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The recently proposed chameleonic extension of bigravity theory, by including a scalar field dependence
in the graviton potential, avoids several fine-tunings found to be necessary in usual massive bigravity. In
particular it ensures that the Higuchi bound is satisfied at all scales, that no Vainshtein mechanism is needed
to satisfy Solar System experiments, and that the strong coupling scale is always above the scale of
cosmological interest all the way up to the early Universe. This paper extends the previous work by
presenting a stable example of cosmology in the chameleon bigravity model. We find a set of initial
conditions and parameters such that the derived stability conditions on general flat Friedmann background
are satisfied at all times. The evolution goes through radiation-dominated, matter-dominated, and de Sitter
eras. We argue that the parameter space allowing for such a stable evolution may be large enough to
encompass an observationally viable evolution. We also argue that our model satisfies all known constraints
due to gravitational wave observations so far and thus can be considered as a unique testing ground of
gravitational wave phenomenologies in bimetric theories of gravity.

DOI: 10.1103/PhysRevD.97.024050

I. INTRODUCTION

Bimetric theories are an intensively studied class of
massive gravity theories considered as an alternative to
general relativity (GR). On one hand, they predict new
phenomena, such as the graviton oscillation [1,2]. On the
other hand, bimetric theories contain both a massless and a
massive spin-2 field. It has been nontrivial to construct a
consistent theory ofmassive gravity. The first bimetricmodel
free of the so-called Boulware-Deser ghost was proposed by
Hassan and Rosen [3], based on the de Rham–Gabadadze–
Tolley (dRGT) ghost-free massive gravity model [4].
The bigravity [3], although allowing for a stable cos-

mological evolution, still requires an important fine-tuning
of its parameters in order to be consistent. On one hand, it
has been shown that to accommodate a stable evolution, the

mass parameterm (controlling the graviton potential terms)
needs to be generically much larger than today’s Hubble
parameter, i.e., m ≫ H0 [5,6]. This condition forbids the
graviton mass to account for the accelerated expansion of
the Universe today. On the other hand, one needs another
fine-tuning for (i) the Vainshtein mechanism [7] to effec-
tively screen extra forces on Solar System scales, for
(ii) letting the theory be differentiable from GR by leaving
nontrivial phenomenology, while (iii) satisfying the
Higuchi bound mT > Oð1ÞH0 [8], where mT is the mass
of the tensor modes (proportional but not equal to m).
Finally, the strong coupling is encountered at a rather low
scale Λ3 ¼ ðMPlm2Þ1=3 easily by going early enough in the
history of the Universe, which makes the need for a (partial)
UV completion all the more important.
In response to these practical issues, it has been recently

proposed to add a new chameleonlike degree of freedom to
the theory [9]. In this model, the constant coefficients
appearing in the graviton potential are promoted to be
general functions of the new scalar field ϕ, and matter is
coupled to gravity through a ϕ-dependent effective metric.
In this way, the effective graviton mass mT becomes
environment dependent, so that m2

T scales as the local
energy density of matter ρ. This mechanism allows us to
evade the need for the Vainshtein mechanism to screen the
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extra gravitational forces on Solar System scales, and lets
the theory be viable against strong coupling, Higuchi
bound, and instabilities up to the very early Universe.
The scalar field also has a high enough mass to be possibly
not detectable by fifth-force experiments [9]. A possible
cosmological application of the chameleonic extension of
bigravity theory has been studied in [10].
In this work we study further the model presented in

Ref. [9]. Indeed, notwithstanding the arguments in favor of
stability and wider applicability that were given, it is
important to study the compatibility of the theory versus
the observed cosmic evolution. First, we present a detailed
study of the scaling solutions, including the conditions
for stability under homogeneous perturbations. Second, we
present the stability conditions derived from studying the
action that is quadratic in inhomogeneous linear perturba-
tions around a flat Friedmann-Lemaître-Robertson-Walker
(FLRW) spacetime. Finally, we present a viable set of
parameters and initial conditions that upon numerical
integration leads to a stable cosmological evolution, includ-
ing radiation-dominated, matter-dominated, and de Sitter
phases.
The text is organized as follows. In Sec. II we review the

chameleon bigravity model presented in Ref. [9], defining
the action and the background equations obtained from its
variation. In Sec. III we present the scaling solutions of the
model and their respective stability under homogeneous
perturbations. In Sec. IV we discuss inhomogeneous linear
perturbations of the model, and the derivation of the
stability conditions in a general flat FLRW universe. In
Sec. V we present the numerical integration, as well as the
chosen parameters and initial conditions. Finally, we
conclude in Sec. VI and briefly present future extensions
of this work.

II. REVIEW OF THE MODEL

A. Action

The chameleon bigravity model is defined by the total
action Stot ¼ SEH þ Sm þ Sϕ þ Smat [9]. In this model, the
usual ghost-free bimetric theory is supplemented by a
scalar field ϕ, coupled to both metrics via the promotion
of the coefficients found in the graviton potential into the
functions βiðϕÞ. The gravitational part of the action is given
explicitly by

SEH ¼ M2
g

2

Z
R½g� ffiffiffiffiffiffi

−g
p

d4xþM2
f

2

Z
R½f�

ffiffiffiffiffiffi
−f

p
d4x; ð1Þ

Sm ¼ M2
gm2

Z X4
i¼0

βiðϕÞUi½s�
ffiffiffiffiffiffi
−g

p
d4x; ð2Þ

Sϕ ¼ −
1

2

Z
gμν∂μϕ∂νϕ

ffiffiffiffiffiffi
−g

p
d4x; ð3Þ

where Mg and Mf stand for the respective bare Planck
masses of the gravitational g and f sectors. We also define
κ ≡M2

f=M
2
g for later convenience. Just as in the usual

bigravity case, the construction of the potentials Ui relies
on powers of the metric square root sαβ ≡ ð

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
Þαβ such

that sαγ s
γ
β ¼ gαδfδβ. By defining Tn ≡ Tr½sn�, we have

U0 ¼ 1; U1 ¼ T1; U2 ¼
1

2
½T2

1 − T2�;

U3 ¼
1

6
½T3

1 − 3T2T1 þ 2T3�;

U4 ¼
1

24
½T4

1 − 6T2
1T2 þ 3T2

2 þ 8T1T3 − 6T4�: ð4Þ

The potentials U0 and U4 constitute the two cosmological
constants of the metric sectors g and f, respectively. The
terms βiðϕÞUi also play the role of potentials for the field ϕ.
Finally, to implement the chameleon mechanism, the matter
sector is coupled nonminimally to the metric gμν, i.e.,

Smat ¼
Z

Lmatðψ ; ~gμνÞd4x; ð5Þ

where ψ stands for the different matter fields, ~gμν ¼
A2ðϕÞgμν, and AðϕÞ is a universal coupling function.
In order to simplify the treatment, we adopt the choice
of general functions AðϕÞ and βiðϕÞ, following Ref. [9].
We thus set

AðϕÞ ¼ eβϕ=Mg ;

βiðϕÞ ¼ −cie−λϕ=Mg; ð6Þ

with i ∈ f0;…; 4g. These choices are sufficient to obtain a
scaling solution described in Sec. III. We will use these
specific functions for our numerical work.

B. Background equations

In order to study cosmological backgrounds, we choose
a flat FLRW ansatz for both metrics, i.e.,

ds2g ¼ −dt2 þ a2ðtÞδijdxidxj;
ds2f ¼ ξ2ðtÞ½−c2ðtÞdt2 þ a2ðtÞδijdxidxj�: ð7Þ

Under these assumptions, the computation of the metric
square root sμν becomes much simpler. We further define
the Hubble parameters associated with each gravitational
sector, H ≡ _a=a and Hf ≡ ðaξÞ_=ðacξ2Þ, where the dot
stands for a derivative with respect to the cosmic time t.
On such a FLRW background, the equations of motion
become the two Friedmann equations
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3H2 ¼ 1

M2
g

�
ρA4 þ 1

2
_ϕ2

�
þm2Rðξ;ϕÞ; ð8Þ

3H2
f ¼ m2

4κξ3
U;ξðξ;ϕÞ; ð9Þ

(with R and U defined below) as well as the two dynamical
equations

2 _H ¼ −
1

M2
g
½ðρþ PÞA4 þ _ϕ2� þm2ξðc − 1ÞJðξ;ϕÞ; ð10Þ

2 _Hf ¼ m2
1 − c
κξ2

Jðξ;ϕÞ; ð11Þ

(with J defined below) and the equation of motion for the
chameleon scalar field

ϕ̈þ 3H _ϕ ¼ −αA4ðρ − 3PÞ þM2
gm2Q;ϕðξ;ϕÞ; ð12Þ

(with Q defined below). In these equations we have used

R≡U − ξU;ξ=4; J ≡ R;ξ=3;

Q≡ ðc − 1ÞR − cU;

U ≡ −ðβ4ξ4 þ 4β3ξ
3 þ 6β2ξ

2 þ 4β1ξþ β0Þ; ð13Þ

and ρ and P are, respectively, the total energy density and
pressure of the matter fields. By combining the Friedmann
(8) and second Einstein (10) equations, one obtains an
algebraic equation for c in terms of other variables,

c ¼ 12JðHξþ _ξÞ
ξð12HJ þ _ϕU;ξϕÞ

: ð14Þ

In order to represent perfect fluids in the latter analysis,
one can choose, for instance, to use k-essence scalar fields,

Smat;α ¼
Z

PαðXαÞ
ffiffiffiffiffiffi
−~g

p
d4x; ð15Þ

where Xα ≡ − 1
2
~gμν∂μψα∂νψα is the canonical kinetic term

for a scalar field ψα. One can then identify pressure Pα,
energy density ρα, and the sound speed squared c2s;α in the
Jordan frame as

Pα ≡ PaðXaÞ;
ρa ≡ 2Pa;Xa

Xa − PaðXaÞ;

c2s;α ≡ Pα;Xα

2Pα;XαXα
Xα þ Pα;Xα

: ð16Þ

III. STABILITY CONDITION OF EACH ERA
UNDER HOMOGENEOUS PERTURBATIONS

A. Scaling solutions

It is possible to find exact and approximate scaling
solutions to Eqs. (8)–(12). We find that in radiation- and
cosmological-constant-dominated eras there exist exact
scaling solutions. In the matter-dominated era, one can
find an exact scaling solution only for β ¼ 0. When 0 <
β ≪ 1 this turns into an approximate scaling solution. For a
radiation-dominated or de Sitter universe, on the other
hand, the exact scaling solutions persist for any value of β.
From the Friedmann equation (9) for fμν, we can show

that both ξ ¼ constant and c ¼ constant in any scaling
solution. Assuming a power law behavior of the scale
factor, all terms in the Friedmann equations (8) and (9)
should scale as t−2. Then one can immediately see from the
graviton potential terms that if ξ is constant, then

ϕ

Mg
¼ 2

λ
ln

t
ti
¼ n

λ
Ne; ð17Þ

where we have used the standard scaling of the scale factor
aðtÞ ∼ t2=n (with n ¼ 4 for radiation domination and n ¼ 3
for matter domination, here with β ¼ 0) and introduced the
e-folding number Ne ¼ ln ðaðtÞ=aiÞ. Here, ti (> 0) is the
initial time and ai ¼ aðt ¼ tiÞ. Denoting a derivative with
respect to the e-folding time by a prime, one obtains

ϕ0

Mg
¼

_ϕ

MgH
¼ n

λ
: ð18Þ

In the case of an exponential increase of the scale factor,
i.e., in a purely de Sitter or Λ-dominated universe, this last
equation (18) can be extended with the value n ¼ 0, since
all background quantities (excepting the scale factor) can
be taken as constant. Finally, we also have

H0

H
¼ −

n
2
: ð19Þ

In a radiation-dominated universe (and in de Sitter) the
scaling expressions presented above can be shown to
satisfy all background equations trivially.
On the other hand, in a matter-dominated universe, once

we adopt the choices in Eq. (6), we combine background
equations to find the following condition including β:

β

�
λ2 −

3c
cþ κξ2

�
¼ 0: ð20Þ

As c and κ are positive, this condition with β ≠ 0 can be
satisfied only if λ ≤

ffiffiffi
3

p
. Since we are interested in the

regime λ ≫ β to have m2
T ∝ ρ [9], the condition (20)

implies that there is no exact scaling solution in a
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matter-dominated era unless β ¼ 0. However, if β is not
zero but small enough, then the system with λ ≫ β exhibits
an approximate scaling behavior. Therefore, we impose that
β ≈ 0 to allow for an approximate scaling solution.

B. Stability under homogeneous perturbation
of the scaling solutions

For practicality, the chameleon scalar field and the
Hubble expansion rate are rendered dimensionless using
mass parameters of the theory, i.e.,

φ≡ ϕ=Mg; h≡H
m
: ð21Þ

The equations are then written in terms of ln h, φ, ξ,
and c. Homogeneous perturbations of the fields are
defined as

8>>>>><
>>>>>:

ln h ¼ ln h0 − n
2
Ne þ ϵhð1Þ;

φ ¼ nNe
λ ð1þ ϵφð1ÞÞ;

ξ ¼ ξ̄þ ϵξð1Þ;

c ¼ cð0Þ þ ϵcð1Þ;

ð22Þ

where ϵ is a small expansion parameter, h0 is the initial
background value of h, and ξ̄ and cð0Þ are the constant
values of ξ and c, respectively, for the scaling solutions.
The background equations are then expanded to first order
in ϵ. After using the zeroth order equations of motion to set,
for instance, c0, κ; c4, and the initial amount of matter
(either radiation or dust) in terms of cð0Þ and the other
background variables, one can solve the linearized equa-
tions for the variables hð1Þ, ξð1Þ, and cð1Þ in terms of φð1Þ and
its derivatives.
Upon making these replacements, one finds the dynam-

ics is uniquely determined by a second-order equation for
φð1Þ. This can be written as

φð1Þ00 þ
�
1þ 2

Ne

�
φð1Þ0 þArφ

ð1Þ ¼ 0; ð23Þ

during radiation domination (with general β), and

φð1Þ00 þ
�
3

2
þ 2

Ne

�
φð1Þ0 þAmφ

ð1Þ ¼ 0; ð24Þ

during matter domination (with β ¼ 0), where

Ar ¼
1

Ne
þ ½c̄dr1λ2 þ 4h20ðλ2 − 4Þ�½−6c̄3dr1dr2λ2 − 3ðc̄þ 4Þc̄2d2r1λ2 þ 32ðc̄2 þ 5c̄þ 2Þdr1h20 þ 64c̄2dr2h20�

2h20λ
2½c̄3d2r1ð8 − 3λ2Þ þ 16c̄2ðd2r1 þ dr1h20 þ 2dr2h20Þ þ 8c̄dr1ðdr1 þ 10h20Þ þ 32dr1h20�

; ð25Þ

Am ¼ 3

2Ne
þ ½c̄dm1λ

2 þ 3h20ðλ2 − 3Þ�½−4c̄3dm1dm2λ
2 − 4c̄2d2m1λ

2 þ 36c̄2dm2h20 þ 9ð7c̄þ 3Þdm1h20�
2h20λ

2½c̄3d2m1ð3 − 2λ2Þ þ 6c̄2ðd2m1 þ 2dm2h20Þ þ 3c̄dm1ðdm1 þ 7h20Þ þ 9dm1h20�
; ð26Þ

with c̄ ¼ cð0Þ − 1, and

di1 ¼ c1ξ̄i þ 2c2ξ̄2i þ c3ξ̄3i ; ð27Þ

di2 ¼ c2ξ̄2i þ c3ξ̄3i ; ð28Þ

with i ¼ r, m. To guarantee the stability during radiation
and matter dominations, respectively, it is necessary and
sufficient that

Ar > 0 and Am > 0: ð29Þ

Here, it is understood that ξ̄r and ξ̄m in (27) and (28) are the
constant values of ξ in radiation- and matter-dominated
epochs, respectively.

IV. STABILITY CONDITIONS OF
PERTURBATIONS

One can define the perturbations of the fields with
respect to the spatially flat FLRW background as follows.

In the Arnowitt-Deser-Misner (ADM) decomposition, the
(perturbed) metrics are written as

ds2g ¼ −N 2dt2 þ γijðN idtþ dxiÞðN jdtþ dxjÞ;
ds2f ¼ − ~N 2dt2 þ ~γijð ~N idtþ dxiÞð ~N jdtþ dxjÞ: ð30Þ

One can then decompose the lapses, shifts, and 3D metrics
separately as

N ¼ Nð1þΦÞ; N i ¼ Ni þ δNi;

γij ¼ a2δij þ δγij; ~N ¼ ~Nð1þ ~ΦÞ;
~N i ¼ ~Ni þ δ ~Ni; ~γij ¼ ~a2δij þ δ~γij; ð31Þ

where Φ, ~Φ, δNi, δ ~Ni, δγij, and δ~γij are the perturbations.
In particular, we are free to choose N ¼ 1 by the time
reparametrization invariance, and we also have that Ni ¼
~Ni ¼ 0 in our particular background. One may use other
equivalent definitions of the perturbations; for instance, as
long as the background equations of motion are taken into
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account, any definitions that differ only at second order will
be equivalent as far as the quadratic action is concerned.
Finally, as perturbations are studied only linearly and on a
spatially homogeneous and isotropic background, one can
decompose the perturbations of the shifts and 3D metrics
into SOð3Þ scalar, vector, and tensor representations, i.e.,

δNi ¼ Nað∂iBþ BiÞ;

δγij ¼ a2
�
2δijΨþ

�
∂i∂j −

δij
3
Δ
�
Eþ ∂ðiEjÞ þ hij

�
;

δ ~Ni ¼ ~N ~að∂i
~Bþ ~BiÞ;

δ~γij ¼ ~a2
�
2δij ~Ψþ

�
∂i∂j −

δij
3
Δ
�
~Eþ ∂ði ~EjÞ þ ~hij

�
;

ð32Þ

where hij, ~hij, Ei, ~Ei, Bi, ~Bi obey tracelessness and
transversality, i.e., δijhij ¼ ∂ihij ¼ ∂iEi ¼ ∂iBi ¼ 0 and

δij ~hij ¼ ∂i ~hij ¼ ∂i ~Ei ¼ ∂i ~Bi ¼ 0. The Laplacian is
defined as Δ≡ δkl∂k∂l, and we use the notation OðijÞ ≡
1
2
ðOij þOjiÞ to denote symmetrization of the indices. The

latin indices of partial derivatives and perturbations can be
raised and lowered with δij and δij. The perturbations of the
chameleon scalar field and matter fields are

ϕ ¼ ϕ̄þ δϕ; ψα ¼ ψ̄α þ δψα: ð33Þ

The full action is then expanded to second order in the
linear perturbations just defined. In particular, the pertur-
bations to the metric square root can be computed along the
lines of [11]. The treatment is separated into tensor, vector,
and scalar sectors. For later use, we choose to represent the
matter content of the Universe by two perfect fluids, thus
labeled by ψα, with α ∈ f1; 2g.

A. Tensor perturbations

The quadratic action for tensor perturbations (written in
Fourier space) reduces to

Lð2Þ
T ¼ M2

gNa3

8
δikδjl

� _hij _hkl
N2

−
k2

a2
hijhkl

þ κξ2

c

� _~hij _~hkl
N2

− c2
k2

a2
~hij ~hkl

�

−
κξ2

cþ κξ2
m2

Th
−
ijh

−
kl

�
; ð34Þ

where h−ij ¼ hij − ~hij, k2 ¼ δijkikj, ki is the comoving
momentum of a perturbation mode, and

m2
T ¼ cþ κξ2

κξ2
m2Γ; Γ ¼ ξJ þ c − 1

2
ξ2J;ξ: ð35Þ

In obtaining this form, we have used both Friedmann
equations. One obtains a simple no-ghost condition from
the tensor sector, i.e.,

c ≥ 0: ð36Þ
The squared sound speeds of the tensor modes are c2T;1 ¼ 1

and c2T;2 ¼ c2 for hij and ~hij, respectively.
Due to the time dependence of the background geometry,

the graviton mass cannot be defined without ambiguities
of order OðHÞ in general. On the other hand, in de Sitter
spacetime with ξ ¼ constant and c ¼ 1, it is the combina-
tions h−ij and hþij ¼ hij þ κξ2 ~hij that are the two eigenm-
odes of the mass matrix. In such a case, one can simply
rewrite the Fourier space action in the form

Lð2Þ
T;dS ¼ Na3M2

g

8ð1þ κξ2Þ δ
ikδjl

� _hþij _h
þ
kl

N2
−
k2

a2
hþijh

þ
kl

þ κξ2
� _h−ij _h−kl

N2
−
k2

a2
h−ijh

−
kl −m2

Th
−
ijh

−
kl

��
: ð37Þ

In this case mT is the mass of the massive mode, and both
graviton sound speeds are equal to unity.

B. Vector perturbations

After integrating out two nondynamical vectorial degrees
of freedom (e.g., Bi and ~Bi), the quadratic action for vector
perturbations reduces to (in Fourier space)

Lð2Þ
V ¼ M2

gNa3

8

m2κξ2Jk2δij

ðcþ 1Þκξk2=a2 þ 2m2ðcþ κξ2ÞJ

×
� _E−

i
_E−
j

N2
− c2V

k2

a2
E−
i E

−
j −m2

VE
−
i E

−
j

�
; ð38Þ

where E−
i ¼ Ei − ~Ei is the only propagating (massive)

vector mode, and

c2V ¼ ðcþ 1ÞΓ
2ξJ

; m2
V ¼ m2

T: ð39Þ

The associated no-ghost condition in the UV regime is,
using c > 0 and ξ > 0,

J ≥ 0: ð40Þ

The no-gradient-instability condition, c2V ≥ 0, implies

Γ ≥ 0: ð41Þ

C. Scalar perturbations

The study of the quadratic action for the scalar pertur-
bations requires more work than the vector and tensor
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sectors. Because of the size of the expressions, we do not
give here the full Lagrangian. Instead, we give here the no-
ghost conditions, which must be satisfied at all times during
the numerical integration, and the squared sound speeds of
the scalar sector, which must be positive at all times.
We start by integrating out four nondynamical degrees of

freedom that enforce the Hamiltonian and (longitudinal part
of) the momentum constraints (i.e., Φ, ~Φ, B, ~B). One can
integrate out as well the would-be Boulware-Deser (BD)
ghost, which is rendered nondynamical by the particular
structure of the graviton potential term. One can further use
the remaining gauge freedom to set, for instance, the
spatially flat gauge, Ψ ¼ E ¼ 0. Eventually, one finds that
in addition to the two matter perturbation modes, one has
two scalar degrees of freedom, one from the chameleon
scalar and the other from the massive graviton.
In order to find both no-ghost conditions and dispersion

relations, we take the subhorizon limit k ≫ aH. Indeed,
we are solely interested in checking the presence or absence
of instabilities in the UV, any IR instability being less
problematic [12].

1. No-ghost conditions

In the subhorizon limit, the action can be written
schematically as

Lð2Þ
S;s:h: ¼

Na3

2

�
_Y⊤

N
K

_Y
N
þ

_Y⊤

N
FY − Y⊤F

_Y
N
− Y⊤MY

�
;

ð42Þ
where K⊤ ¼ K, F⊤ ¼ −F , M⊤ ¼ M are 4 × 4 real
matrices, and Y is a vector containing the four remaining
dynamical scalar perturbations, each of which may or may
not be rescaled by a positive constant coefficient. The
kinetic matrix K can then be diagonalized, yielding the
eigenvalues

κ1 ¼
a4m2M2

g

8Hκ

�
3m2ðH −Hκξ2 þ 2Hfκξ

3ÞJ2

þ 2κξ2J

�
3HfHð2Hfξ − 3HÞ − 1

4
m2 _ϕU;ξϕ

�

þ 2Hκξ2
�
3HfξðH −HfξÞJ;ξ − 3Hf

_ϕJ;ϕ

−
1

16
m2M2

gU2
;ξϕ

��
; ð43Þ

κ2 ¼ 1; ð44Þ

κ3 ¼
N2ðρ1 þ P1Þ

c2s;1 _ϕ
2
1

; ð45Þ

κ4 ¼
N2ðρ2 þ P2Þ

c2s;2 _ϕ
2
2

; ð46Þ

up to overall positive constant coefficients. Because of
some field redefinition used to diagonalize the kinetic
matrix, the indices in κi are arbitrary, but roughly
correspond to, respectively, the scalar graviton, the
chameleon field, and both matter perturbations. While
κ2 ≥ 0 is trivial and κ3, κ4 ≥ 0 translate into the null-
energy conditions on matter fields, i.e., ρα þ Pα ≥ 0
(where α is an index designing a specific matter field),
κ1 ≥ 0 yields a nontrivial no-ghost condition which will
be checked at all times during the numerical integration.
We also want to monitor the scalar sound speeds squared,
which are read off from the dispersion relations in the
subhorizon limit.

2. Scalar sound speeds

The scalar sound speed for high frequency modes can
be found by studying the dispersion relation in the
subhorizon limit. Two modes propagate with the usual
squared sound speeds c2s;α of perfect fluids and can thus be
identified with the matter modes. The product and the sum
of the two remaining scalar sound speeds squared, c2s;1,
c2s;2, are given by

c2s;1c
2
s;2 ¼

Σ1

Σ
; ð47Þ

and

c2s;1 þ c2s;2 ¼
Σ1 þ Σ2

Σ
þ 1; ð48Þ

where

Σ1 ¼ κξHJ½−16M2
g
_ϕðJ;ϕfð6cþ 2ÞH − ð5cþ 2ÞξHfg − ξJ;ξϕfðcþ 1ÞξHf − 2HgÞ þ 8 _ϕ2ð2M2

gJ;ϕϕ þ ξJ;ξÞ
þ 16AðϕÞ3M2

gA0ðϕÞJ;ϕð3ðPþ ρÞ − 4ρÞ þ 8ξAðϕÞ4ðPþ ρÞJ;ξ þM2
gðξfc2m2M2

gU2
;ξϕ

þ 16ξJ;ξξðH − ξHfÞðH − cξHfÞ ð49Þ
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þ16J;ξ½cð−9ξHfH þ 5ξ2H2
f þ 6H2Þ þ 2ξHfð2ξHf − 3HÞ�g

þ16ðc − 1Þ2m2ξM2
gJ2;ϕ þ 8m2M2

gJ;ϕf2Q;ϕ − ðc − 1ÞcξU;ξϕgÞ�
þ 4ξJ2ð−cκm2ξM2

gU;ξϕ
_ϕþ 6κH _ϕ2 þ 6κAðϕÞ4HðPþ ρÞ

þ2HM2
gf2κ½−3ð5cþ 2ÞξHfH þ 4ð2cþ 1Þξ2H2

f þ ð9c − 3ÞH2� þ 3ðc − 1Þm2ðκξ2 þ 1ÞJ;ξgÞ
þ 16ðcþ 1ÞκξHM2

gðJ;ϕ _ϕþ ξJ;ξðξHf −HÞÞ2 − 24m2M2
gJ3ðHð3cκξ2 þ c − 2κξ2 − 2Þ − 2cκξ3HfÞ; ð50Þ

Σ2 ¼ Hm2M4
gκξ

2ðc − 1Þ2JðU;ξϕ − 4J;ϕÞ2; ð51Þ

Σ¼−M2
gJfκξ2H½48HfJ;ϕ _ϕþ48ξHfJ;ξðξHf−HÞ

þm2M2
gU2

;ξϕ�þ4κξ2J½m2U;ξϕ
_ϕ−12HfHð2ξHf−3HÞ�

−24m2J2ð2κξ3Hf− κξ2HþHÞg; ð52Þ
ρ ¼ ρ1 þ ρ2 and ρ ¼ P1 þ P2. If one considers the vector
sector no-ghost condition, J > 0, then Σ2 < 0. The scalar
sound speeds squared provide new stability conditions, as
these need to be real and positive. We thus require that

Σ1

Σ
> 0;

Σ1 þ Σ2

Σ
þ 1 > 0;

�
Σ1 þ Σ2

Σ
þ 1

�
2

− 4
Σ1

Σ
> 0: ð53Þ

Although we do not give here the analytical expressions
for the single squared sound speeds, which would be too
large to write, we obtain their numerical value in the next
section as part of our numerical example cosmology (see
Fig. 4). The reader may find a discussion on the respective
contributions of the chameleon and the scalar graviton to
the scalar squared sound speeds in Appendix.

V. INITIAL CONDITIONS AND
NUMERICAL RESULTS

A. Set of equations

Although in principle one can obtain several background
equations—e.g., both Friedmann equations, both second
Einstein equations, the scalar equation of motion, or the
combination Eq. (14)—not all the equations will be directly
integrated. For instance, this last equation can be used to fix
the fiducial function c. Similarly, both Friedmann equations
can be used to set two parameters or integration constants,
as will be shown below. Of the equations cited above, only
three will remain to be integrated: both second Einstein
equations and the scalar equation of motion. In addition to
finding the right set of equations, the choice of adequate
initial conditions (ICs) is also essential. In what follows, a
subscript i stands for the quantity evaluated at initial time.
Although in the previous sectionwewere able to derive the

results while keeping the functions βjðϕÞ, j ∈ f0;…; 4g,
and AðϕÞ completely general, these need to be specified for

the sake of numerical integration. We will thus from now on
use the example model defined in (6).
Several definitions help render the equations more

practical for the purpose of numerical integration. First
of all we consider the equations of motion in e-fold time
with its initial value being Ne;i ¼ 0. We then define
dimensionless variables. We start by using the dimension-
less chameleon scalar field, φ, and Hubble parameter, h, as
defined in Eq. (21). For the matter energy densities, we split
the energy density of the matter fields (in the Jordan frame,
for which aJF ¼ Aa) as

ρTOTJF ≡ Rri

A4a4
þ Rdi

A3a3
þ RΛi; ð54Þ

where the subscripts r, d, and Λ, indicate the radiation,
dust, and cosmological constant, respectively. We then
define

Rri ¼ rra4i M
2
gm2; Rdi ¼ rda3i M

2
gm2;

RΛi ¼ rΛM2
gm2; ð55Þ

where rr, rm, and rΛ are dimensionless and constant
throughout the evolution. Using these definitions, the
Friedmann equation for the physical metric becomes

3h2 ¼ 1

2
h2φ02 þ e−λφðc0 þ 3c1ξþ 3c2ξ2 þ c3ξ3Þ

þ eβφrde−3Ne þ rre−4Ne þ e4βφrl; ð56Þ

while the Friedmann equation for the fiducial metric can be
written

0 ¼ 1 − e−λφ
V̄ðξÞ
3h2κξ

−
2λφ0

3

V̄ðξÞ
J̄ðξÞ þ

λ2ðφ0Þ2
9

V̄ðξÞ2
J̄ðξÞ2 ; ð57Þ

where as noted previously a prime denotes differentiation
with respect to N, and we have defined

J̄ðξÞ ¼ c1 þ 2c2ξþ c3ξ2;

V̄ðξÞ ¼ c1 þ 3c2ξþ 3c3ξ2 þ c4ξ3: ð58Þ

It is instructive to rewrite the physical Friedmann
equation as
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1 ¼ ΩEF
Λ þ ΩEF

d þ ΩEF
r þ ΩEF

k þΩEF
V : ð59Þ

For this, we have defined the Einstein frame density
parameters

ΩEF
Λ ¼ e4βφrl

3h2
; ΩEF

d ¼ eβφrde−3Ne

3h2
;

ΩEF
r ¼ rre−4Ne

3h2
; ΩEF

k ¼ ðϕ0Þ2
6

;

ΩEF
V ¼ e−λφðc0 þ 3c1ξþ 3c2ξ2 þ c3ξ3Þ

3h2
: ð60Þ

The new subscripts k and V indicate contributions from the
chameleon kinetic energy and from the graviton potential
term, respectively. We can also define the Jordan frame
density parameters, using the fact that

HJF ≡ 1

a2JF

daJF
dη

¼ mh
A

ðβφ0 þ 1Þ; ð61Þ

where η is the conformal time defined by η≡ R
t
0

dt0
aðt0Þ.

This allows us to write

ΩJF
r ¼ Rri

A2a4
1

3M2
gH2

JF
¼ rre−4Ne

3h2ð1þ βφ0Þ2 : ð62Þ

In a similar way,

ΩJF
d ¼ rdeβφ−3Ne

3h2ð1þ βφ0Þ2 ; ΩJF
Λ ¼ rΛe4βφ

3h2ð1þ βφ0Þ2 : ð63Þ

Therefore we can replace rr, rd, rΛ with either Jordan frame
or Einstein frame density parameters, evaluated at initial
time, i.e.,

rr ¼ 3ΩJF
r;ih

2
i ð1þ βφ0

iÞ2 ¼ 3ΩEF
r;i h

2
i ; ð64Þ

rd ¼ 3ΩJF
d;ih

2
i ð1þ βφ0

iÞ2 ¼ 3ΩEF
d;ih

2
i ; ð65Þ

rΛ ¼ 3ΩJF
Λ;ih

2
i ð1þ βφ0

iÞ2 ¼ 3ΩEF
Λ;ih

2
i : ð66Þ

In terms of the new variables we have that Eq. (14) can
be rewritten as

cξ¼ 3ðξþξ0Þðξ2c3þ2ξc2þc1Þ
3ðc3ξ2þ2c2ξþc1Þ− ðc4ξ3þ3c3ξ2þ3c2ξþc1Þλφ0 ;

ð67Þ

which defines c in terms of the other dynamical variables.
When using this definition in the fiducial second Einstein
equation, this reduces the degree of the equation to 1, with
respect to the variable of interest ξ.
The set of dynamical equations to be integrated, the

two second Einstein equations and the chameleon field
equation, can be written as

8>><
>>:

h0 ¼ h0ðh; ξ;φ;φ0Þ;
φ00 ¼ φ00ðh; ξ;φ;φ0Þ;
ξ0 ¼ ξ0ðh; ξ;φ;φ0Þ;

ð68Þ

and, because of the choice of the variables/parameters, they
do not explicitly depend on any scale, e.g., Mg or m.

B. Requirements on initial data

Using a rescaling of the constants one can, without loss
of generality, set the values of the ICs φi, ξi, and hi. In
detail, this can be done, for example, by (i) redefiningm2 to
set φi ¼ 0, (ii) redefining the cj and Mf to set ξi ¼ 1, and
(iii) an additional overall rescaling of the constants cj,
which we use to set hi ¼ 1. Once this is done, we only need
to give one supplementary IC, i.e., φ0

i. Then the total set of
yet needed ICs and parameters is

c0; c1; c2; c3; c4;

rr; rd; rΛ;

λ; κ; β;φ0
i:

We can use the two Friedmann equations to set two of the
parameters (or ICs, in principle). Without loss of generality,
we solve them in terms of c0 and κ (by linear equations).
The initial conditions for the integration are set in a

radiation-domination epoch, with the Universe obeying a
scaling solution. These initial conditions allow us to
recover a cosmology accommodating our Universe. In
order to start with a radiation-domination phase, one simply
needs to set 0 < 1 −ΩJF

r;i ≪ 1. Since we also want to start
from a scaling behavior during radiation domination, the
remaining ICs and parameters are imposed so that
the dynamics of the scale factor and the scalar field
satisfy the scaling solution values found in Sec. III A, i.e.,

h0i ≈ −2hi; φ0
i ≈ φ0

sc ¼
4

λ
; φ00

i ≈ 0; ξ0i ≈ 0:

ð69Þ

We choose to replace the parameters c1, c2, c3, and c4
with new, more practical, and transparent parameters. First,
two of the constants can be chosen so that the condition
(40) is always satisfied. This can be done, for example, by
letting

c3c1 − c22 ¼ A; c1 þ 2c2 þ c3 ¼ B; ð70Þ

where both A and B are positive constants (and new
parameters that replace two among c1, c2, and c3), which is
sufficient to guarantee that J > 0 for any ξ. Second, one
may use Eq. (14), while approximating ξ0i ≈ 0, to set c at the
initial time to a specific value instead of one of the ci’s.
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Finally, we use the expression of the vector squared sound
speed to replace the last parameter.

C. Results

Based on the previous section, we describe here a set of
parameters which allows for an evolution similar to the
usual Λ cold dark matter models. The values used in our
example are

cin ¼
101

100
; c2V;in ¼ 1; A ¼ 1; B ¼ 1;

ΩEF
Λi ¼ 1 × 10−30; ΩEF

di ¼ 1 × 10−5; ΩEF
ki ¼ 3

200
;

ΩEF
Vi ¼

1

200
; β ¼ 1 × 10−2; λ ¼ 40

3
; ð71Þ

where the subscripts “in” or “i” mean the respective initial
value. The initial density parameter for radiation, ΩEF

ri , is
directly determined by the Friedmann equation (59) at
initial time, and all other parameters are fully determined by
this set of choices. The only fine-tuned value is ΩEF

Λi , which
we have chosen in order to have ΩΛ of order unity today.
In practice, this is the same as the cosmological constant
problem today.
The simple choice of parameters in Eq. (71) is meant to

show that it is possible to obtain a realistic cosmological
evolution. It does not recover exactly today’s observed
values. However, it is possible, by an appropriate choice of
constants—and without fine-tuning anything other than the
cosmological constant—to obtain an evolution fitting more
closely to data; e.g., one can reproduce today’s abundances
and other data. This, along with the constraints on the
model from today’s observational data, will be studied
further in a future work.
For the sake of exposition, we present the evolution1 of

the density parameters in Fig. 1, while the evolution of
other relevant variables is presented in Fig. 2. The evolu-
tion, starting from a radiation-dominated era, moves on to a
matter-dominated era, finally attaining a final de Sitter
phase. Given our set of initial density parameters, the
system stays Oð10Þ e-folds in each era before settling to a
de Sitter epoch (roughly from 0 to 12 e-folds for radiation
domination, from 12 to 19 e-folds for matter domination,
from 19 to the end for the de Sitter era). However, by
arranging these density parameters, one can achieve very
different numbers of e-folds spent in each era.
In order to have a handle on the precision of the

numerical integration, we check all along the evolution
to which extent the Friedmann equations are satisfied. For
this purpose, one may define, for instance,

C1 ¼
1 −

P
αΩEF

α

1þP
αjΩEF

α j ;

C2 ¼
1 − e−λφ V̄ðξÞ

3h2κξ −
2λφ0
3

V̄ðξÞ
J̄ðξÞ þ λ2ðφ0Þ2

9

V̄ðξÞ2
J̄ðξÞ2

1þ je−λφ V̄ðξÞ
3h2κξ j þ j 2λφ0

3

V̄ðξÞ
J̄ðξÞ j þ j λ2ðφ0Þ2

9

V̄ðξÞ2
J̄ðξÞ2 j

; ð72Þ

inspired by both Friedmann equations (59) and (57), and
where α stands for any of the species, i.e., indices
fr; d;Λ; k; Vg. The evolution of these two constraints is
presented in Fig. 3. Both constraints are seen to be satisfied
up to order Oð10−5Þ. In our implementation, this has been
achieved by using constraint damping, i.e., adding the
constraint equations into the dynamical equations of
motion (after normalizing the constraints by an appropriate
factor), in order to damp any unwanted deviation.

FIG. 1. Evolution of the density parameters of the different
species versus number of e-folds of evolution. The thick solid line
stands for radiation, the thick dashed line stands for dust, the
dashed-dotted line stands for the cosmological constant, the thin
dotted line stands for the scalar field kinetic energy, and the thin
solid line stands for the contribution from the graviton potential
term.

FIG. 2. Evolution of the time derivative of the Hubble param-
eter, the ratio of fiducial and physical scale factors ξ, the
chameleon field φ, and its second time derivative. The system
starts from a radiation-dominated era (from Ne ¼ 0 to roughly
Ne ¼ 12), then goes through a matter-domination phase (roughly
fromNe ¼ 12 to roughlyNe ¼ 19), and finishes in a de Sitter era.

1The number of steps and e-fold time range chosen for
the integration are initial time ¼ 0, final time ¼ 25, and
number of steps ¼ 3199.
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In addition to the Friedmann equations, we also present
in Fig. 4 the evolution of the sound speeds and the fiducial
lapse c. Together with the no-ghost conditions, which are
found to be satisfied all along the evolution, the positivity
of these shows that the background is stable under
cosmological perturbations.
Finally, in order to demonstrate the purpose of the new

scaling brought by the scalar field dependence in the
graviton potential, we plot the Higuchi condition along
the evolution in Fig. 5. The generalized Higuchi bound
m2

T
H2 > Oð1Þ is seen to be well satisfied during the three eras,
and in particular both at late and early times.

VI. DISCUSSION AND CONCLUSIONS

Following the recent proposal [9] of an extended massive
bigravity theory supplemented by a chameleon scalar field
as a means to cure or evade the fine-tunings of the original
theory and improve its applicability, we have found it
important to study further its validity and implications.
For this reason, in this work we have explored the stability
conditions of the model and confirmed its intended
behavior by integrating numerically the equations of
motion. In particular, we have numerically confirmed that
at all times, the Higuchi ghost is never present: indeed, the
presence of this ghost represented one of the most serious
problems for a viable phenomenology of the original
bigravity theory. In our model though, we have here shown
that if no Higuchi ghost is present at one scale, then the
same ghost will not appear during the whole evolution of
the Universe, including the early epoch. This set of such
allowed initial conditions is not of zero measure in general,
so that we do not need to fine-tune the parameters of the
theory.
The study of the action quadratic in perturbations with

respect to a general flat FLRW background leads, in the
UV, to no-ghost conditions for the tensor, vector, and scalar
sectors. In addition to this, we have found the explicit
action for the tensor and vector linear perturbations and for
the scalar linear perturbations in the UV. From these the
propagation speeds at short scales are easily extracted, thus
leading to additional no-instability conditions. It is found as
expected that the theory propagates four tensor, two vector,
and two scalar degrees of freedom (not including matter
degrees of freedom), thus corresponding to the expected
massive spin-2, massless spin-2, and chameleon scalar of
the theory.
In order to show the typical background time evolution,

we have numerically integrated the background equations
by using a choice of initial parameters consistent with an
initial radiation-dominated era of the Universe. As supple-
mentary input for the initial conditions, we have required
that the stability conditions be satisfied and that the
parameters of the theory are in the regime of interest for
the expected scaling behaviors. The evolution displays an

FIG. 3. Evolution of the first and second constraints. Constraint
damping is efficient during most of the integration time.

FIG. 4. Evolution of some consistency conditions. Here are
presented the evolution of the two scalar squared sound speeds
(c2s;i with i ∈ f1; 2g) and of the fiducial lapse c. Both
the sound speeds and the fiducial lapse tend rapidly to 1 in a
Λ-dominated universe. Respective contributions from the scalar
graviton and the chameleon scalar field to the scalar sound speeds
are discussed in the Appendix.

FIG. 5. Evolution of the Higuchi condition. The ratio of the
tensor mass to the Hubble expansion rate has to be > Oð1Þ in
order for the model to be stable. The condition is thus satisfied all
along the evolution.
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initial radiation-dominated era, followed by matter domi-
nation and a de Sitter era. The no-instability conditions are
satisfied all along the evolution, and, in our implementa-
tion, the constraint equations show a numerical error of
order Oð10−5Þ at most. This stable evolution comforts us
into arguing that it may be possible to find a region of the
parameter space allowing a close match with our cosmo-
logical observations.
The recent binary neutron star merger observation, the

first gravitational and electromagnetic wave multimessen-
ger detection [13], has allowed us to set stringent bounds on
the speed difference between gravitational and electromag-
netic waves (see, e.g., [14–17]). Although in our model one
of the gravitons propagates with a slightly modified
sound speed c (see the lower panel of Fig. 4), the physical
metric remains unaffected and the interactions between the
two metrics are suppressed by the smallness of m2βi,
i ∈ f1; 2; 3g. This implies that the propagation of gravita-
tional waves in our model is essentially the same as that of
photons as far as m2βi are small enough compared to the
typical (squared) energy scales of the gravitational waves
produced astrophysically. As a result, the constraint on our
model from GW170817 is essentially the same as those
from the previous GW observations (e.g., [18]) [16].
Concretely, the constraint is of the form of an upper bound
on the mass of the graviton (which was not improved by
GW170817) of mT < 1.2 × 10−22 eV. While this bound
has to and can be satisfied today, the scalar field depend-
ence of the graviton mass in our model allows without
problem for a larger mass at early times, rendering the
cosmological evolution stable all the time. Therefore, our
model can be considered as a unique testing ground of
gravitational wave phenomenologies in bimetric theories of
gravity. For example, it is intriguing to investigate the
possible modification of the waveform of the gravitational
wave signal due to the influence of the massive graviton.
As a clear avenue for future extension, the evolution of

cosmological perturbations and an improved understanding
of the viable parameter space will be considered in a future
work. Furthermore, it may be interesting to study the
detailed working of the screening mechanism for the
chameleon scalar field and scalar graviton modes.
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APPENDIX: CONTRIBUTION TO SCALAR
SOUND SPEEDS

In Fig. 4, two c2s’s are plotted. Although each c2s is
contributed both by the chameleon and by the scalar
graviton, the dominant contribution can be determined
by the following argument: the c2s are determined by

det ½c2sKdiag −Mrot� ¼ 0; ðA1Þ
where Kdiag is the kinetic matrix K made diagonal by some
rotation matrix and Mrot is the mass matrix M rotated by
the same rotation matrix in the high frequency limit. Those
matrices can be written in the form

Kdiag ¼
�
1 0

0 κ1

�
; Mrot ¼

�
1 A

A B

�
; ðA2Þ

where A and B are some components, since the radiation
and dust fluids are decoupled from the chameleon and the
scalar graviton in the high frequency limit. On the other
hand, Eq. (A1) can be written, introducing eigenvector
ðv1v2Þ⊤ and normalizing v2, as�

c2sI2 −
�

1 A=
ffiffiffiffiffi
κ1

p
A=

ffiffiffiffiffi
κ1

p
B=κ1

���
v1
v2

�
¼ 0; ðA3Þ

in the high frequency limit, where I2 is the 2 × 2 identity
matrix. This yields the ratio of v1 to v2,				 v1v2

				
�
¼
				A=

ffiffiffiffiffi
κ1

p
c2� − 1

				; ðA4Þ

where c2� are the solutions of Eq. (A1), and whose value
can be checked numerically. If Eq. (A4) is larger (smaller)
than 1, the dominant contribution is the chameleon (the
scalar graviton). Our calculation shows that the larger c2s in
Fig. 4 is dominantly contributed by the chameleon.
Note that one of the ratios jv1=v2j� is larger than 1 if the

other is smaller than 1 and vice versa, since
				 v1v2

				
þ

				 v1v2
				
−
¼
				 A2=κ1
c2þc2− − ðc2þ þ c2−Þ þ 1

				 ¼ 1; ðA5Þ

which follows from the relation between the solutions c2� of
the quadratic equation (A1),

c2þ þ c2− ¼ 1þ B=κ1; ðA6Þ

c2þc2− ¼ ðB − A2Þ=κ1: ðA7Þ
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