre-mRNAs, which became evident after

100 kb, therefore suggesting that long genes are more suscepti-

ble to Sfpq loss.

We next examined whether the impact on Sfpq binding in vivo

was similarly observed in culture using gene silencing with small

interfering RNA (siRNA). CLIP and transcriptome studies were

analogously performed in differentiated Neuro2a cells to mimic

in vivo maturating neuronal cells. Knockdown (Sfpq-KD) effi-

ciency in Neuro2a cells was confirmed by mRNA-seq, indicating

an mRNA level of 8.4% compared to control cells, and by WB,

indicating protein KD to �30%. We observed identical binding

patterns as well as effects of Sfpq disruption on long genes in

culture (Figure S4A). A total of 176 qualified (vide infra) in culture

genes was downregulated, including an overlap of 40 genes with

in vivo samples (Figure S4B); 38 of the 40 overlaps were genes

longer than 100 kb, and the remaining two overlaps were more

than 95 kb in length. The concordance of the in vivo and in culture

analyses suggests the critical functionality of Sfpq in either con-

dition, and the consequence of Sfpq KO could not be attributed

to developmental failure or off-target effects in Sfpq-KO brains.

Gradual decreases of pre-mRNA levels suggested the possi-

bility of transcriptional elongation impairment by the loss of

Sfpq. Thus, we examined the distribution of RNA polymerase II

(Pol II) using chromatin immunoprecipitation followed by high-

throughput DNA sequencing (ChIP-seq). As in vivo brain sam-

ples are not amenable for ChIP-seq, in culture analyses using

Sfpq-KD Neuro2a were carried out. 176 qualified (vide infra) in

culture genes showed gradual decreases in pre-mRNA levels

(Figure S5A). We assessed Pol II distribution along the span of

their lengths using a heatmap of Pol II density for significantly

downregulated genes in Sfpq-KD Neuro2a having qualified

Sfpq binding in CLIP (Figure 4B). Relative Pol II density of KD/

cont Neuro2a cells was slightly increased for the 50 region, espe-
cially on the transcriptional start site (TSS), but it was significantly

decreased toward the poly(A) site (pA).

To see whether downregulation of Pol II density is directly

responsible for the decrease of pre-mRNA levels, we evaluated

the relationship between FCs of pre-mRNA levels and those of

Pol II densities across the entire length of Sfpq target genes.

We observed a positive correlation of change in Pol II densities

and RNA-seq levels of those upregulated within the TSS to 100

kb and downregulated thereafter (Figures S5C and S5D). To

see the change of Pol II density more clearly, we drew Pol II

metagene plots of KD and control Neuro2a cells (Figure 4C).

We observed a promoter-proximal pausing peak downstream

of the TSS in both KD and control, indicating that transcriptional

Figure 2. Neuronal RNA-Binding Protein Sfpq Is Co-transcriptionally Bound to Nascent Pre-mRNAs in Developing Neurons

(A) CLIP samples radiolabeled at the 50 ends were gel-electrophoresed and transferred to a nitrocellulosemembrane (lanes 1–3): lane 1 shows autoradiography of

Sfpq IP samples using non-UV-crosslinked input (non UV-X, a-Sfpq Ab); lane 2 shows the IP sample with normal IgG using UV-crosslinked input (normal

rabbit Ab); and lane 3 shows Sfpq IP samples with UV-crosslinked input (a-Sfpq Ab). The arrow indicates the position of free protein around 100 kDa. The re-

gion 100–175 kDa (highlighted by a red box) represents shifted Sfpq-RNA complexes subjected to library construction, analyzed in tandemwith a corresponding

size-matched input (SMInput) control region.

(B) Distribution of Sfpq CLIP-seq tags and positions of High-S and Low-S peaks on representative genes Dcc and Ctnna2.

(C) Distribution of Sfpq High-S and Low-S CLIP peak positions, normalized against total expression in Ribo(�) RNA.

(D) Histogram showing the relative positions of Sfpq High-S and Low-S CLIP peaks in introns.
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initiation was not impaired in KD, and the Pol II ratio at the TSS

and downstream was rather higher in KD than control. Observed

Pol II accumulation at the TSS and downstream may be due to

stacking of Pol II from the impairment of elongation, which was

often observed in the elongation defect; the compensation by

transcriptional activation for downregulated gene expression;

or de-repression of Sfpq, given that Sfpq can act as a transcrip-

tional repressor through direct promoter binding (Iacobazzi et al.,

Figure 3. Loss of Sfpq Specifically Downregulated Genes Longer Than 100 kb

(A) Relationship between pre-mRNA length, fold change in mature mRNA, and Sfpq-binding peaks for 13,846 genes that were expressed in KO and control

brains. The green line is a linear regression of genes with High-S peak(s), calculated in an x-linear, y-log space. The slope of the fitted line is captioned on the plot.

(B) Sfpq disruption attenuates pre-mRNAs from the 50 end. The distribution of Ribo(�) RNA-seq tags, KO/Cont pre-mRNA ratio, and positions of Sfpq High-S and

Low-S CLIP-seq peaks on representative genes Dcc and Ctnna2 are shown (KO and control cortices).

Figure 4. Loss of Sfpq Impaired Transcriptional Elongation with a Gradual Decrease of Pol II Density in Gene Body

(A) Heatmap of relative pre-mRNA levels in KO versus control brains for genes with High-S peaks. Fold changes are computed with a window size of 5 kb per bin.

(Upper right) The fraction of bins in which the Log2 fold change was <�0.6, corresponding to a reduction in raw expression by at least one-third, is shown

(***p < 0.001, Fisher’s exact test).

(B) Heatmap of relative Pol II density in KD versus control Neuro2a for downregulated 176 genes with qualified Sfpq bindings (High-SR 1 and Low-SR 32). Fold

changes are computed with a window size of 5 kb per bin.

(C) Metagene analysis of Pol II ChIP-seq reads for the same gene sets as (B), relative to the TSS and pA with their �50-kb upstream and +50-kb downstream

regions, respectively.

1332 Cell Reports 23, 1326–1341, May 1, 2018



2005; Imamura et al., 2014; Song et al., 2004; Urban et al., 2000).

To see whether gradual downregulation of Pol II and pre-mRNA

is specific for Sfpq-bound pre-mRNAs, we additionally observed

the change of pre-mRNA levels and Pol II densities in 90 down-

regulated genes (FC % 0.33), which did not have qualified Sfpq

bindings. In many of these genes, downregulation of Pol II den-

sity was frequently observed within 100-kb regions from the TSS

and remained low to pA, suggesting promoter-dependent down-

regulation (Figure S5B). These results indicated that Sfpq-KD

caused impairment of transcriptional elongation on target genes,

which would cause a gradual decrease of pre-mRNAs, that

selectively affected the expression of genes longer than 100 kb.

Disruption of Sfpq Interrupted the Transcriptional
Elongation of Long Genes by Decreased
Phosphorylation of the Pol II CTD and Defective
Recruitment of CDK9
In transcription, phosphorylation of Pol II on serine 2 (Ser2) and/

or serine 5 (Ser5) residues in its C-terminal domain (CTD) is

essential for activation (Marshall et al., 1996; O’Brien et al.,

1994; Saunders et al., 2006), where Ser5 is phosphorylated dur-

ing initiation and Ser2 is subsequently phosphorylated during

productive elongation (see reviews Egloff and Murphy, 2008

and Odawara et al., 2011). ChIP followed by qPCR (ChIP-

qPCR) was performed using phospho-specific antibodies, as

we had found that total Pol II density in long genes expressed

in Neuro2a was not sufficiently high for analysis using ChIP-

seq alone. We utilized Cadm1 and Atrnl1 as representative

long genes (>100 kb) because the expression ofDcc andCtnna2

was not sufficiently observable in culture. Prior to ChIP-seq,

analogous CLIP tag analyses in wild-type as well as expression

change in in culture KD experiments confirmed quite similar re-

sults (Figure S4C). In Pol II ChIP-qPCR using a pan Pol II anti-

body, which recognizes both phospho- and non-phospho-Pol

II, total Pol II occupancy of Cadm1 and Atrnl1 was greater at

the TSS than in the gene body for controls (si-Cont), indicating

promoter-proximal pausing. In Sfpq KD (si-Sfpq), total TSS Pol

II accumulation was greater than in controls as we observed in

ChIP-seq (Figures 4B and 4C), but levels were decreased in

the gene body, especially in the 30 region, suggesting the impair-

ment of transcriptional elongation (Figure 5A, Pol II). In Pol II

ChIP-qPCR using phospho-specific antibodies, Sfpq disruption

decreased the abundance of Ser2P (Figure 5A, Ser2P), but it had

no effect on Ser5P (Figure 5A, Ser5P), indicating that productive

elongation required Sfpq while initiation was not affected by

Sfpq disruption. These results suggested that impairment of

Ser2 phosphorylation arrested Pol II elongation, resulting in a

gradual decrease in Pol II distribution across entire gene bodies

(Figure 5A, Pol II, also observed in Figures 4B and 4C) and

subsequent downregulation of long-gene pre-mRNA levels in a

50-to-30 fashion.
To further analyze the role of Sfpq in Ser2 phosphorylation of

the Pol II CTD, we examined interactions of Sfpq with Pol II,

CDK9, and CDK12, as both CDK9 and CDK12 activate Pol II

through phosphorylation of Ser2 in the Pol II CTD (Bartkowiak

et al., 2010; Marshall et al., 1996; O’Brien et al., 1994; Saunders

et al., 2006). We introduced exogenous FLAG-Sfpq or FLAG-

EGFP into Neuro2a cells, and we performed anti-FLAG immuno-

precipitation (IP). Anti-Sfpq antibody precipitated FLAG-Sfpq

with endogenous Sfpq indicating Sfpq-Sfpq interaction (Fig-

ure 5B, aSfpq, lane 4). Precipitated endogenous Sfpq was not

diminished by RNaseA treatment (Figure 5B, aSfpq, lane 5), indi-

cating that Sfpq interacted with itself in an RNA-independent

manner. We similarly detected coIP of Pol II (Figure 5B, a Pol

II, lane 4) as previously described (Emili et al., 2002; Kameoka

et al., 2004; Rosonina et al., 2005). In this context, coIP of

CDK9 was also observed (Figure 5B, aCDK9, lane 4), consistent

with a previous study in which the Sfpq interactome identified

included CDK9 (Yang et al., 2015). We observed higher levels

of precipitated CDK9 than Pol II, suggesting a stronger associa-

tion of Sfpq-CDK9 than Sfpq-Pol II in the elongation complex. As

the Pol II CTD Ser2 is phosphorylated by the P-TEFb complex (a

complex of CDK9 and Cyclin T1), we examined coIP of Cyclin T1

(Figure 5B, aCyclinT1, lane 4), but the level of precipitated Cyclin

T1 was much lower than that of CDK9, supporting the close as-

sociation of Sfpq with CDK9 in the elongation complex. CoIP of

CDK12 was examined but a relevant band in coIP samples could

not be detected, indicating the selective binding of Sfpq (Fig-

ure 5B, aCDK12, lane 4). We also confirmed the interaction

among endogenous Sfpq, CDK9, and Pol II by IP using anti-

Sfpq antibody (Figure 5C). We detected the coIP of Pol II and

CDK9 (Figure 5C, aPol II and aCDK9, lane 4), and we found

that the level of precipitated CDK9 was higher than Pol II, as

we had observed in FLAG-Sfpq IP (Figure 5B).

The observed Sfpq-CDK9 interaction and the impairment of

transcriptional elongation in Sfpq-disrupted cells strongly indi-

cated that Sfpq mediated the interaction of Pol II and CDK9.

To test this hypothesis, we immunoprecipitated protein from

Sfpq-KD Neuro2a cells with an anti-Pol II antibody (Figure 5D).

In control samples (si-Cont), IP of Pol II precipitated Sfpq and

CDK9. In KD conditions (si-Sfpq), we observed reduced

Ser2P-Pol II in input (Figure 5D, aS2P, lane 2), and the amount

of CDK9 precipitated with Pol II was significantly reduced (Fig-

ure 5D, aCDK9, lane 4), indicating Sfpq-dependent interaction

of CDK9 with Pol II. These data present us a model to explain

that Sfpq co-transcriptionally bound on nascent pre-mRNAs fa-

cilitates transcription by serially recruiting CDK9 to the elonga-

tion complex and sustaining the transcriptional elongation of

long-intron-containing genes (summarized in Figure 5E). As for

themechanism of co-transcriptional binding, a recent crystallog-

raphy study indicated that Sfpq binds to a high-affinity site on nu-

cleic acids and then non-specifically binds on target nucleic

acids as a multimer via its coiled-coil interaction motif (Lee

et al., 2015). The Sfpq CLIP showed that prominent High-S-bind-

ing peaks in 50 introns could represent high-affinity-binding sites

that facilitate subsequent multimerization toward the 30 region,
leading to broad Low-S peaks (Figures 2B and 2D). This model

plausibly explains why stringently defined binding peaks (High-

S peaks) alone did not distinguish target pre-mRNAs from non-

target pre-mRNAs.

Sfpq Regulates Long Neuronal Genes Associated with
Neurodegenerative and Psychiatric Disorders
Analyses to characterize the in vivo phenotypes of Sfpqwere un-

dertaken by developing conditional Sfpq-deletion mutant mice

(Figures S1B and S1C). Initially, we found that homozygous
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Figure 5. Disruption of Sfpq Interrupts the Transcriptional Elongation of Long Genes by Decreased Phosphorylation of the Pol II CTD and

Defective Recruitment of CDK9

(A) ChIP-qPCR analysis of Pol II, Ser2, and Ser5 in Cadm1 and Atrnl1 genes. NC indicates the negative control region. Data are presented as the mean ± SEM

(n = 3; *p < 0.05 and **p < 0.01 using Student’s t test). Note the break in the vertical axis for Pol II.

(B) Co-immunoprecipitation (coIP) of FLAG-taggedGFP (F-GFP, lanes 1 and 3) or FLAG-tagged Sfpq (F-Sfpq, lanes 2, 4, and 5). Input samples are in lanes 1 and 2

and FLAG-IP samples are in lanes 3–5. Lane 5 shows samples treated with RNaseA before IP.

(C) CoIP of endogenous Sfpq and their associations with Pol II and CDK9. Input samples are in lanes 1 and 2 and Sfpq-IP samples are in lanes 3 and 4.

(D) CoIP of Pol II in control (si-Cont, lanes 1, 3, and 5) and Sfpq knockdown (si-Sfpq) (lanes 2 and 4). Input samples are in lanes 1 and 2 and Pol II-IP samples are in

lanes 3–5.

(E) Proposedmodel of RBP/transcript-dependent elongation. High-S Sfpq bindings are formed in 50 introns, presumably using high-affinity sites, and subsequent

multimerizations make broad Sfpq Low-S bindings toward 30 introns. This co-transcriptional binding of Sfpq to pre-mRNAs acts as recruiters of CDK9 to

repeatedly facilitate Pol II elongation of long genes. S2P, Ser2P of Pol II CTD.
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Sfpq�/� mutants died before E9.5, indicating early embryonic

lethality that was likely due to the crucial role of Sfpq in develop-

ment (Figure S6A). To investigate the function of Sfpq in nervous

system development, we crossed Sfpq-floxed mice with Nestin-

Cre mice. Although we could not obtain viable homozygous

mutant post-natal mice, however, embryos were obtainable up

through E18.5 (Figure S6B). Homozygous mutant embryos of

E18.5 showed almost normal appearances and body sizes; how-

ever, unusual dark red structures were visible inside their heads

(Figure 6A, white arrowheads) and their eyes were smaller (Fig-

ure 6A, black arrow). Histological analysis of homozygous

mutant brains showed that most dorsal parts, including the cere-

bral cortex, were lost, while the medioventral region positive for

Tuj1 immunostaining remained (Figure 6B, white arrowheads).

These results indicated that Sfpq is essential for brain formation,

especially in the dorsal region, including the cerebral cortex. We

next analyzed brains from E11.5 to E14.5 to study the onset

of developmental brain disorders using homozygous Sfpq

f/f;Nestin-Cre mutant embryos (KO brain) and heterozygous

Sfpq f/+;Nestin-Cre mutant embryos as a control.

Beginning with the longest-developed brains, we identified

gross abnormalities in KO brains at E14.5 (Figure 6C, E14.5); in

coronal sections of E14.5 embryonic brains, the thicknesses of

both the cerebral cortex and the thalamus were severely

reduced in KO brains compared to controls. In a histological

analysis, large numbers of TUNEL-positive cells were observed

in the thalamus and developing cerebrocortical regions of KO

brains. Cleaved caspase-3 immunostaining was also positive

in these regions, indicating that the loss of Sfpq induced

apoptosis in the developing brain by E14.5 (Figure 6C, E14.5

TUNEL/Caspase). E13.5 embryonic brains were next analyzed

to compare phenotypical consequence as well as to investigate

the molecular pathology underlying the reduced thickness

observed in KO brains (Figure 6C, E13.5). In coronal sections,

structural differences between KO and control brains, including

in the shapes of the cerebral cortex and thalamus (Th), were

observed by Nissl staining. We noted a wider third ventricle in

KO brains and structural mismatch when compared with con-

trols at E13.5. TUNEL and cleaved caspase-3 immunopositive

cells were clearly observed in the thalamus, but not in the cortical

region of KO brains, indicating that the loss of Sfpq caused cell

death in the thalamus prior to that in the cerebral cortex (Fig-

ure 6C, E13.5 TUNEL/Caspase). We observed TUNEL- and

cleaved caspase-3-positive cells in BrdU-positive regions.

Because Sfpq expression was detected in cells adjacent to the

apical surface, it is suggested that Sfpq was also expressed in

radial glial cells, and loss of Sfpq induced cell death in neuronal

progenitors.

To further characterize molecular abnormalities in the KO

brain, we studied the proliferation of neuronal progenitor cells

in E13.5 cortices before detectable signs of apoptosis. The pro-

liferation of neuronal progenitor cells was analyzed using BrdU-

pulse labeling. No significant differences were observed with the

number of BrdU-positive dividing cells in the cortical region (Fig-

ure S6C), indicating that Sfpq had no significant effects on

neuronal stem cell proliferation. We next analyzed the expres-

sion profiles of molecular markers in E13.5 using mRNA-seq

(Figure S6D). Neural stem cell markers were expressed at similar

levels in KO and control cortices. No significant differences were

observed in the expression levels of neural progenitor markers

(Sox2, Nestin, and Mash1), cortical arealization markers (Pax6

and Emx2), or glial cell markers (Hes1 and Gfap). With respect

to cortical layer markers, expression levels were relatively un-

changed, although a slight reduction in the expression of the up-

per layer markers Brn2 and Cux1 was observed alongside a

slight increase in the expression of the lower layer marker Tbr1

in KO cortices. Taken together with the results of the transcrip-

tome study performed on E13.5 cerebral cortices and the fact

that abnormalities were not present in subsequent analyses of

E12.5 and E11.5 brains, evidence suggests that the loss of

Sfpq did not significantly impair the proliferation of neuronal

stem cells or their neuronal differentiation but specifically down-

regulated genes longer than 100 kb and triggered apoptosis after

E13.5.

Finally, neuron developmental processes regulated by Sfpq

were investigated. We classified 141 Sfpq-regulated gene

groups based on their major functions, and we identified groups

essential for cell adhesion (n = 17 genes), axonal guidance

(n = 15), synaptic proteins or ion channels (n = 17), and mem-

brane proteins (including receptors, transporters, and glycopro-

teins) (n = 33), in addition to transcription factors (n = 20), RBPs

(n = 8), and others (Figure 7A; Table S1). Additionally, gene

ontology analyses of the 141 Sfpq-regulated genes concurred

potential regulons (functional clusters of genes) highly enriched

in nervous system development, specifically in axonal guidance,

and also in dendrites and neuronal projections (Figure 7B). These

annotations indicate an essential role of Sfpq in gene expression

during neurophysiological development, suggesting a relation-

ship between Sfpq dysfunction and neurodegenerative and

neuropsychiatric disorders.

Genetic studies of ASD and schizophrenia (Geschwind, 2011;

Veltman and Brunner, 2012) have revealed that their candidate

genes are exceptionally long and encode synaptic scaffolding

proteins, receptors, and cell adhesion molecules (Bourgeron,

2015). Other studies of ASD putatively assigned Sfpq as a caus-

ative gene (Chang et al., 2015; O’Roak et al., 2012). Given these

Figure 6. Sfpq KO Causes Apoptosis in Maturating Neurons

(A) E18.5 Sfpq f/f; Nestin-Cre and Sfpq f/+; Nestin-Cre whole embryos. ‘‘f(Dneo)’’ is designated as ‘‘f.’’ White arrowheads indicate abnormal brain tissue

transparently visible from the surface, and the black arrow points to an example of the small eyes observed in Sfpq f/f; Nestin-Cre embryos. Scale bar, 5.0 mm.

(B) Coronal sections of head regions from E18.5 Sfpq f/f; Nestin-Cre and Sfpq f/+; Nestin-Cre embryos. Nissl staining of sections (upper panels) and adjacent

section immunostained for Tuj1 (lower panels) are shown. White arrowheads indicate the remaining medioventral regions positive for Tuj1 immunostaining. Scale

bar, 1.0 mm.

(C) Coronal sections of the cranial regions of E14.5 embryos (Sfpq f/f Nestin-Cre and Sfpq f/+;Nestin-Cre) and analogous E13.5 embryos. Nissl staining and

adjacent sections immunostained for BrdU (green) and Tuj1 (red) are shown. Scale bar, 500 mm. Boxed areas indicated in BrdU/Tuj1 are shown with higher

magnification in respective TUNEL and Caspase stainings. For TUNEL, Caspase, and DAPI, scale bar represents 100 mm. Ctx, cerebral cortex; Th, thalamus.
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findings, we further compared the 141 Sfpq-regulated genes to

the high-confidence causative gene list for autism and schizo-

phrenia using the Simons Foundation and Autism Research

Initiative (SFARI) database (https://gene.sfari.org) (Banerjee-

Basu and Packer, 2010) and the SchizophreniaGene (SZGene)

database of the Schizophrenia Research Forum (http://www.

szgene.org/) (Allen et al., 2008); 27 and 14 genes were included

in the SFARI and SZGene databases, respectively (Figure 7A;

Table S1), and their enrichment was significantly higher in

SFARI (p = 1.41E�09) and SZGene (p = 4.14E�03) relative to

all expressed genes. Moreover, Sfpq-regulated genes have

been associated with ALS, spinocerebellar ataxia, epilepsy,

Alzheimer’s disease, bipolar disorder, intellectual disability,

and some brain tumors (MalaCards; Rappaport et al., 2017)

(Table S1).

DISCUSSION

In transcription, Ser5 and Ser2 of Pol II CTD are sequentially

phosphorylated during productive elongation (see the reviews

Egloff and Murphy, 2008 and Odawara et al., 2011). So far,

how CDKs, activators of Pol II CTD by phosphorylation, are re-

cruited locally to elongation complexes has remained unclear.

Accordingly, we found that Sfpq is required for the recruitment

of CDK9 to phosphorylate Ser2 of the Pol II CTD (schematic in

Figure 5E). This model can clearly explain why the loss of Sfpq

decreased the Pol II density on gene bodies in a 50-to-30 fashion
and arrested the transcription of pre-mRNAs from long genes.

Requirement of RBPs for transcriptional regulation had been

demonstrated such that SRSF2 bound on promoter-associated

nascent mRNAs is essential for the Pol II transition from pro-

moter-proximal pausing to the elongation phase through an

interaction with P-TEFb and the phosphorylation of Ser2 of the

Pol II CTD (Ji et al., 2013; Lin et al., 2008). We found that Sfpq fa-

cilitates transcriptional elongation of long genes using a mecha-

nism similar to SRSF2. The SRSF2 studies and the work herein

Figure 7. Sfpq Regulates Developmentally

Essential Genes Associated with Neurode-

velopmental and Neuropsychiatric Disor-

ders

(A) The data show the 141 Sfpq regulatory target

genes organized by function such that each gene

was assigned to a unique ontology. Each ontology

was assessed for overlap with genes ascribed to

ASD/schizophrenia.

(B) The data show the significant process,

component, and function ontologies associated

with the same set of qualified genes.

advances mechanistic insight into the

molecular mechanisms of pausing

release and subsequent activation of

Pol II CTD for elongation by RBPs,

respectively. The RBPs FUS and

TDP-43 have also been shown to co-

transcriptionally bind to long genes

(Cortese et al., 2014), and their disruption

causes the downregulation of long genes in the adult brain

(Lagier-Tourenne et al., 2012; Polymenidou et al., 2011). Our

data support the conclusion of these previous studies that

RBPs can be involved in transcriptional regulation in a gene

type- or cell type-specific manner.

We demonstrated co-transcriptional binding of Sfpq to

nascent pre-mRNAs and Sfpq-Sfpq interaction, concordant

with a study showing self-multimerization of Sfpq in gene regu-

lation (Lee et al., 2015). These results suggest the possibility

that Sfpqmultimers act like histones for RNA in long introns, pre-

sumably with other intron-binding RBPs, and facilitate transcrip-

tional elongation through a Sfpq-CDK9-Pol II interaction, as well

as activate mRNA processing and stabilize pre-mRNA. So far,

Sfpq has been shown to directly bind to the Pol II CTD and facil-

itate the splicing (Emili et al., 2002; Kameoka et al., 2004; Roso-

nina et al., 2005), 30 end processing (Lutz et al., 1998; O’Connor

et al., 1997), transcriptional termination (Kaneko et al., 2007), and

nuclear retention (Chen and Carmichael, 2009), suggesting the

function of Sfpq in co-transcriptional mRNA processing (Bentley,

2014; Hsin and Manley, 2012). These observations have brought

about the consensus that the Pol II CTD acts as a recruiter of

several RBPs, resulting in the coupling of transcription and

pre-mRNA processing (Fong and Zhou, 2001; Muñoz et al.,

2010; Singh and Cooper, 2012), as well as subsequent enhance-

ment of transcriptional elongation with appropriate termination

(Zhou et al., 2012). However, it is not well known whether RNA

processing machineries also influence transcription. In this

study, we demonstrated that Sfpq on nascent pre-mRNAs could

act as a recruiter of CDK9 to an elongation complex and sustain

transcriptional elongation, suggesting that RBPs have a more

central role as coordinators of transcription and pre-mRNA pro-

cessing in contrast to existing proposed peripheral roles of RBPs

only in post-transcriptional mRNA regulation.

Sfpqwas initially cloned as a splicing factor; we analyzed alter-

native splicing changes in KO brains, where we found limited

splicing change (Table S2), and we also observed that Sfpq
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binding was not significantly enriched around the alternative

exons in KO brains (Table S3). Considering that Sfpq-regulated

genes contain several RBPs, it is unlikely that Sfpq disruption

directly caused alternative splicing changes observed in KO em-

bryonic brains, but there still remains a possibility that these

splicing changes affected the in vivo phenotype. A recent study

showed that Sfpq directly binds to the 30 UTR of mRNAs and

modulates microRNA (miRNA) targeting of mRNAs with long

30 UTRs (Bottini et al., 2017). Thus, we analyzed our RNA-seq

data with a focus on the 30 UTR bindings of Sfpq. However, in

KO brains, we could not find a clear relationship with specific up-

regulation of genes that have Sfpq bindings to their 30 UTR (Fig-

ure S7A), nor was there an obvious connection between 30 UTR
length and expression change in genes for those with Sfpq bind-

ings (Figure S7B). Our observation indicates that amajor function

of Sfpq in developing brains is the regulation of transcriptional

elongation.

A recent study has identified that co-transcriptional spliceo-

some assembly by Prp5 could act as a transcriptional elongation

checkpoint (Chathoth et al., 2014). In addition, inhibition of

splicing by spliceostatin A (SSA) for U2 small nuclear ribonucleo-

protein (snRNP) or by an antisense oligonucleotide targeting U2

snRNA decreased the Ser2 phosphorylation of Pol II in the CTD,

and it caused gene-specific 30 end downregulation of pre-

mRNAs in genes longer than 15 kb in length (Koga et al., 2014,

2015). From these observations, splicing factors and spliceo-

some formation are an essential activating component of Pol II

via Ser2 phosphorylation during transcriptional elongation of

average-sized genes that also could act as the checkpoint for

normal transcription and co-transcriptional splicing regulation.

Thus, it indicated that extended introns in long genes require a

splicing-independent mechanism for sustaining their transcrip-

tion. It has been shown that the length of the first intron in eukary-

otic genes is significantly longer than all downstream introns

within a gene (Bradnam and Korf, 2008). Therefore, it can be sug-

gested that transcriptional elongation tends to stall within their 50

regions beyond 100 kb for long genes possessing an extended

first intron when Sfpq is disrupted. In support of this idea, the

downregulation of pre-mRNAs after Sfpq disruption was

observed beyond the 100-kb intra-intron position in typical

long genes (Dcc,Ctnna2 in Figure 3B, andCadm1 in Figure S4C);

when genes were exceptionally proceeded by multiple short in-

trons in their 50 regions, prior to extended introns, disruption was

even further downstream, as observed for Atrnl1 (Figure S4C).

It has been proposed that RBPs comprehensively regulate

functional clusters of genes referred to as regulons through spe-

cific bindings to target mRNAs by utilizing RNA-binding domains

and consensus sequences (Cosker et al., 2016; Keene, 2007). In

the case of Sfpq, 6.1% (135/2,197) of expressed long genes

more than 100 kb were specifically regulated by Sfpq, and regu-

latory targets are highly enriched in genes essential for neuronal

development. These data indicate that Sfpq does not aberrantly

sustain all long genes but rather specifically regulates genes

essential for neuronal development as regulons. In addition to

RBPs, a recent study showed that U1 snRNP suppresses

premature cleavage and polyadenylation and is selectively

required for sustaining long-distance transcriptional elongation

of extended introns in large genes, which has been termed tele-

scripting (Oh et al., 2017). They proposed that the relative

amount of U1 could be the transcription elongation checkpoint

criterion, in which sufficient U1 with other factors allows long-

gene expression in more tissue-specific and differentiated cells,

such as differentiating neurons. These observations indicate that

long genes require specific regulation for their full gene length

transcription, and it is interesting that several RNA-binding mol-

ecules of RBPs/snRNP regulate different gene sets through their

binding specificities.

Genetics studies have identified hundreds of risk genes asso-

ciated with autism and schizophrenia (Berg and Geschwind,

2012; Geschwind, 2011; Iossifov et al., 2012; Levy et al., 2011;

Sanders et al., 2012; Veltman and Brunner, 2012), which encode

synaptic scaffolding proteins, receptors, and cell adhesion mol-

ecules (Bourgeron, 2015), and the candidate genes for many are

exceptionally long. Importantly, many of these genes were found

to overlap with Sfpq target genes in our study. Considering data-

bases that catalog genes associated with neuropsychiatric dis-

eases, we found that the average gene size in SFARI is

217.3 kb (King et al., 2013) and in SZGene is 112.0 kb (Sun

et al., 2009) (respectively, 46.5% and 23.7% of listed genes

are longer than 100 kb), whereas the average gene size of all pro-

tein-coding genes in build GRCh38.81 of the human genome is

62.7 kb, with 83% of genes shorter than 100 kb. This suggests

that the uncommonness of long genes may make them suscep-

tible to impairment, which ultimately leads to disease states. In

fact, genetics studies have identified mutations of Sfpq in a large

collection of de novo mutations associated with ASDs (Chang

et al., 2015; O’Roak et al., 2012). In addition, nuclear depletion

of Sfpq was observed in neurons and astrocytes in brain areas

affected by Alzheimer’s disease and Pick’s disease (Ke et al.,

2012). Thus, the dysfunction or dysregulation of Sfpq could

underlie a variety of neurological diseases and psychiatric

disorders. Additional analyses are required to further delineate

interacting molecules and mechanisms for long-gene transcript-

opathy, including a focused study on the localization and

interaction among Sfpq, CDK9, and phospho-specific Pol II,

which will lead to the enrichment of our understanding of the

global structure of transcription machinery and the molecular

mechanisms and pathological consequences of long-gene

transcriptopathies.

EXPERIMENTAL PROCEDURES

Mice

Conditional KOmice for Sfpqwere generated (Figures S1B and S1C). Detailed

information is given in the Supplemental Experimental Procedures. All animal

care and experiments were conducted in accordance with the NIH Guide for

the Care and Use of Laboratory Animals, and all experimental protocols

were approved by the Institutional Animal Care and Use Committee of the

Kyoto University Graduate School of Medicine and the RIKEN Kobe Branch.

CLIP-Seq

CLIP was performed as described elsewhere (Licatalosi et al., 2008; Ule et al.,

2003; Van Nostrand et al., 2016), with some modifications. An anti-Sfpq anti-

body and a normal IgG control antibody were used. CLIP-seq libraries were

generated directly from isolated RNAs using the Ion Total RNA-Seq Kit (Life

Technologies). High-throughput sequencing (HTS) was performed using the

Ion Proton System. Detailed information is given in the Supplemental Experi-

mental Procedures.
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Chromatin Immunoprecipitation of RNA Pol II, S2P, and S5P for

ChIP-qPCR

For ChIP using Pol II antibodies CMA601, CMA602, and CMA603 (Stasevich

et al., 2014), nuclear fraction was extracted using a truChIP High Cell Chro-

matin Sharing Kit with SDS Shearing Buffer (Covaris, MA, USA), and it was

sonicated using a Covaris S220. Immunoprecipitation was performed as

described previously (Blecher-Gonen et al., 2013; Kimura et al., 2008). ChIP

samples were analyzed by qPCR. Primers use in qPCR and detailed informa-

tion are given in the Supplemental Experimental Procedures.

Bioinformatic Analysis for CLIP

Peak calling was performed according to the enhanced CLIP (eCLIP) method

(Van Nostrand et al., 2016). After peak calling, we checked the results from

‘‘Peak_input_normalization_wrapper.pl’’ included in eCLIP, and we defined

peaks for which p values < 0.01 and the fold change was above SMInput R

2 in both Sfpq IP Rep-1 and Sfpq IP Rep-2 (IP-1 and IP-2) as highly stringent

(High-S) peaks. Detailed information is given in the Supplemental Experimental

Procedures.

Identification of Consensus Sequences for Sfpq-Binding Sites

We employed MEME to identify the consensus sequences of Sfpq-binding

sites in the target pre-mRNAs (Bailey et al., 2009). Detailed information is given

in the Supplemental Experimental Procedures.

DATA AND SOFTWARE AVAILABILITY

The accession number for all data reported in this paper is GEO: GSE60246.

Lists of HTS data and related information are provided in the Supplemental

Experimental Procedures. For calculating reads per kilo base per million map-

ped reads (RPKM) and transcript per million (TPM) and for drawing plots, in-

house scripts were used. All data and scripts not included here are available

from the corresponding author upon reasonable request.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and three tables and can be found with this article online at

https://doi.org/10.1016/j.celrep.2018.03.141.

ACKNOWLEDGMENTS

Wewould like to thank the Kyoto University Medical Research Support Center,

its Instituteof LaboratoryAnimals,and itsRadioisotopeResearchCenter for their

technical support. We also thank A. Hagiwara, A. Fujishita, M. Nakagawa,

K.Wanezaki,K.Kusumoto,A.Utsumi, andY.Watanabe for technical assistance.

This work was supported in part by Grants-in-Aid for Scientific Research from

the Ministry of Education, Culture, Sports, Science, and Technology of

Japan (MEXT, JSPS KAKENHI 19500269, 25500288, 21249013, 15H05721)

(to M. Hagiwara, and A.T.), Innovative Cell Biology by Innovating Technology

(Cell Innovation) (toM.Hagiwara,K.O., andA.T.), aCoreResearch forEvolutional

ScienceandTechnology (CREST)grant fromtheJapanScienceandTechnology

Agency (JST) (to M. Hagiwara), a grant from the Japan Agency for Medical

Research andDevelopment (AMED) (toM.Hagiwara), the AsianCOREProgram

of JSPS (to M. Hagiwara), iCeMS Cross-Disciplinary Research Promotion Proj-

ect of Kyoto University (to A.T.), and the FujiwaraMemorial Foundation (to A.T.).

AUTHOR CONTRIBUTIONS

A.T. conceived and designed the project, performed the experiments, andwrote

the manuscript. K.I. performed bioinformatic analysis. T.T. performed the Pol II

ChIP-seq experiments. M.I. and K.O. performed the initial in vivo transcriptome

experiment. M. Hosokawa assisted with the wet experiments. M.D. performed

RNA-seq and ChIP-seq. K.N. performed the initial individual-nucleotide resolu-

tion CLIP (iCLIP) experiment. H. Kimura generated Pol II antibodies. T.A. and

H. Kiyonari generated Sfpq conditional KO mice. J.B.B. assisted in writing the

manuscript. M. Hagiwara conceived the project and prepared the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: December 1, 2017

Revised: January 19, 2018

Accepted: March 30, 2018

Published: May 1, 2018

REFERENCES

Allen, N.C., Bagade, S., McQueen, M.B., Ioannidis, J.P., Kavvoura, F.K.,

Khoury, M.J., Tanzi, R.E., and Bertram, L. (2008). Systematic meta-analyses

and field synopsis of genetic association studies in schizophrenia: the SzGene

database. Nat. Genet. 40, 827–834.

Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren,

J., Li, W.W., and Noble, W.S. (2009). MEME SUITE: tools for motif discovery

and searching. Nucleic Acids Res. 37, W202–W208.

Banerjee-Basu, S., and Packer, A. (2010). SFARI Gene: an evolving database

for the autism research community. Dis. Model. Mech. 3, 133–135.

Bartkowiak, B., Liu, P., Phatnani, H.P., Fuda, N.J., Cooper, J.J., Price, D.H.,

Adelman, K., Lis, J.T., and Greenleaf, A.L. (2010). CDK12 is a transcription

elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1.

Genes Dev. 24, 2303–2316.

Bentley, D.L. (2014). Coupling mRNA processing with transcription in time and

space. Nat. Rev. Genet. 15, 163–175.

Berg, J.M., and Geschwind, D.H. (2012). Autism genetics: searching for spec-

ificity and convergence. Genome Biol. 13, 247.

Blecher-Gonen, R., Barnett-Itzhaki, Z., Jaitin, D., Amann-Zalcenstein, D.,

Lara-Astiaso, D., and Amit, I. (2013). High-throughput chromatin immunopre-

cipitation for genome-wide mapping of in vivo protein-DNA interactions and

epigenomic states. Nat. Protoc. 8, 539–554.

Bottini, S., Hamouda-Tekaya, N., Mategot, R., Zaragosi, L.E., Audebert, S., Pi-

sano, S., Grandjean, V., Mauduit, C., Benahmed, M., Barbry, P., et al. (2017).

Post-transcriptional gene silencing mediated by microRNAs is controlled by

nucleoplasmic Sfpq. Nat. Commun. 8, 1189.

Bourgeron, T. (2015). From the genetic architecture to synaptic plasticity in

autism spectrum disorder. Nat. Rev. Neurosci. 16, 551–563.

Bradnam, K.R., and Korf, I. (2008). Longer first introns are a general property of

eukaryotic gene structure. PLoS ONE 3, e3093.
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J. (2012). Tau-mediated nuclear depletion and cytoplasmic accumulation of

SFPQ in Alzheimer’s and Pick’s disease. PLoS ONE 7, e35678.

Keene, J.D. (2007). RNA regulons: coordination of post-transcriptional events.

Nat. Rev. Genet. 8, 533–543.

Kimura, H., Hayashi-Takanaka, Y., Goto, Y., Takizawa, N., and Nozaki, N.

(2008). The organization of histone H3 modifications as revealed by a panel

of specific monoclonal antibodies. Cell Struct. Funct. 33, 61–73.

King, I.F., Yandava, C.N., Mabb, A.M., Hsiao, J.S., Huang, H.S., Pearson, B.L.,

Calabrese, J.M., Starmer, J., Parker, J.S., Magnuson, T., et al. (2013). Topoi-

somerases facilitate transcription of long genes linked to autism. Nature 501,

58–62.

Koga, M., Satoh, T., Takasaki, I., Kawamura, Y., Yoshida, M., and Kaida, D.

(2014). U2 snRNP is required for expression of the 30 end of genes. PLoS

ONE 9, e98015.

Koga, M., Hayashi, M., and Kaida, D. (2015). Splicing inhibition decreases

phosphorylation level of Ser2 in Pol II CTD. Nucleic Acids Res. 43, 8258–8267.

Lagier-Tourenne, C., Polymenidou, M., Hutt, K.R., Vu, A.Q., Baughn, M.,

Huelga, S.C., Clutario, K.M., Ling, S.C., Liang, T.Y., Mazur, C., et al. (2012).

Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in pro-

cessing long pre-mRNAs. Nat. Neurosci. 15, 1488–1497.

Lee, M., Sadowska, A., Bekere, I., Ho, D., Gully, B.S., Lu, Y., Iyer, K.S., Tre-

whella, J., Fox, A.H., and Bond, C.S. (2015). The structure of human SFPQ re-

veals a coiled-coil mediated polymer essential for functional aggregation in

gene regulation. Nucleic Acids Res. 43, 3826–3840.

Levy, D., Ronemus, M., Yamrom, B., Lee, Y.H., Leotta, A., Kendall, J., Marks,

S., Lakshmi, B., Pai, D., Ye, K., et al. (2011). Rare de novo and transmitted

copy-number variation in autistic spectrum disorders. Neuron 70, 886–897.

Licatalosi, D.D., Mele, A., Fak, J.J., Ule, J., Kayikci, M., Chi, S.W., Clark, T.A.,

Schweitzer, A.C., Blume, J.E., Wang, X., et al. (2008). HITS-CLIP yields

genome-wide insights into brain alternative RNA processing. Nature 456,

464–469.

Lin, S., Coutinho-Mansfield, G., Wang, D., Pandit, S., and Fu, X.D. (2008). The

splicing factor SC35 has an active role in transcriptional elongation. Nat.

Struct. Mol. Biol. 15, 819–826.

Lowery, L.A., Rubin, J., and Sive, H. (2007). Whitesnake/sfpq is required for

cell survival and neuronal development in the zebrafish. Dev. Dyn. 236,

1347–1357.

Lutz, C.S., Cooke, C., O’Connor, J.P., Kobayashi, R., and Alwine, J.C. (1998).

The snRNP-free U1A (SF-A) complex(es): identification of the largest subunit

as PSF, the polypyrimidine-tract binding protein-associated splicing factor.

RNA 4, 1493–1499.

Marshall, N.F., Peng, J., Xie, Z., and Price, D.H. (1996). Control of RNA poly-

merase II elongation potential by a novel carboxyl-terminal domain kinase.

J. Biol. Chem. 271, 27176–27183.
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