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Since the invention of systematic evolution of ligands by exponential

enrichment, many short oligonucleotides (or aptamers) have been reported

that can bind to a wide range of target molecules with high affinity and

specificity. Previously, we reported an RNA aptamer that shows high affin-

ity to the Runt domain (RD) of the AML1 protein, a transcription factor

with roles in haematopoiesis and immune function. From kinetic and ther-

modynamic studies, it was suggested that the aptamer recognises a large

surface area of the RD, using numerous weak interactions. In this study,

we identified the secondary structure by nuclear magnetic resonance spec-

troscopy and performed a mutational study to reveal the residue critical

for binding to the RD. It was suggested that the large contact area was

formed by a DNA-mimicking motif and a multibranched loop, which con-

fers the high affinity and specificity of binding.

Aptamers are short oligonucleotides that can bind with

high affinity and specificity to a wide range of target

molecules, which can be generated by an in vitro tech-

nique known as systematic evolution of ligands by expo-

nential enrichment (SELEX) [1–4]. Recent advances in

high-throughput technology have improved the effi-

ciency of aptamer production [5,6]. Aptamers are

expected to be useful as therapeutic agents due to the

following characteristics: high affinity and specificity

comparable to those of antibodies (Kd in the nanomolar

to picomolar range), moderate molecular mass and ease

of chemical production [7–9].
AML1 (RUNX1) is a transcription factor that plays

important roles in maintaining haematopoiesis and

Abbreviations

AML1, acute myeloid leukaemia 1; HMQC, heteronuclear multiple quantum coherence; ITC, isothermal titration calorimetry; NF-jB, nuclear

factor-jB; NMR, nuclear magnetic resonance; NOESY, nuclear Overhauser effect spectroscopy; RDE, Runt-binding double-stranded DNA

element; RD, Runt domain; SELEX, systematic evolution of ligands by exponential enrichment; SPR, surface plasmon resonance.
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immune function in adults [10–12]. AML1 contains a

DNA-binding domain, known as the Runt domain

(RD), which recognises a specific DNA element,

‘YGYGGTY’ (where Y = pyrimidine) [13,14]. The ter-

tiary structure of RD has been investigated by X-ray

crystallography and nuclear magnetic resonance

(NMR) spectroscopy [15–18]. These studies revealed

that RD recognises the DNA element using two loop

regions and a C-terminal tail. Three guanine bases in

the major groove of the DNA element are recognised

by three arginine residues in the C-terminal tail and

one of the loop regions. The other loop region inter-

acts with the minor groove.

AML1 was originally isolated from a chromosomal

break point in a case of human acute leukaemia [19].

RNA aptamers that bind to RD were previously stud-

ied regarding their potential utility in the diagnosis

and treatment of AML1-related diseases [20–24]. We

have already obtained RNA aptamers (Apt1-S and S4-

S) that show higher affinity (Kd = 0.99 � 0.02 nM and

0.034 � 0.004 nM, respectively) than the Runt-binding

double-stranded DNA element (RDE, Kd = 9.6 �
0.2 nM) [21,22]. Structural study of Apt1-S using

NMR revealed that it contains a DNA-mimicking

motif, which adopts a B-type DNA-like conformation

[23,25]. Furthermore, kinetic and thermodynamic stud-

ies of S4-S using surface plasmon resonance (SPR)

and isothermal titration calorimetry (ITC) revealed

that S4-S recognises a large surface area of RD [22].

In this study, we performed NMR and functional

mutation studies of S4-SS, which was designed for

such studies, and revealed that the aptamer binds to

RD using a large contact area, which is consistent with

the findings of our previous thermodynamic study.

Materials and methods

Expression and purification of AML1 RD and its

mutants

AML1 N-terminal fragment (amino acids 1–188, referred

to as the RD) and its mutants were prepared as described

previously [21,22]. The purified proteins were dialysed

against buffer [20 mM sodium phosphate (pH 6.5), 2 mM

magnesium acetate, 300 mM potassium acetate, 50% glyc-

erol and 1 mM DTT] and stored at �25 °C. The concentra-

tions of proteins were determined based on the molecular

absorption coefficient at 280 nm.

Aptamer preparation

S4-SS and its mutants were synthesised by in vitro tran-

scription as described previously [22]. The template of

Apt1-S was purchased from Hokkaido System Science Co.,

Ltd (Sapporo, Japan) and amplified by PCR. 50-(T)16-Pri-
mer was used to attach an A16-tag for use in SPR assays.

SPR assays

SPR assays were performed as described previously [22]

using a BIAcore X instrument (GE Healthcare, Sunnyvale,

CA, USA). A Langmuir (1 : 1) binding model was used to

analyse the association rate constant kon and the dissociation

rate constant koff. The dissociation constant Kd was also

determined as the ratio of koff to kon, and is presented as the

mean � standard error of three independent measurements.

NMR measurements

The RNA samples were annealed by heating at 95 °C for

5 min followed by snap cooling on ice. Purified S4-SS

and 15N-labelled S4-SS were dissolved in 20 mM sodium

phosphate (pH 6.5). Concentrations of S4-SS and 15N-

labelled S4-SS were 0.4 and 0.02 mM, respectively. NMR

spectra were measured using an Avance600 spectrometer

(Bruker BioSpin, Billerica, MA, USA). Spectra were

recorded at a probe temperature of 10 °C. The imino

proton resonances of G and U residues were distin-

guished by the 1H-15N heteronuclear multiple quantum

coherence (HMQC) spectrum measured with 15N-labelled

S4-SS [26]. Exchangeable proton resonances were assigned

by nuclear Overhauser effect spectroscopy (NOESY) in

H2O with a mixing time of 150 ms using the jump-and-

return scheme for water suppression [27].

Results

Truncation of aptamer for NMR analysis

We had already constructed S4-S, which comprises

two stem loops (stem II and III) and one multi-

branched loop from the 17th to 61st nucleotide of S4,

the 50-GGA for effective transcription initiation by T7

RNA polymerase, and a 30-UCCA for stabilising the

stem I structure, resulting in a length of 52 nucleotides

(Fig. 1A, B) [22]. For functional mutation study of the

aptamer, it is useful to stabilise the conformation of

the aptamer because mutations may sometimes induce

large conformational change. It is difficult to judge

whether the mutated residue is involved in direct inter-

action or important for folding of the active conforma-

tion, if conformational change is easily induced by a

mutation. Thus, we designed S4-SS (44 nucleotides), in

which GAUA of stem loop II is replaced by a stable

UUCG tetraloop and stem loop III is shortened and

also capped by a stable UUCG tetraloop (Fig. 1C). As

the UUCG tetraloop has been well characterised by
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NMR [28,29], substitution of the stem loops by the

tetraloop helped us analyse the NMR spectra of the

aptamer.

The apparent dissociation constant (Kd) of S4-SS

for RD binding, calculated from the SPR profiles, was

0.289 � 0.006 nM, whereas those of S4 and S4-S were

0.044 � 0.002 and 0.034 � 0.004 nM, respectively

(Table 1). Substitution of the two stem loops by the

UUCG tetraloop had limited effects on binding

affinity.

Analysis of the secondary structure of S4-SS by

NMR

To confirm the secondary structure of S4-SS, a

NOESY spectrum was measured and imino proton

Fig. 1. Design of S4-SS for NMR and mutational studies. Predicted secondary structures of S4 (A), S4-S (B) and S4-SS (C). The 50-end and

30-end of stem I were truncated for S4-S. The GAUA loop of stem loop II was replaced by UUCG tetraloop, and stem loop III was shortened

and capped by UUCG tetraloop for S4-SS.

Table 1. Binding affinities of S4 mutants to the Runt domain.

Substitution kon (M�1�s�1) 9 106 a koff (s
�1) 9 10�3 a Kd (nM)a Relative affinityb

S4c 9.1 � 0.1 0.40 � 0.02 0.044 � 0.002 6.6

S4-Sc 10.7 � 0.3 0.37 � 0.06 0.034 � 0.004 8.5

S4-SS 8.6 � 0.5 2.5 � 0.2 0.289 � 0.006 1

C5GG39C 10.2 � 0.4 1.8 � 0.2 0.18 � 0.02 1.6

C6A – – > 1.0 9 103 d < 3 9 10�4

U7C 1.03 � 0.06 37 � 4 35 � 3 0.008

G8CC21G 9.6 � 0.7 9.9 � 0.5 1.04 � 0.09 0.28

C9GG20C – – > 1.0 9 103 < 3 9 10�4

C10GG19C – – > 1.0 9 103 < 3 9 10�4

A11G 8.9 � 0.2 24 � 1 2.7 � 0.1 0.11

C12GG17C 7.4 � 0.3 37 � 1 4.94 � 0.01 0.06

G22A 7.6 � 0.8 37 � 4 4.8 � 0.2 0.06

C23A 13 � 1 5.2 � 0.1 0.39 � 0.02 0.74

G24A 12 � 1 15 � 1 1.3 � 0.2 0.22

G25CC34G 10.7 � 0.5 4.03 � 0.03 0.38 � 0.02 0.76

U35C 5.7 � 0.9 60 � 8 10.6 � 0.6 0.03

A36U 10 � 1 14 � 2 1.3 � 0.3 0.22

A37U – – > 1.0 9 103 < 3 9 10�4

C38U – – > 1.0 9 103 < 3 9 10�4

aA Langmuir (1 : 1) binding model was used to analyse the association rate constant, kon, and the dissociation rate constant, koff. The disso-

ciation constant, Kd, was also determined as the ratio of koff and kon as follows: Kd = koff/kon, and is presented as the mean � SE (n = 3).
bRelative affinity was calculated with the affinity of S4-SS set as 1. cThese data are taken from a previous report [22]. dKd values were esti-

mated as > 103 nM if the increase in RU was too small to calculate the Kd values when 1.0 9 103 nM RD was injected.
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signals were assigned (Fig. 2). The assignment of

imino proton signals was confirmed using the 1H-15N

HMQC spectrum. Imino proton signals for guanosine

residues of UUCG tetraloops were observed at around

10 ppm, which is a typical value for them [28,29].

NOE connectivities for imino proton resonances of

G1–G2–U41–G40–G39, G8–G20–G19, G17–G16 and

U35–G24–G25–G26–U32–G31 revealed the formation

of three stems, two hairpin loops and one multi-

branched loop. Furthermore, imino proton signals of

the G24–U35 base pair were observed and a typical

strong NOE signal between them was observed.

However, those of the U7–G22 base pair were not

observed, suggesting that the G24–U35 base pair is

stably formed, although the U7–G22 base pair is not

formed.

Base specificity of S4-SS for RD binding

To analyse the base specificity of S4-SS for RD bind-

ing, we performed mutation analysis. Dissociation con-

stants of S4-SS mutants were studied by SPR

(Table 1, Fig. S1). Mutations at two CG base pairs

(C9G–G20C and C10G–G19C), C6G, A37U and

C38U markedly diminished the binding activity. Thus,

it was suggested that these bases directly interact with

RD (Fig. 3A; red). Mutations at the C12G–G17C base

pair, U7C, G22A and U35C had moderate effects on

binding affinity (1/10 > 1/1000 of S4-SS) (Fig. 3A;

orange). However, mutations at three CG base pairs

(C5G–G39C, G8C–C21G and G25C–C34G), A11G,

C23A, G24A and A36U had almost no effect or little

effect on binding affinity (> 1/10 of S4-SS) (Fig. 3A;

grey).

We previously reported that RD binds to the DNA-

mimicking motif of Apt1-S, in which C13, C14, G21,

G23 and G25 correspond to the nucleotides C60, C70,
G3, G5 and G6, respectively, in RDE (Fig. 3) [21].

Although the effect of mutation at the C12G–G17C

base pair on S4-SS binding to RD is smaller than that

on Apt1-S binding, mutations at C9G–G20C and

C10G–G19C completely abolished the binding affinity

of S4-SS, as was also the case for Apt1-S. Thus, it was

suggested that stem II of S4-SS containing C9, C10,

G17, G19 and G20 adopts the DNA-mimicking motif,

as was the case for Apt1-S.

RD amino acid residues required for S4-SS

binding

Next, we performed mutational analysis of RD to

determine whether S4-SS binds to the same amino acid

residues as in the case of Apt1-S and RDE. The crys-

tal structure of the RD–RDE complex showed that

R80, V170, D171, R174 and R177 are involved in the

direct interaction with DNA bases as follows: R80

contacts the N7 and O6 atoms of G3; V170 contacts

the C5 atom of C70; D171 contacts the N4 atoms of

C70 and C60; R174 contacts the N7 and O6 atoms of

G5; and R177 contacts the N7 and O6 atoms of G6

(Fig. 3C) [16]. Therefore, these five residues were

replaced with alanine and the resulting binding affini-

ties of S4-SS were analysed by SPR (Table 2, Fig. S2).

Alanine substitution at either D171 or R174 signifi-

cantly reduced the binding to S4-SS, whereas the V170

mutant showed no marked change in binding, which is

similar to the case of Apt1-S and RDE. On the con-

trary, mutations at R80 and R177 had moderate

effects on the binding affinity to S4-SS, whereas these

mutations markedly diminished the binding affinity to

Fig. 2. 1H-15N HMQC and NOESY spectra of S4-SS in H2O and

assignment of imino proton signals. 1D imino proton spectrum

(upper), 1H-15N HMQC spectrum (middle) and 2D NOESY (mixing

time = 150 ms) spectrum (lower) of S4-SS are shown. NOE

connectivities are indicated by lines. Assignments were

determined by NOE connectivities for imino proton resonances of

G1–G2–U41–G40–G39, G8–G20–G19, G17–G16 and U35–G24–

G25–G26–U32–G31, which are shown on top of the 1D imino

proton spectrum.
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Apt1-S. Therefore, the binding of S4-SS to RD dif-

fered slightly from that of Apt1-S, although there was

basic similarity between them.

Discussion

Secondary structure analysis of S4-SS by NMR

showed the formation of three stems (stems I, II and

III), two hairpin loops and one multibranched loop.

Mutational analysis of the aptamer revealed that the

three CG base pairs (C9–G20, C10–G19 and C12–
G17) in stem II are important for RD binding,

although the mutation at the C12–G17 base pair had

moderate effects on binding affinity (Table 1). A com-

parison of the secondary structures of S4-SS, Apt1-S

and RDE suggested that the nucleotides whose bases

are recognised by the RD in S4-SS, C9, C10, G17,

G19 and G20 correspond to nucleotides C13, C14,

G21, G23 and G25 in Apt1-S or C60, C70, G3, G5 and

G6 in RDE, respectively (Fig. 3). Therefore, it was

suggested that these nucleotides in S4-SS constitute the

DNA-mimicking motif similar to the case of Apt1-S.

Although S4-SS seems to have the DNA-mimicking

motif, the degree of importance of the motif in S4-SS dif-

fers from those in Apt1-S and RDE. Mutations at C12–
G17 in S4-SS (C16–G21 in Apt1-S; C90-G3 in RDE) and

R80, which contact each other directly, showed complete

loss of binding activity in the case of Apt1-S and RDE

[21]; however, they showed limited effects on S4-SS bind-

ing. Furthermore, C6, A37 and C38 are more important

than C12–G17 for aptamer binding. Thus, it was sug-

gested that the base specificity of S4-SS is slightly differ-

ent from that of Apt1-S or RDE.

The intensive analyses of an RNA aptamer against

the NF-jB p50 homodimer (p50)2 revealed that the

aptamer binds to the DNA-binding site of a

transcription factor by mimicking DNA [30–32]. The

RNA aptamer against (p50)2 had no resemblance to

the target DNA in terms of sequence and secondary

structure. However, comparison of crystal structures

revealed that a DNA guanine recognised by NF-jB
p50 is replaced by two uracils in the NF-jB p50–ap-
tamer complex. Thus, the aptamer mimics the target

DNA elements with its tertiary structure, but the base

specificity is different from that of DNA. The knowl-

edge obtained from studies of NF-jB p50–aptamer

and our current results that base specificity differs

slightly from that of Apt1-S and RDE suggested to us

that we can obtain aptamers that bind to RD without

a DNA-mimicking sequence by carrying out SELEX

using different conditions, primers and so on.

Gelinas et al. [33] analysed the crystal structures of

aptamer–protein complexes and showed that the sizes

of the interaction surface area between aptamers and

proteins cover a wider range (348–2599 �A2) than those

between antibodies and proteins (560–1300 �A2). How-

ever, binding affinity is not necessarily correlated with

Fig. 3. Comparison of mutational analysis of S4-SS with that of Apt1-S. (A) Summary of mutational analysis of S4-SS. The very important

residues are coloured red, at which mutation diminished the binding. The moderately important residues are coloured orange, at which

mutation decreased the binding from 1/10 to 1/1000 of S4-SS. The unimportant residues are coloured grey. (B) Effect of mutation on Apt1-S

as reported previously [21]. The importance of residues is represented by their colouring, the same as in panel A. (C) RD binding to RDE.

The interactions are indicated by arrows, as revealed by the crystal structure [16].

Table 2. Binding affinities Kd of RD mutants to S4-SS.a

Substitution S4-SS Apt1-Sb RDEb

Wild-type 0.289 � 0.006 0.99 � 0.02 9.6 � 0.2

R80A 9.0 > 1.0 9 103 > 1.0 9 103

V170A 0.3 0.88 � 0.07 7.2 � 0.2

D171A 140 > 1.0 9 103 > 1.0 9 103

R174A > 1.0 9 103 c > 1.0 9 103 > 1.0 9 103

R177A 6.1 > 1.0 9 103 60 � 7

aA Langmuir (1 : 1) binding model was used to analyse the dissoci-

ation constant, Kd.
bThese data are taken from a previous report

[21]. cKd values were estimated as > 103 nM if the increase in RU

was too small to calculate the Kd values when 1.0 9 103 nM RD

mutant was injected.
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the size of the binding surface. They analysed the

shape complementarity index (SC) [34] and suggested

that shape complementarity is also important for bind-

ing affinity, which is accomplished by the structural

plasticity of RNA aptamers, having a high degree of

torsional flexibility. In our previous kinetic and ther-

modynamic studies using SPR and ITC, we proposed

that S4-S binds to RD with long-range electrostatic

force in the early stage of the association and then S4-

S changes its conformation and recognises the large

surface area of RD by optimal hydrogen bonding, van

der Waals contact and/or hydrophobic interaction [22].

Combining the mutation data with previous data, we

assume that S4-S recognises the large surface area of

RD by DNA-mimicking motif and the multibranched

loop.

In summary, NMR and mutational analyses have

shown the binding properties of S4-SS binding to RD.

We revealed that a high affinity of S4-SS to RD is

achieved by the multiple contacts of DNA-mimicking

motif and multibranched loop. Our results including

those described in previous reports may be useful for

the rational design of aptamers against many other

proteins.
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