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Introduction

Each wood species has its own anatomical features, such 
as cell types, shapes, and arrangements as well as the pit-
ting among them, which allow the identification of wood 
species [1, 2]. In general, the micron-order structure is 
observed by optical or electron microscopy after preparing 
thin slices or small pieces from wood block samples. This 
is the most reliable method for wood identification, but the 
sample preparation process involves many steps, which 
can only be conducted by specialists with sufficient knowl-
edge and experience. Thus, in industry and trade, where it 
is important to check whether the correct wood species are 
used or in circulation, a novel method should be developed 
that can be employed readily and quickly. Another problem 
of the conventional method is that it damages wood sam-
ples. Therefore, due to the increasing demand to protect 
and understand culturally important properties, establishing 
a non-destructive method is also an important issue.

A possible solution to these problems is image recogni-
tion, which can be used to quantify characteristic features 
based on image data to identify or find specific compo-
nents in an image. Image recognition has been developed 
in various fields, such as automated face-recognition and 
fingerprint authentication. Images of wood from differ-
ent species have specific features on a macroscopic scale, 
as well as micron-order structures, where wood grain is an 
important factor when selecting wood species. These selec-
tions are only subjective visual judgments and they lack 
scientific evidence, but they suggest that image recognition 
using macroscopic wood images could be employed for 
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wood identification. In fact, many studies of wood image 
recognition have been conducted in the last decade [3–20], 
which mainly focused on protecting tropical timber in trad-
ing locations.

Recently, we constructed an image recognition system 
based on low-resolution X-ray computed tomography (CT) 
data [21]. The targets used for identification comprised 
eight wood species that are used frequently for produc-
ing Japanese wooden sculptures, including softwood, and 
diffuse-porous and ring-porous hardwood. The system 
comprises a basic texture feature method, gray-level co-
occurrence matrix (GLCM) [22], and a k-nearest neighbors 
algorithm as a classifier. This system is simple and requires 
many improvements, but the results indicated that it could 
identify wood species almost perfectly. We plan to develop 
this system further and extend its application to other areas, 
especially important cultural properties.

In the present study, our target was the Tripitaka Kore-
ana, which is designated as a national treasure in Korea. 
Tripitaka Koreana comprises a collection of Buddhist texts 
carved in the thirteenth century, which comprise more than 
80,000 wooden printing blocks, known in the Korean lan-
guage as “Palman Daejanggyeong”. The wood species or 
taxa used to make the tripitaka were investigated by Park 
and Kang [23], who identified 244 pieces among small 
fragments based on microscopic observations and found 
that all the fragments from the main bodies of wooden 
plates were diffuse-porous hardwood. The most frequent 
taxon was Cerusus, which accounted for more than half of 
the total, followed by Pyrus, Betula, Cornus, Acer, Machi-
lus, Salix, and Daphniphyllum. To analyze these tripitaka 
in a non-destructive manner, we should obtain CT data or 
observe transverse sections, which will be exposed when 
removing edge members that cover the edge of blocks. In 
both cases, we need to verify whether images with simi-
lar diffuse-porous patterns could be identified correctly 
using an image recognition system. Therefore, we decided 
to use stereograms of the transverse sections in the present 
study, although a stereomicroscopic observation needs 
destructive sample preparation procedures. As we assume 
the same degree of resolution of the multipurpose mod-
ern X-ray CT machine, the texture analysis presented here 
will be applicable as a next step to the CT data, which is 
non-destructive.

In the present study, we employed the same GLCM 
method used in our previous study, but we also made 
several improvements. First, the images were subjected 
to pretreatment by rotation and filtering. An automated 
rotation process was conducted to align the radial direc-
tions of the wood even when the images were acquired 
randomly. The filtering process used a simple average 
filter (AF) or median filter (MF) for noise reduction and 
to enhance the characteristics of the images. Second, the 

classification method was modified according to Wnd-
chrm, which is an open source utility for biological 
image analysis [24, 25]. In this utility, a weighted neigh-
bor distance (WND) algorithm can evaluate the features 
calculated from images, thereby allowing efficient clas-
sification by giving greater weight to more effective fea-
tures. We applied this modified system to cross-sectional 
stereograms of the six diffuse-porous wood species and 
predicted the accuracy of identification. Finally, we con-
sidered the relationships between the texture features and 
anatomical features to obtain a deep understanding of the 
image recognition technique, rather than simply using it 
as a tool for identification.

Methods

Stereomicroscopy

Six wood species were used in the present study, i.e., 
Acer pictum, Betula costata, Cornus controversa, 
Cerasus jamasakura, Machilus thunbergi, and Pyrus 
pyrifolia. Wood blocks of A. pictum, C. controversa, and 
P. pyrifolia were supplied from a collection of the Korea 
Forestry Promotion Institute, and those of B. costata, 
C. jamasakura, and M. thunbergi were provided by the 
Xylarium in Kyoto University (KYOw). The wood blocks 
with roughly 1 cm × 1 cm × 1 cm were softened by boil-
ing in water. The flattened transverse surfaces were cut 
by disposal blades (A35, FEATHER Safety Razor, Japan) 
equipped with a sliding microtome (TU-213, Yamato 
Kohki Industrial, Japan). The surfaces were observed 
using a stereomicroscope (Leica MZ APO, Leica 
Microsystems, Germany) equipped with a CCD camera 
(DP72, Olympus, Japan). The images were captured at 
10× magnification and acquired as 1360 × 1024 pixels. 
The resolution of the acquired images was 6.3 µm/pixel. 
Finally, 40 images for each species were collected, i.e., 
240 images in total, and used as an original data set for 
identification. A representative image from the original 
data set is shown in Fig. 1a.

Computational approaches

The original data set was analyzed by the image recogni-
tion system in three steps, i.e., pretreatment, feature extrac-
tion, and classification, as described in detail in the follow-
ing. All the image analyses and statistical analyses were 
performed using R version 3.1.1 [26] with the packages 
“tiff”, [27] “stats”, and “wvtool” [28], which we developed 
in our laboratory.
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Pretreatments

Rotation and cropping

The rotation process was performed automatically based 
on the power spectra obtained using the fast Fourier 
transform (FFT) algorithm. Each original image (Fig. 1a) 
was converted into 8-bit gray scale and subjected to FFT, 
where a strong streak was derived from the rays (Fig. 1b). 

The azimuthal angle of the streak was calculated from the 
top peak obtained by azimuthal integration of the power 
spectrum (Fig. 1c). The radius range for integration was 
set as 0.1–0.15 of the maximum radius, which was deter-
mined empirically. The image was then rotated according 
to the calculated angle, before cropping 600 × 600 pix-
els from the center of the image. Representative images 
obtained for each species using this method are shown in 
Fig. 2.

Fig. 1  a Original stereogram of C. jamasakura acquired at 10× mag-
nification with 1360 × 1024 pixels. b Power spectrum calculated from 
a where the arrow indicates the direction of the azimuthal angle. c 

Plot of azimuthal integration obtained from b. The top of the peak, 
which corresponded to the streak in b, was determined as 117°

Fig. 2  Typical images for each species after auto-rotation and cropping with 600 × 600 pixels. Ap: Acer pictum, Bc: Betula costata, Cc: Cornus 
controversa, Cj: Cerasus jamasakura, Mt: Machilus thunbergi, and Pp: Pyrus pyrifolia



325J Wood Sci (2017) 63:322–330 

1 3

Filtering and resolution reduction

Filtering or resolution reduction processes were performed 
after rotation and cropping (Fig. 3). Two simple filters were 
applied, i.e., AF and MF. The AF was used for smoothing 
image (Fig. 3b), whereas the MF was effective for remov-
ing spike noise while preserving edges (Fig. 3c). The filters 
were used with different radii of r = 1, 3, and 5.

Feature extraction

The texture features were calculated based on the images, as 
described previously [21]. GLCMs were constructed from 
four directions (0°, 45°, 90°, and 135°) based on the dis-
tance between pixels, i.e., (d) = 1, 3, or 5, and the GLCM of 
their average in an image. Fifteen texture features proposed 
by Haralick et al. [22] and Albregtsen [29] were calculated 
for each GLCM. The texture features used were as follows: 
angular second moment (ASM), contrast, inverse difference 
moment (IDM), entropy, correlation, variance, sum aver-
age, sum entropy, difference entropy, difference variance, 
sum variance, f12, f13, shade, and prominence. In addition, 
the ranges of the 15 features were calculated in the four 
directions. Finally, there were six sets of 15 features (“0°”, 
“45°”, “90°”, “135°”, “average”, and “range”), where each 
and their combinations (“0° + 90°”, “0° + 45° + 90°”, “aver-
age + range”) were used for classification.

Classification and principal component analysis (PCA)

The WND classification was performed as described by 
Orlov et  al. [24]. The weight Wf of feature f is a simple 
Fisher discriminant score (FDS), which is given as follows:

where N is the number of classes, Tf  is the mean of fea-
ture f, Tf ,c is the mean of feature f in class c, and �2

f ,c is the 
variance of feature f within class c. Using the weight Wf, 

Wf =

∑N

c=1

�
Tf − Tf ,c

�2

∑N

c=1
�
2
f ,c

×
N

N − 1
,

the weighted distance between an object with feature vector 
x and class c is defined as

where Tc is the training set for class c, t is a feature vec-
tor of the sample in the training set, |x| is the length of fea-
ture vector x, and |Tc| is the number of samples in the train-
ing set in class c. The exponent p was set to −5 according 
to Orlov et  al. [24] in the present study, so samples with 
small distances were emphasized more strongly than those 
with large distances.

The WND algorithm was used together with leave-one-
out cross validation (LOOCV) to determine the predicted 
accuracies. In the LOOCV method, one object is drawn 
from the entire data set as a test set and classified according 
to a model built using the remaining objects. This operation 
was applied repeatedly to all of the objects in the data set, 
and the predicted accuracy was calculated as the average 
accuracy of each operation.

PCA was performed using the “stats” package to sum-
marize the information obtained.

Results and discussion

Arrangement of anisotropic images in the same 
direction

An auto-rotation system was used to arrange the rays in 
images in the same direction. The wood had clear anisot-
ropy, so the features calculated from the GLCMs of the 
four angles were not constant, even when they were cal-
culated from the same images but with different arrange-
ments (Fig. 4). Moreover, although each image was rotated 
by θ = 45°, the features at “0°” and “90°” did not yield the 
same values as those for “45°” and “135°” at θ = 0°. This is 
because the actual distance between pixels i and j with dis-
tance d differs according to whether vertical angles (“0°” 
and “90°”) or diagonal angles (“45°” and “135°”) are used. 

d(x, c) =

∑
t∈Tc

�∑�x�
f=1

Wf
2
�
xf − tf

�2�p

��Tc��
,

Fig. 3  Comparison of images 
before and after filtering. The 
images are shown a without any 
filtering process, and b, c after 
filtering with the average and 
median filters with r = 1  (AFr = 1 
and  MFr = 1), respectively. To 
clarify the differences, the 
images are enlargements of the 
bottom left area, as shown in 
Fig. 2, Cj
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Thus, the “range” of the four features was also changed by 
rotation, whereas the “average” remained almost constant. 
The basic GLCM method is not invariant to rotation even 
when using “average + range”, as shown in a previous study 
[30].

The features could be obtained without any loss of angle 
information using the data set arranged in the same direc-
tion. The accuracy calculated from the individual “0°”, 
“45°”, and “90°” feature sets, and their combinations, 
i.e.,“0° + 90°” and “0° + 45° + 90°”, were compared with 
the “average + range” (Fig. 5). The “135°” feature set was 
not used, because it was basically the same as the “45°” 
feature set due to its symmetry about the radial direction. 
The results showed that the “0° + 90°” and “0° + 45° + 90°” 
feature sets yielded higher accuracies than “0°”, “45°”, 
“90°”, and “average + range”. Thus, if the images in the 
data set could be prepared with the same arrangement, the 
anisotropic nature of wood should facilitate efficient feature 
extraction.

The results also indicated that the parameter d, i.e., the 
distance between pixels, affected the accuracy. The opti-
mum d value was determined using the filtering process, as 
described in the following section.

Selecting the optimum filtering process and distance 
between pixels

The accuracies calculated from the data set with various fil-
tering processes and d values are shown in Fig. 6. Accord-
ing to the results in Fig.  5, the “0° + 90°” feature set was 
used for the calculations.

Fig. 4  Changes in the texture 
features, angular second 
moment (ASM), and contrast, 
calculated from the same image 
but with different arrange-
ments. The image used for this 
calculation was A. pictum (Ap) 
in Fig. 2 and d = 1
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Using the original data set without filtering, the accu-
racy increased as the d value increased from 1 to 5, but it 
decreased with higher d values. With the  AFr = 1 filter, the 
results were almost the same as the original results, but 
there was some improvement at d = 1. By contrast, when 
the  MFr = 1 filter was applied, the accuracy was also high-
est at d = 1 and 3, as well as at d = 5. Both filters had lower 
accuracy with higher r values of r = 3 and 5.

The optimum d value was 5, which corresponds to 
31.5  µm. Structures smaller than this size, mainly fibers, 
could not be detected clearly in the stereograms, so the 
information in these parts was recognized as noise. AF 
and MF were both effective at removing this noise. A filter 
size of r = 1 gave higher accuracy than larger sizes, and MF 
was better than AF, thereby indicating that the noise had a 
spike-like pattern. However, a value above d = 5 exceeded 
the size of vessels and the distances between vessels in P. 
pyrifolia, so the appropriate features in P. pyrifolia could 
not be captured. Indeed, the misclassification of P. pyrifolia 
increased when larger d values were used (data not shown).

The accuracy reached 100% under several conditions. 
The number of images was limited, but the results sug-
gested that the wood species used to produce the Tripi-
taka Koreana could be identified correctly using digital 
images of transverse sections. Moreover, identification also 
appeared to be possible at lower resolution, because d = 5 

yielded the best results, thereby suggesting the potential 
application of X-ray CT data for identification.

Relationships between the texture features and anatomy

The analyses described above determined the optimum 
parameters and processes for the database, i.e., the  MFr = 1 
filtering process and the “0° + 90°” features set calculated 
with d = 5. In this section, we consider how the texture fea-
tures were related to the anatomical structures under these 
conditions, although there is no one-to-one correspondence 
between them.

PCA was performed to facilitate a simple interpretation 
of the results obtained by the proposed system. The images 
clustered within the same species and they were apparently 
well dispersed in the score plots (Fig. 7). The cumulative 
contribution ratio of the first, second, and third principal 
components (PC1, PC2, and PC3) was over 88%, and the 
loadings for these three components are listed in Table 1. 
According to the loadings, the 30 texture features could be 
roughly divided to four groups: Group 1 had strong corre-
lations with PC1; Group 2 had moderate negative correla-
tions and strong positive correlations with PC1 and PC2, 
respectively; Group 3 had strong correlations only with 
PC2; and Group 4 had moderate correlations with both 
PC2 and PC3.
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Fig. 7  Score plots for the first 
and second principal compo-
nents (PC1 and PC2), and the 
first and third principal compo-
nent (PC1 and PC3) using the 
“0° + 90°” feature set calculated 
with d = 5 from the data set 
treated with  MFr = 1. Abbrevia-
tions as in Fig. 2
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Figure 8 shows the FDS values for the features, where a 
large value indicates that objects are well dispersed among 
different classes but with low dispersion within a class ver-
sus a feature, i.e., this score is an efficient index for clas-
sification. The FDS values varied greatly depending on 
the features. Based on these scores, representative features 
were selected for the four groups and the distributions of 
these data are shown as box plots in Fig. 9.

More than half of the texture features were categorized 
in Group 1, such as ASM, contrast, IDM, and entropy. 
Many of these texture features had relatively large FDS val-
ues, where an IDM of “0°” had an extremely large value 
(Fig. 8). These textures are measures of homogeneity, con-
trast, and roughness. The main components recognized in 
the stereograms were vessels, so these features appeared to 

be correlated with the density of vessels, which was sup-
ported by the fact that A. pictum was widely separated from 
the others based on its IDM of “0°” (Fig. 9). The textures 

Table 1  Principal component 
analysis loadings using the 
“0° + 90°” feature set calculated 
with d = 5 from the data set 
treated with  MFr = 1

The absolute values above 0.6 are shown in bold
*1 Angular second moment, *2contrast, *3inverse difference moment, *4entropy, *5correlation, *6variance, 
*7sum average, *8sum entropy, *9difference entropy, *10difference variance, *11sum variance, *12shade, 
*13prominence

PC1 PC2 PC3 PC1 PC2 PC3

asm*1_0° –0.934 –0.062 0.028 den*9_0° 0.973 0.049 0.020
asm_90° –0.934 –0.046 –0.093 den_90° 0.939 –0.145 0.147
con*2_0° 0.924 0.119 0.039 dva*10_0° 0.920 0.127 0.036
con_90° 0.901 –0.191 0.137 dva_90° 0.901 –0.189 0.136
idm*3_0 –0.950 0.056 0.055 sva*11_0° 0.295 –0.627 –0.714
idm_90° –0.912 0.261 –0.163 sva_90° 0.244 –0.616 –0.745
ent*4_0° 0.987 0.097 –0.017 f12_0° –0.856 0.129 –0.033
ent_90° 0.976 0.089 0.015 f12_90° –0.412 0.723 –0.452
cor*5_0° –0.740 0.162 –0.103 f13_0° –0.759 0.242 –0.113
cor_90° –0.499 0.693 –0.332 f13_90° –0.396 0.752 –0.448
var*6_0° 0.888 0.379 –0.095 sha*12_0° 0.080 0.832 –0.096
var_90° 0.889 0.378 –0.097 sha_90° –0.064 0.872 –0.152
sav*7_0° 0.157 –0.697 –0.696 pro*13_0° 0.688 0.594 –0.226
sav_90° 0.155 –0.696 –0.697 pro_90° 0.459 0.793 –0.344
sen*8_0° 0.926 0.269 –0.106
sen_90° 0.752 0.553 –0.207

0
5

10
15
20
25
30

as
m

co
n

id
m en
t

co
r

va
r

sa
v

se
n

de
n

dv
a

sv
a

f1
2

f1
3

sh
a

pr
o

90°
0°

texture features

F
D

S

Fig. 8  Fisher discriminant score (FDS) values for the 30 texture fea-
tures calculated with d = 5 from the data set treated with  MFr = 1. The 
score can be defined as the ratio of inter-class variance to the mean of 
intra-class variance. Abbreviations as in Table 1
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tures calculated with d = 5 from the data set treated with  MFr = 1. The 
four features were selected according to the PCA loadings and the 
FDS values, as shown in Table 1 and Fig. 8, respectively
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included in Group 2 were related to the intervals of rays 
due to two reasons: P. pyrifolia had much smaller values 
than the others (Fig.  9) and only the “90°” features were 
sorted for this group, whereas most of the features had the 
same trend in the “0°” and “90°” feature sets (Table 1). The 
only texture feature included in Group 3 was shade, which 
indicated the skewness of the GLCMs. The values for B. 
costata were larger than those for the other species, which 
may have been due to the abundance of light spots caused 
by tyloses.

Group 4 had a completely different trend compared with 
the other three groups, although some of the FDS values 
were quite small. The representative feature for this group, 
i.e., the sum average, is the average of the summed gray 
levels of neighboring pairs, and thus, its value is related to 
the brightness of the overall image. However, the sum aver-
age was not consistent with the color of the wood blocks 
when viewed with the naked eye. In addition to the spe-
cific color of the wood species, the balance between the 
light areas (rays, tyloses, and gums) and dark areas (ves-
sel lumina) is an important factor under this magnifica-
tion. This fact is rather convenient for ancient samples and 
archaeological materials, because we do not have to con-
sider color changes over time or due to other factors.

Conclusion

In this study, we analyzed stereograms of six diffuse-
porous hardwoods in transverse section to facilitate the 
non-destructive identification of wood species used in the 
Tripitaka Koreana. This recognition system is still basic 
and simple, but the species were classified well and perfect 
recognition accuracy was achieved. The results also indi-
cated the possibility of recognition using a lower resolu-
tion data set, such as CT data. The appropriate selection of 
pretreatments is an important key that will affect accurate 
identification in this case.

We found that some texture features had clear relation-
ships with anatomy (the density of vessels, the intervals of 
rays, the amount of tyloses). However, the texture features 
did not capture many anatomical features that were visu-
ally apparent, such as the sizes of vessels, widths of rays, 
and the presence of marginal parenchyma. This may be 
explained by our analysis only extracting local information. 
Multi-resolution analysis is often performed with wavelet 
transforms [31, 32], and it may be helpful for extracting 
features at various scales, as reported previously for wood 
[18, 19]. If we focus more strongly on the linkages between 
image features and anatomy, then microscopic images 
may be more appropriate than stereograms. Further analy-
sis using microscopic images is currently ongoing in our 
laboratory.
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