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In order to improve the theoretical prediction of the electron anomalous magnetic moment ae we have
carried out a new numerical evaluation of the 389 integrals of Set V, which represent 6,354 Feynman vertex
diagrams without lepton loops. During this work, we found that one of the integrals, called X024, was given
a wrong value in the previous calculation due to an incorrect assignment of integration variables. The
correction of this error causes a shift of −1.26 to the Set V contribution, and hence to the tenth-order

universal (i.e., mass-independent) term Að10Þ
1 . The previous evaluation of all other 388 integrals is free from

errors and consistent with the new evaluation. Combining the new and the old (excluding X024)
calculations statistically, we obtain 7.606ð192Þðα=πÞ5 as the best estimate of the Set V contribution.
Including the contribution of the diagrams with fermion loops, the improved tenth-order universal term

becomes Að10Þ
1 ¼ 6.675ð192Þ. Adding hadronic and electroweak contributions leads to the theoretical

prediction aeðtheoryÞ ¼ 1159652182.032ð720Þ × 10−12. From this and the best measurement of ae, we
obtain the inverse fine-structure constant α−1ðaeÞ ¼ 137.0359991491ð331Þ. The theoretical prediction of
the muon anomalous magnetic moment is also affected by the update of QED contribution and the new
value of α, but the shift is much smaller than the theoretical uncertainty.

DOI: 10.1103/PhysRevD.97.036001

I. INTRODUCTION AND SUMMARY

In 1947 the electron magnetic moment anomaly ae ¼
ðg − 2Þ=2 was discovered in an atomic physics experiment
[1], which was soon understood as the effect of radiative
correction by the newly formulated quantum electrody-
namics (QED) [2]. Since then comparison of measurement
and theory of ae has provided more and more stringent test
of QED and the standard model (SM) of elementary
particles.
The most accurate measurement of ae thus far has been

carried out by the Harvard group using a cylindrical
Penning trap [3,4]:

aeðHV08Þ ¼ 1 159 652 180.73 ð28Þ × 10−12½0.24 ppb�:
ð1Þ

The precision of this value is fifteen times higher than that
of the pioneering work by the group at the University of
Washington [5]. Further improvements for the electron and
positron measurements are currently being prepared by the
Harvard group [6].
To test the validity of the theory of ae, it must be

evaluated to match the precision of the measurement (1).
The dominant contribution comes from QED, while at such
a precision, the SM contribution can no longer be ignored.
Thus we can write

ae ¼ aeðQEDÞ þ aeðHadronÞ þ aeðWeakÞ: ð2Þ

The QED contribution can be expressed further, by taking
the heavier leptons (μ and τ) into account, as

aeðQEDÞ ¼ A1 þ A2ðme=mμÞ þ A2ðme=mτÞ
þ A3ðme=mμ; me=mτÞ: ð3Þ

Note that the mass-dependence appears in the form of mass
ratio because ae is dimensionless. All four terms are
expressed in the perturbation series of the fine-structure
constant α
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Since the electron is the lightest lepton, contributions from
heavier particles are suppressed and tiny, although not
negligible.
The QED contribution involving heavy leptons are

known with sufficient precision. The muon and tau-lepton
contributions A2 and A3 of ae up to eighth order have been
calculated both numerically and analytically, with a good
agreement with each other [7–15]. The tenth-order mass-

dependent contribution Að10Þ
2 ðme=mμÞ has been evaluated

numerically [16–25]. Some of the tenth-order diagrams
have been independently calculated and checked [26]. The
tau-lepton contribution to the tenth-order term is currently
negligible compared to the A1 term since it is suppressed by
the factor ðme=mτÞ2 and contributes to ae no more than
Oð10−18Þ. Summing all mass-dependent terms, we obtain

aeðQED∶mass-dependentÞ ¼ 2.747 5719 ð13Þ × 10−12;

ð5Þ

where the uncertainty comes from the tau-electron mass
ratio. The uncertainty due to the muon-electron mass ratio is
one order of magnitude smaller and is about 0.13 × 10−18.
To compare the theory with the experiment, it is of

course necessary to evaluate the mass-independent
term A1 up to tenth order of perturbation theory, since
ðα=πÞ5 ∼ 0.07 × 10−12. The second-, fourth-, and sixth-
order terms were calculated analytically [2,27–29] or by
numerical or semianalytical means [30,31]:

Að2Þ
1 ¼ 0.5; ð6Þ

Að4Þ
1 ¼ −0.328 478 965 579 193…; ð7Þ

Að6Þ
1 ¼ 1.181 241 456 587…: ð8Þ

Recently, Laporta has reported a highly precise value of

the eighth-order term Að8Þ
1 , with an accuracy of 1100 digits,

after twenty years of persistent research [32]. Thus the
uncertainty due to the eighth-order term has been com-
pletely eliminated by his outstanding work. It took 36 years

since the preliminary value Að8Þ
1 ¼ −0.8 ð2.5Þ was reported

[33]. For the purpose of this article it is sufficient to list the
first ten digits of Laporta’s result:

Að8Þ
1 ½semi-analytic� ¼ −1.912 245 764…; ð9Þ

which confirms the validity of the earlier numerical
evaluation [34]

Að8Þ
1 ½numerical� ¼ −1.912 98 ð84Þ: ð10Þ

Although it is less accurate than (10), another semianalytic

result Að8Þ
1 ¼ −1.87 ð12Þ given in Ref. [35] is consistent

with both of preceding results (9) and (10). The contribu-

tion to Að8Þ
1 from the 518 vertex diagrams without a fermion

loop has also been independently cross-checked by using
numerical means [36].

The tenth-order mass-independent term Að10Þ
1 is thus the

only significant QED contribution which has not been
verified by independent calculations. It has a contribution
from 12,672 vertex-type Feynman diagrams. Of these
diagrams those that are dominant and the hardest to
evaluate belong to Set V, which consists of 6,354 vertex
diagrams without a fermion loop. Two of these vertex
diagrams have been evaluated by other means thus far.
Their values are given in Refs. [36,37]. We have com-
pressed all 6,354 vertex diagrams to 389 integrals by
certain algebraic manipulation. The preliminary value of
the contribution of Set Vobtained by numerical integration
by VEGAS was [34,38]

Að10Þ
1 ½Set V∶ 2015� ¼ 8.723 ð336Þ: ð11Þ

In order to improve this further, we have reevaluated these
389 integrals using independent sets of integration varia-
bles. The result is

Að10Þ
1 ½Set V∶ 2017� ¼ 7.791 ð264Þ; ð12Þ

which disagrees with (11) by −0.93.
This discrepancy arises mainly from the integral X024

expressing the contribution from Fig. 1, which represents
the sum of nine vertex diagrams. During the new evaluation
we found a programming error in the previous evaluation of
X024. When the error was corrected, its numerical value
shifted from −6.0902 ð246Þ to −7.3480 ð139Þ. The differ-
ence of −1.26 accounts for almost all the difference
between the values (11) and (12). If this correction of
X024 is added to the old result (11), we obtain

FIG. 1. Self-energy-like diagram X024ðabcbddeceaÞ. The
straight and wavy lines represent fermion and photon propaga-
tors, respectively. Indices assigned to the fermion lines are
1; 2;…; 9 from left to right, and those to the photon lines are
a; b;…; e. The nine vertex diagrams related to this self-energy-
like diagram are obtained by inserting an external photon vertex
in each of the nine fermion lines.
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Að10Þ
1 ½Set V∶ 2015 corrected� ¼ 7.465 ð335Þ; ð13Þ

which is consistent with the new value of Set V given in
Eq. (12). The details of the origin of the error in the X024
integral are discussed in Sec. V.
Since the new calculation (12) is independent of the old

one, two calculations can be statistically combined for each
integral. The best estimate for Set V then becomes

Að10Þ
1 ½Set V� ¼ 7.606 ð192Þ: ð14Þ

Adding the contribution from the 6,318 diagrams with
fermion loops [16–25]

Að10Þ
1 ½Set I–IV;VI� ¼ −0.930 42 ð361Þ ð15Þ

to (14), we obtain an updated value of the tenth-order mass-
independent contribution:

Að10Þ
1 ¼ 6.675 ð192Þ; ð16Þ

where the uncertainty comes entirely from the numerical
integration of Set Vand is reduced by 43% compared to that
in (11). This is the main result of our paper.
The contributions of the electroweak interaction and the

hadronic interaction have been updated recently [39]
including new hadronic measurements [40,41]:

aeðWeakÞ ¼ 0.030 53 ð23Þ × 10−12;

aeðHadronÞ ¼ f1.8490 ð108Þ − 0.2213 ð12Þ þ 0.0280 ð2Þ
þ 0.037 ð5Þg × 10−12

¼ 1.6927 ð120Þ × 10−12; ð17Þ

respectively, where the hadronic contribution consists of
the leading-order (LO), next-to-leading-order (NLO), and
next-to-next-to-leading-order (NNLO) vacuum-polarization
(VP) contributions and the hadronic light-by-light
scattering contribution from left to right. The combined
uncertainty of aeðHadronÞ is the one given in Eq. (5)
of Ref. [39].
It is noted that the same spectral function is used to

obtain the LO-, NLO-, and NNLO-VP contributions, and
their systematic uncertainties are correlated, as pointed out
in Refs. [42,43]. The correlation should be taken into
account to derive the combined uncertainty (17).
Summing up all the contributions of SM, we obtain the

theoretical prediction for ae as

aeðtheoryÞ ¼ 1 159 652 182.032 ð13Þð12Þð720Þ × 10−12;

ð18Þ

where the first and second uncertainties are due to the
tenth-order QED and the hadronic corrections, respectively.

The uncertainty due to the mass ratios of tau or muon to
electron is currently negligible. The third and largest
uncertainty comes from the fine-structure constant α.
Here, we used the latest value of α [44,45], determined
from the recoil measurement of the Rb atom h=MRb [46]
combined with the relative atomic mass of the electron AðeÞ
from the g-factor of the bound electron [44], the relative
atomic mass of the Rb atom AðRbÞ [47,48], and the
Rydberg constant R∞ [44]:

α−1ðRb∶2016Þ ¼ 137.035 998 995 ð85Þ; ð19Þ

which replaces the value given in Ref. [49],
α−1ðRb∶2010Þ ¼ 137.035 999 049 ð90Þ.
The new theoretical value of ae is greater by 0.38 ×

10−12 than that of Eq. (16) of Ref. [34]. The corrected and

updated Að10Þ
1 adds −0.08 × 10−12 to ae, the near-exact

value of Að8Þ
1 increases ae by 0.02 × 10−12, and the new

value αðRbÞ increases ae by 0.45 × 10−12. The shift due to
the new values of the electroweak and hadronic contribu-
tions is −0.01 × 10−12. The difference between experiment
(1) and theory (18) is thus

aeðHV08Þ − aeðtheoryÞ ¼ ð−1.30� 0.77Þ × 10−12: ð20Þ

If we assume that the theory of ae is correct, by equating
the formula Eq. (18) to the measured value Eq. (1), we
obtain an α which is more precise than that of (19):

α−1ðae∶2017Þ ¼ 137.035 999 1491 ð15Þð14Þð330Þ; ð21Þ

where the uncertainties come from the tenth-order QED,
the hadronic correction, and the experiment. The shift from
the previous value given in Eq. (18) of Ref. [34] amounts to

−0.87 × 10−8 and is due to the new values of Að8Þ
1 , Að10Þ

1 ,
and the electroweak and hadronic corrections. The differ-
ence between two determinations (21) and (19) of α is

α−1ðae∶2017Þ − α−1ðRb∶2016Þ ¼ ð0.155� 0.091Þ × 10−6:

ð22Þ

Since the updated QED contributions of Að8Þ
1 and Að10Þ

1

are universal for any lepton species, the theoretical pre-
diction of the muon anomalous magnetic moment (aμ)
should also be changed. The new value of the fine-structure
constant α derived from ae also causes a small shift in aμ.
The total shift caused by them is, however, far smaller than
the current theoretical uncertainty and has no significant
influence on comparison of theory and experiment of aμ.
The details of the updates of aμ are given in the Appendix.
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II. PREPARATION OF SET V FOR
NUMERICAL EVALUATION

QED is renormalizable. But individual Feynman dia-
grams are divergent. For numerical integration, it is
absolutely necessary that integrals do not contain any
divergence. This means that all divergences must be
removed before integration is carried out.
Another problem with Set V, which consists of 6,354

tenth-order vertex diagrams without a fermion loop, is its
huge size. It should be difficult to achieve high precision in
the numerical evaluation because of accumulation of
uncertainties of individual diagrams, even though each
diagram were evaluated precisely enough. Thus it is highly
desirable to reduce the number of independent integrals as
much as possible. One way to achieve such reduction is to
sum up 9 vertex diagrams obtained by inserting an external
photon vertex in each of 9 fermion lines in a tenth-order
electron self-energy diagram which does not contain a
closed fermion loop. Let ΣðpÞ be such a self-energy
diagram and Λνðp; qÞ the sum of 9 vertex diagrams related
to ΣðpÞ. Then, with the help of an equation derived from
the Ward-Takahashi identity, one finds

Λνðp; qÞ ≈ qμ

�∂Λμðp; qÞ
∂qν

�
q¼0

−
∂ΣðpÞ
∂pν

ð23Þ

in the small q limit. The sum of all vertex diagrams of Set V
can then be represented by 706 quantities of the form given
on the right hand side of Eq. (23), which we shall call “self-
energy-like” diagram. Taking the time-reversal symmetry
into account, we can reduce it further to 389 self-energy-
like diagrams which represent all vertex diagrams of Set V.
We assign Feynman parameters z1;…; z9 to nine fermion

lines and za;…; ze to five photon lines from the left to the
right. They are subject to the constraint z1 þ � � � þ z9þ
za þ � � � þ ze ¼ 1.
Each self-energy-like diagram is then represented by a

sequence of ten vertices on the fermion line labeled by the
photon Feynman parameters. For instance,X024 in Fig. 1 is
represented by the sequence “abcbddecea.”
The integral for a self-energy-like diagram G is defined in

the Feynman parameter space and has a form

MG ¼
�
−1
4

�
5

4!

Z
ðdzÞG

×

�
1

4

�
E0 þ C0

U2V4
þ E1 þ C1

U3V3
þ � � � þ E3 þ C3

U5V

�

þ
�
N0 þ Z0

U2V5
þ N1 þ Z1

U3V4
þ � � � þ N4 þ Z4

U6V

��
;

ð24Þ

where ðdzÞG ¼ dz1:::dz9dza:::dzeδð1 − z1 � � � − z9 − za � � �
−zeÞ, all zi being non-negative. En and Cn terms and Nn

and Zn terms are projected out from the first and second
terms of the right-hand side of Eq. (23), respectively. All
functions En, Cn,Nn, Zn, V;U are expressed in terms of the
Feynman parameters and the building blocks Ai, Bij; Cij for
i; j ¼ 1; 2;…; 9, which are polynomials of Feynman
parameters. The detailed definitions of these functions
are given in Refs. [50–52].
The bare amplitude MG is inherently ultraviolet (UV)

divergent. If the diagram G possesses a self-energy subdia-
gram, it suffers from infrared (IR) divergence as well.
Though we do not explicitly write them, the amplitude MG
is regularized by the Feynman cutoff for UV divergence
and the small photon mass for IR divergence. Both
regulators are safely and harmlessly removed after the
finite integral is constructed with the bare amplitude MG
and the corresponding UV and IR counterterms.
The UV divergence emerges with a self-energy or

vertex subdiagram, and the entire divergence structure is
obtained in the form of Zimmermann’s forests [53]. The
K-operation, which extracts the most UV-divergent part of
a subdiagram, is applied toMG according to Zimmermann’s
forest formula, and the UV subtraction terms are generated
[52,54]. For IR divergences, the divergent structure is given
by the annotated forests of self-energy subdiagrams to
which are assigned either magnetic moment or self-mass
properties. Either the I- or R-subtraction operation is
applied to MG according to the annotation to generate
the IR subtraction terms [34,55]. UV divergence arising
in the IR subtraction terms are further subtracted by
applying the K-operation to them.
The finite magnetic moment amplitude ΔMG as the

output of these operations on the diagram MG, made
UV-finite by K-operation and IR-finite by R- and/or
I-operations, is thus symbolically written as

ΔMG ¼MGþ
X
forests

ð−KSiÞ � � � ð−KSjÞMG

þ
X

annotatedforests

ð−ISiÞ � � � ð−ISjÞð−RSkÞ � � � ð−RSlÞMG:

ð25Þ
The sum over all diagrams is denoted as ΔM10

ΔM10 ¼
XX389

G¼X001

ΔMG; ð26Þ

where the time-reversal symmetric factor 2 is included in
the definition of ΔMG.
The procedure to generate the finite amplitude can be

handled in an automated way by the code-generating
program GENCODEN. It takes the one-line expression of
a diagram G using a sequence of photon labels on the
fermion line and creates the form of the bare amplitude. The
generator then identifies the divergent subdiagrams and
their forests, and constructs the corresponding UV and IR
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subtraction terms. Finally, the finite amplitude ready to be
integrated by the numerical integration routine is generated
[34,55]. Numerical integration of individual ΔMG is
described in the next section.

III. NUMERICAL INTEGRATION
OF ΔM10 BY VEGAS

Because of the linear constraint imposed on the
14 Feynman parameters, the integration domain ðdzÞG is
a 13 dimensional hyperplane. For a diagram which has no
self-energy subdiagrams, the 14 Feynman parameters of the
integrand are mapped onto a 13 dimensional unit hyper-
cube that is the integration domain of the integration
algorithm VEGAS. There are many ways to realize the
mapping from the 14 Feynman parameters to the 13
integration variables. Analytically any choices of mapping,
of course, give the same value.
For a diagram with a self-energy subdiagram, we

can reduce the number of integration variables. After
projecting out the magnetic moment contribution from a
self-energy-like diagram, the integrand depends only on the
sum of the adjacent Feynman parameters zi−1 þ zjþ1, if the
diagram contains a self-energy subdiagram Sij containing
the fermion lines fi; iþ 1;…; j − 1; jg from the left to
the right. In the case of X024 (abcbddecea), it contains
two self-energy subdiagrams S28 and S55 so that the
integrand of X024 depends on the sums z19 ≡ z1 þ z9
and z46 ≡ z4 þ z6. The X024 can then be numerically
evaluated on a 11-dimensional hypercube instead of a
13-dimensional one.
Such reduction of independent variables is related to the

loop topology of the Feynman diagram. The adjacent
fermion lines attached to a self-energy subdiagram can
be regarded topologically as the same line. Since they are
determined by and only by the loop topology of a diagram,
the building blocks Bi−1;k and Bjþ1;k for any k have exactly
the same expression if the indices i − 1 and jþ 1 belong
to the adjacent fermion lines of the same self-energy
subdiagram Sij. The scalar currents Ai of the adjacent
fermion lines are also exactly the same because the
vanishing limit of the transfer momentum (q → 0) is taken
when the magnetic moment contribution is projected out.
For the case of X024, the adjacent fermion lines z1 and z9
lead to B1k ¼ Bk9ð¼ Bk1 ¼ B9kÞ for any k of the fermion
and photon lines. For the scalar currents, A1 ¼ A9.
Implementation to these features into GENCODEN is
straightforward. The resulting integrand becomes much
shorter, almost halved in many cases, that enables us to
reduce the computational cost significantly.
Among the 389 self-energy-like diagrams of Set V, the

254 diagrams have at least one self-energy subdiagram.
They are grouped as XB, and have been evaluated with
dimensions from 9 to 12, depending on the numbers of self-
energy subdiagrams involved. The remaining 135 diagrams

that are grouped as XL receive only vertex corrections, and
have been evaluated with 13 dimensions.
An XB integrand has at least one IR subtraction term.

The cancellation of the IR divergence within the integrand
is in the form of the inverse power law of the vanishing
photon mass. Some of the XB integrals suffer from very
severe round-off errors for finite numerical precision, and
the VEGAS integration breaks down while the integration
is iterated. The simplest solution to this digit-deficiency
problem is to use an extended precision for real numbers. In
order to accelerate the convergence of numerical calcu-
lation on a computer, an algorithm that realizes double-
double (DD) precision [56] has been adopted. The arrayed
version of the DD library was prepared by one of us (T. A.)
and used for productive execution. The 253 of 254 XB
integrals have been evaluated with the DD precision in the
entire integration domain.
The diagram X008 (abbccddeea) suffers from the most

severe IR cancellation, and needs the quadruple-double
(QD) precision for real numbers [56] in some part of the
integration domain. We divided the entire integration
domain of X008 into four, and applied the QD precision
for the most dangerous but narrow region. The DD precision
is used for the regions including the dangerous edges. In the
remaining wide region, the shape of the integrand X008 is
relatively smooth, and the double precision is sufficient to
carry out the integration. The same division rule were also
adopted for the previous calculation. We moved the borders
between four regions slightly in the new calculation.
Unlike IR divergences, UV divergence is in powers of

logarithms at most. The double precision for real numbers
implemented in a standard hardware is sufficient to handle
the UV cancellation. The XL integrals involve no IR
subtraction terms and have only UV subtraction terms.
They were therefore evaluated in double precision.
It is found that the elapsed wall-clock time needed for

VEGAS to perform one iteration of an integration strongly
depends on the array parameter of the arrayed DD library.
After many trial runs, we determined the array parameters
for computers of three different architectures to make
numerical computation of Set V as fast as possible.
We follow the next procedure for a VEGAS integration:

We start from a flat grid structure. The grid is adjusted
automatically after each iteration with 107 sampling points,
that is iterated for 50 times. Then the number of sampling
points is increased to 108 in several steps, and additional 50
iterations are carried out. After a good grid structure is
formed, the productive calculation starts with sampling
points 2.56 × 109 or 4 × 109 per iteration, depending on the
difficulty of the integration. The iteration is repeated at least
2 times, until the estimated uncertainty of VEGAS for the
integration result decreases to less than 0.025.
The twelve integrals showing slow convergence

and larger uncertainties were evaluated once more
with different mappings on a new computer system,
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TABLE I. VEGAS integration results of X001–X389 of the tenth-order Set V diagrams. The first and second columns show the
diagram name and its representation in terms of photon indices, respectively. The third and fourth columns list the VEGAS integration
results used in Ref. [34] and the new VEGAS integration result of this work, respectively. An uncertainty of the integral corresponds to a
1.65σ, which is 90% confidence level, determined by VEGAS assuming gaussian distribution of statistical ensembles for the integral.
The difference of two results is listed in the fifth column. The weighted average of the third and fourth columns is listed in the last
column. The old result of X024 from Ref. [34] is incorrect and is removed from the third column. The integral X024 is thus not averaged
over the third and fourth columns.

Diagram G Expression Value (Error) in Ref. [34] Value (Error) in this work Difference Weighted average

X001 abacbdcede −0.1724 (92) −0.1591 (35) −0.0133 −0.1608 (33)
X002 abaccddebe −5.9958 (333) −5.9488 (176) −0.0471 −5.9591 (156)
X003 abacdbcede −0.1057 (52) −0.1048 (18) −0.0009 −0.1049 (17)
X004 abacdcdebe 5.1027 (339) 5.1019 (182) 0.0007 5.1021 (160)
X005 abacddbece 1.1112 (168) 1.0973 (212) 0.0138 1.1058 (131)
X006 abacddcebe −5.2908 (245) −5.2942 (215) 0.0033 −5.2927 (161)
X007 abbcadceed −3.4592 (254) −3.4319 (217) −0.0273 −3.4434 (165)
X008 abbccddeea −16.5070 (289) −16.4999 (201) −0.0071 −16.5022 (165)
X009 abbcdaceed −3.1069 (71) −3.1336 (174) 0.0267 −3.1107 (65)
X010 abbcdcdeea 11.2644 (342) 11.2817 (178) −0.0173 11.2780 (158)
X011 abbcddaeec 6.0467 (338) 6.0445 (183) 0.0022 6.0450 (161)
X012 abbcddceea −9.3328 (267) −9.3587 (211) 0.0259 −9.3488 (166)
X013 abcabdecde −1.3710 (31) −1.3759 (9) 0.0049 −1.3755 (9)
X014 abcacdedbe 0.8727 (42) 0.8789 (15) −0.0062 0.8782 (14)
X015 abcadbecde 2.1090 (8) 2.1107 (4) −0.0017 2.1103 (4)
X016 abcadcedbe −0.9591 (7) −0.9588 (3) −0.0003 −0.9588 (3)
X017 abcaddebce 0.5146 (13) 0.5162 (20) −0.0016 0.5151 (11)
X018 abcaddecbe 0.0309 (13) 0.0323 (21) −0.0014 0.0313 (11)
X019 abcbadeced 1.2965 (48) 1.3028 (15) −0.0063 1.3022 (14)
X020 abcbcdedea −8.1900 (318) −8.1534 (187) −0.0366 −8.1628 (161)
X021 abcbdaeced −0.2948 (15) −0.2954 (9) 0.0006 −0.2952 (8)
X022 abcbdcedea 0.8892 (226) 0.8839 (211) 0.0053 0.8864 (154)
X023 abcbddeaec 0.4485 (55) 0.4543 (103) −0.0058 0.4498 (49)
X024 abcbddecea − −7.3481 (139) − −7.3481 (139)
X025 abccadeebd −0.7482 (194) −0.7585 (219) 0.0103 −0.7528 (145)
X026 abccbdeeda −7.8258 (277) −7.8213 (210) −0.0045 −7.8230 (167)
X027 abccdaeebd −2.3260 (54) −2.3185 (68) −0.0075 −2.3231 (42)
X028 abccdbeeda 4.5663 (342) 4.5459 (177) 0.0204 4.5502 (157)
X029 abccddeeab 6.9002 (233) 6.9066 (183) −0.0064 6.9042 (144)
X030 abccddeeba −12.6225 (342) −12.6385 (193) 0.0160 −12.6346 (168)
X031 abcdaebcde 2.3000 (14) 2.3011 (8) −0.0011 2.3009 (6)
X032 abcdaecdbe −0.2414 (6) −0.2422 (4) 0.0008 −0.2420 (3)
X033 abcdaedbce −1.3806 (7) −1.3809 (4) 0.0003 −1.3808 (3)
X034 abcdaedcbe 1.2585 (9) 1.2599 (5) −0.0014 1.2595 (4)
X035 abcdbeaced −0.5899 (3) −0.5899 (2) −0.0000 −0.5899 (1)
X036 abcdbecdea 0.2318 (11) 0.2327 (22) −0.0009 0.2320 (10)
X037 abcdbedaec −0.7407 (5) −0.7410 (2) 0.0003 −0.7409 (2)
X038 abcdbedcea −0.2927 (14) −0.2919 (21) −0.0008 −0.2924 (11)
X039 abcdceaebd 0.3292 (12) 0.3307 (9) −0.0015 0.3301 (7)
X040 abcdcebeda 1.3397 (50) 1.3434 (66) −0.0037 1.3411 (40)
X041 abcdcedeab 3.1076 (94) 3.1219 (160) −0.0143 3.1113 (81)
X042 abcdcedeba −4.1353 (192) −4.1235 (218) −0.0119 −4.1301 (144)
X043 abcddeeabc −2.9620 (29) −2.9633 (53) 0.0013 −2.9623 (25)
X044 abcddeebca 4.4121 (281) 4.3654 (160) 0.0467 4.3769 (139)
X045 abcddeecab 3.4331 (212) 3.4338 (206) −0.0007 3.4335 (148)
X046 abcddeecba −7.7564 (339) −7.7945 (187) 0.0382 −7.7856 (163)
X047 abcdeabcde −4.4496 (40) −4.4602 (11) 0.0106 −4.4594 (11)
X048 abcdeacdbe −0.8061 (8) −0.8058 (4) −0.0003 −0.8058 (3)
X049 abcdeadbce −0.0278 (7) −0.0280 (3) 0.0003 −0.0280 (3)
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TABLE I. (Continued)

Diagram G Expression Value (Error) in Ref. [34] Value (Error) in this work Difference Weighted average

X050 abcdeadcbe −1.2213 (9) −1.2213 (5) −0.0000 −1.2213 (4)
X051 abcdebaced −0.1776 (6) −0.1774 (4) −0.0001 −0.1775 (3)
X052 abcdebcdea 1.0293 (17) 1.0279 (30) 0.0014 1.0289 (15)
X053 abcdebdaec 0.3699 (4) 0.3702 (2) −0.0002 0.3701 (2)
X054 abcdebdcea −0.5174 (11) −0.5196 (20) 0.0023 −0.5179 (9)
X055 abcdecaebd −0.3673 (4) −0.3679 (2) 0.0006 −0.3677 (1)
X056 abcdecbeda −0.2650 (27) −0.2608 (42) −0.0042 −0.2637 (23)
X057 abcdecdeab 2.7370 (31) 2.7385 (58) −0.0015 2.7373 (27)
X058 abcdecdeba −5.2510 (70) −5.2249 (140) −0.0261 −5.2457 (63)
X059 abcdedeabc 2.1866 (28) 2.1758 (50) 0.0108 2.1841 (24)
X060 abcdedebca −3.2089 (188) −3.1792 (216) −0.0297 −3.1962 (142)
X061 abcdedecab −3.7724 (137) −3.7874 (216) 0.0149 −3.7767 (116)
X062 abcdedecba 5.9174 (262) 5.8861 (219) 0.0313 5.8990 (168)
X063 abcdeeabcd 3.4295 (14) 3.4297 (26) −0.0002 3.4296 (12)
X064 abcdeeacbd −0.2772 (8) −0.2779 (14) 0.0008 −0.2774 (7)
X065 abcdeebadc 0.1551 (13) 0.1580 (21) −0.0029 0.1559 (11)
X066 abcdeebcda −3.6145 (45) −3.6177 (81) 0.0033 −3.6152 (39)
X067 abcdeecdab −1.6761 (85) −1.6853 (168) 0.0092 −1.6780 (76)
X068 abcdeecdba 2.7855 (217) 2.7540 (205) 0.0315 2.7689 (149)
X069 abcdeedabc −1.2627 (31) −1.2690 (45) 0.0063 −1.2647 (25)
X070 abcdeedbca 3.2149 (144) 3.2001 (212) 0.0148 3.2102 (119)
X071 abcdeedcab 3.7025 (96) 3.6943 (187) 0.0083 3.7008 (85)
X072 abcdeedcba −5.5704 (208) −5.5658 (209) −0.0047 −5.5681 (147)
X073 abacbdceed 3.4114 (254) 3.3929 (212) 0.0184 3.4005 (162)
X074 abacbddece 4.4104 (251) 4.3889 (212) 0.0215 4.3978 (162)
X075 abacbddeec −8.1138 (340) −8.0608 (195) −0.0531 −8.0739 (169)
X076 abacbdecde −5.3405 (74) −5.3407 (31) 0.0003 −5.3407 (29)
X077 abacbdeced 3.5459 (86) 3.5604 (51) −0.0146 3.5567 (43)
X078 abacbdedce 1.1666 (80) 1.1778 (48) −0.0112 1.1748 (41)
X079 abacbdedec 5.3956 (305) 5.4128 (205) −0.0173 5.4075 (170)
X080 abacbdeecd 0.4597 (257) 0.4648 (217) −0.0051 0.4627 (166)
X081 abacbdeedc −5.6566 (248) −5.6298 (217) −0.0268 −5.6414 (163)
X082 abaccdbeed −8.5156 (348) −8.4810 (195) −0.0345 −8.4893 (170)
X083 abaccddeeb 18.7464 (346) 18.7522 (207) −0.0057 18.7507 (177)
X084 abaccdebde 8.9888 (129) 8.9968 (209) −0.0080 8.9911 (110)
X085 abaccdebed −2.2833 (197) −2.2933 (213) 0.0100 −2.2879 (144)
X086 abaccdedbe 0.5180 (223) 0.5162 (218) 0.0018 0.5171 (155)
X087 abaccdedeb −16.5849 (349) −16.5942 (173) 0.0093 −16.5923 (155)
X088 abaccdeebd −5.2606 (340) −5.2320 (197) −0.0286 −5.2392 (171)
X089 abaccdeedb 12.6789 (341) 12.6723 (194) 0.0066 12.6739 (169)
X090 abacdbceed 1.5206 (130) 1.5285 (211) −0.0079 1.5228 (111)
X091 abacdbdece −1.6355 (97) −1.6320 (58) −0.0035 −1.6330 (50)
X092 abacdbdeec 2.1303 (218) 2.1083 (201) 0.0220 2.1184 (147)
X093 abacdbecde −1.7594 (42) −1.7538 (16) −0.0056 −1.7545 (15)
X094 abacdbeced −1.0419 (67) −1.0406 (20) −0.0014 −1.0407 (19)
X095 abacdbedce 0.5838 (35) 0.5875 (11) −0.0037 0.5872 (11)
X096 abacdbedec 1.3458 (73) 1.3495 (22) −0.0037 1.3492 (21)
X097 abacdbeecd 5.0319 (89) 5.0183 (195) 0.0136 5.0296 (81)
X098 abacdbeedc −1.9806 (183) −2.0218 (215) 0.0411 −1.9979 (139)
X099 abacdcbeed 3.0771 (187) 3.0553 (218) 0.0218 3.0678 (142)
X100 abacdcdeeb −15.2919 (331) −15.2360 (203) −0.0559 −15.2513 (173)
X101 abacdcebde −0.2462 (64) −0.2397 (26) −0.0065 −0.2406 (24)
X102 abacdcebed −1.2883 (75) −1.2953 (34) 0.0070 −1.2941 (31)
X103 abacdcedbe 0.9424 (74) 0.9482 (21) −0.0057 0.9477 (20)
X104 abacdcedeb 6.4131 (298) 6.3706 (217) 0.0426 6.3853 (175)
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TABLE I. (Continued)

Diagram G Expression Value (Error) in Ref. [34] Value (Error) in this work Difference Weighted average

X105 abacdceebd 3.0503 (215) 3.0491 (216) 0.0012 3.0497 (152)
X106 abacdceedb −11.5662 (344) −11.5384 (201) −0.0277 −11.5455 (174)
X107 abacddbeec −4.6573 (345) −4.6265 (193) −0.0308 −4.6338 (168)
X108 abacddceeb 12.9775 (341) 12.9927 (193) −0.0152 12.9890 (168)
X109 abacddebce −0.0860 (85) −0.0841 (182) −0.0019 −0.0857 (77)
X110 abacddebec 1.9248 (204) 1.9014 (204) 0.0234 1.9131 (144)
X111 abacddecbe 3.3578 (132) 3.3641 (190) −0.0062 3.3599 (108)
X112 abacddeceb −11.8998 (332) −11.8990 (208) −0.0008 −11.8992 (176)
X113 abacddeebc −4.3847 (322) −4.4412 (176) 0.0565 −4.4282 (155)
X114 abacddeecb 11.0641 (343) 11.0287 (196) 0.0355 11.0374 (170)
X115 abacdebcde −0.5974 (52) −0.6028 (20) 0.0054 −0.6020 (19)
X116 abacdebced 1.8362 (28) 1.8400 (11) −0.0038 1.8394 (10)
X117 abacdebdce 0.3292 (27) 0.3309 (10) −0.0016 0.3307 (9)
X118 abacdebdec −3.2721 (55) −3.2764 (16) 0.0043 −3.2761 (16)
X119 abacdebecd −0.0751 (53) −0.0716 (18) −0.0035 −0.0720 (17)
X120 abacdebedc 1.8769 (72) 1.8847 (22) −0.0078 1.8840 (21)
X121 abacdecbde −0.8549 (43) −0.8511 (14) −0.0039 −0.8515 (13)
X122 abacdecbed −0.7337 (42) −0.7346 (15) 0.0008 −0.7345 (14)
X123 abacdecdbe −3.3559 (67) −3.3564 (21) 0.0004 −3.3563 (20)
X124 abacdecdeb 11.5746 (106) 11.5778 (204) −0.0033 11.5752 (94)
X125 abacdecebd 0.8677 (64) 0.8710 (19) −0.0033 0.8707 (18)
X126 abacdecedb −1.5696 (162) −1.5809 (199) 0.0113 −1.5741 (125)
X127 abacdedbce 1.1412 (46) 1.1495 (17) −0.0083 1.1484 (16)
X128 abacdedbec 0.6493 (59) 0.6521 (17) −0.0027 0.6518 (16)
X129 abacdedcbe 1.4833 (70) 1.4890 (21) −0.0057 1.4885 (20)
X130 abacdedceb −1.5696 (180) −1.5797 (205) 0.0102 −1.5740 (135)
X131 abacdedebc 3.1060 (287) 3.0832 (219) 0.0228 3.0916 (174)
X132 abacdedecb −8.8300 (337) −8.8562 (198) 0.0262 −8.8495 (170)
X133 abacdeebcd 2.7263 (88) 2.7345 (177) −0.0082 2.7279 (79)
X134 abacdeebdc −0.6712 (123) −0.6569 (198) −0.0143 −0.6672 (104)
X135 abacdeecbd 0.9256 (153) 0.9201 (207) 0.0054 0.9236 (123)
X136 abacdeecdb −7.5256 (305) −7.5147 (205) −0.0110 −7.5181 (170)
X137 abacdeedbc −2.3541 (233) −2.3413 (209) −0.0128 −2.3470 (156)
X138 abacdeedcb 10.1610 (284) 10.1624 (215) −0.0014 10.1619 (171)
X139 abbcaddeec 14.8650 (348) 14.8877 (203) −0.0227 14.8819 (176)
X140 abbcadeced −2.7901 (206) −2.8044 (207) 0.0143 −2.7972 (146)
X141 abbcadedec −12.5567 (350) −12.4879 (207) −0.0688 −12.5057 (178)
X142 abbcadeecd −1.5767 (341) −1.5679 (202) −0.0088 −1.5702 (173)
X143 abbcadeedc 10.3225 (341) 10.3377 (195) −0.0152 10.3339 (169)
X144 abbccdedea 23.7239 (368) 23.6713 (189) 0.0526 23.6823 (168)
X145 abbccdeeda −18.6212 (349) −18.6295 (166) 0.0083 −18.6279 (150)
X146 abbcdadeec −2.2990 (335) −2.2458 (202) −0.0532 −2.2600 (173)
X147 abbcdaeced 1.1243 (55) 1.1316 (101) −0.0074 1.1259 (48)
X148 abbcdaedec −1.4150 (76) −1.4002 (127) −0.0148 −1.4111 (65)
X149 abbcdaeecd −8.3898 (139) −8.3948 (200) 0.0050 −8.3914 (114)
X150 abbcdaeedc 2.8758 (260) 2.9171 (200) −0.0413 2.9017 (158)
X151 abbcdcedea −10.9362 (344) −10.9329 (199) −0.0033 −10.9337 (172)
X152 abbcdceeda 14.6793 (345) 14.6367 (201) 0.0426 14.6475 (173)
X153 abbcddecea 14.8936 (343) 14.8523 (199) 0.0414 14.8627 (172)
X154 abbcddeeca −20.6285 (342) −20.5999 (200) −0.0286 −20.6072 (173)
X155 abbcdeadec 5.0341 (46) 5.0371 (75) −0.0030 5.0349 (39)
X156 abbcdeaedc −0.8277 (69) −0.8285 (130) 0.0008 −0.8279 (60)
X157 abbcdecdea −11.8490 (252) −11.8884 (205) 0.0394 −11.8727 (159)
X158 abbcdeceda 0.4607 (329) 0.4106 (206) 0.0502 0.4247 (174)
X159 abbcdedcea 0.4435 (351) 0.4270 (173) 0.0165 0.4302 (155)
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TABLE I. (Continued)

Diagram G Expression Value (Error) in Ref. [34] Value (Error) in this work Difference Weighted average

X160 abbcdedeca 14.0724 (349) 14.0370 (197) 0.0354 14.0455 (171)
X161 abbcdeecda 7.8073 (342) 7.7941 (198) 0.0131 7.7974 (171)
X162 abbcdeedca −12.8293 (339) −12.8564 (195) 0.0271 −12.8496 (169)
X163 abcabdceed 6.8168 (202) 6.8111 (214) 0.0057 6.8141 (147)
X164 abcabddeec −12.8880 (208) −12.8941 (180) 0.0061 −12.8915 (136)
X165 abcabdeced −2.1661 (76) −2.1641 (22) −0.0020 −2.1643 (21)
X166 abcabdedce −2.3081 (70) −2.3088 (25) 0.0008 −2.3087 (23)
X167 abcabdedec 12.1361 (150) 12.1348 (196) 0.0013 12.1356 (119)
X168 abcabdeecd 3.4447 (120) 3.4443 (195) 0.0004 3.4446 (102)
X169 abcabdeedc −6.9379 (108) −6.9384 (193) 0.0005 −6.9380 (94)
X170 abcacdbeed 0.2635 (288) 0.2420 (183) 0.0215 0.2482 (154)
X171 abcacddeeb −2.5229 (313) −2.5628 (194) 0.0399 −2.5517 (165)
X172 abcacdebed 1.5601 (76) 1.5697 (32) −0.0096 1.5683 (30)
X173 abcacdedeb 0.0193 (298) −0.0209 (215) 0.0401 −0.0071 (174)
X174 abcacdeebd 1.7158 (191) 1.7123 (203) 0.0035 1.7142 (139)
X175 abcacdeedb −1.8253 (175) −1.8346 (206) 0.0093 −1.8292 (133)
X176 abcadbceed 0.7450 (35) 0.7430 (64) 0.0021 0.7446 (30)
X177 abcadbdeec 0.0079 (81) 0.0411 (196) −0.0332 0.0127 (74)
X178 abcadbeced 0.7158 (28) 0.7230 (9) −0.0072 0.7223 (9)
X179 abcadbedce −0.4377 (9) −0.4380 (5) 0.0003 −0.4379 (4)
X180 abcadbedec 0.0284 (25) 0.0265 (9) 0.0020 0.0267 (9)
X181 abcadbeecd −4.4372 (28) −4.4261 (61) −0.0112 −4.4353 (25)
X182 abcadbeedc 1.2822 (43) 1.2771 (50) 0.0051 1.2800 (33)
X183 abcadcbeed −0.0791 (29) −0.0789 (51) −0.0001 −0.0790 (25)
X184 abcadcdeeb 0.1973 (134) 0.2284 (212) −0.0311 0.2062 (113)
X185 abcadcebed −0.1269 (16) −0.1264 (9) −0.0005 −0.1266 (8)
X186 abcadcedeb 1.1883 (21) 1.1905 (9) −0.0022 1.1902 (8)
X187 abcadceebd 1.2699 (27) 1.2700 (43) −0.0001 1.2699 (23)
X188 abcadceedb 1.7966 (36) 1.7937 (72) 0.0029 1.7960 (32)
X189 abcaddbeec −3.7500 (105) −3.7574 (175) 0.0073 −3.7520 (90)
X190 abcaddceeb −2.4966 (217) −2.4741 (200) −0.0225 −2.4845 (147)
X191 abcaddebec 0.1892 (62) 0.1892 (69) 0.0001 0.1892 (46)
X192 abcaddeceb 2.3868 (91) 2.3870 (180) −0.0003 2.3868 (81)
X193 abcaddeebc −4.2570 (84) −4.2686 (128) 0.0116 −4.2605 (70)
X194 abcaddeecb −0.6785 (102) −0.6797 (188) 0.0012 −0.6787 (89)
X195 abcadebcde −1.0708 (20) −1.0706 (9) −0.0002 −1.0706 (8)
X196 abcadebced −2.0432 (20) −2.0473 (9) 0.0040 −2.0466 (8)
X197 abcadebdce −0.3848 (8) −0.3838 (4) −0.0010 −0.3840 (3)
X198 abcadebdec −2.3533 (26) −2.3583 (9) 0.0050 −2.3577 (8)
X199 abcadebecd 1.0636 (26) 1.0667 (9) −0.0031 1.0664 (8)
X200 abcadebedc 0.0266 (26) 0.0259 (9) 0.0007 0.0260 (9)
X201 abcadecbde −0.4897 (18) −0.4887 (8) −0.0010 −0.4889 (7)
X202 abcadecbed 1.9313 (17) 1.9363 (9) −0.0050 1.9352 (8)
X203 abcadecdbe 0.9061 (10) 0.9075 (7) −0.0014 0.9071 (5)
X204 abcadecdeb −1.9485 (26) −1.9449 (9) −0.0036 −1.9453 (8)
X205 abcadecebd −0.9039 (13) −0.9044 (8) 0.0005 −0.9043 (7)
X206 abcadecedb 1.6836 (23) 1.6829 (9) 0.0007 1.6830 (8)
X207 abcadedbce 0.2908 (23) 0.2959 (9) −0.0051 0.2952 (8)
X208 abcadedbec 0.5283 (28) 0.5312 (9) −0.0028 0.5309 (8)
X209 abcadedcbe 0.1496 (19) 0.1511 (8) −0.0015 0.1509 (8)
X210 abcadedceb 0.7803 (19) 0.7800 (9) 0.0003 0.7801 (8)
X211 abcadedebc 5.1339 (90) 5.1463 (129) −0.0124 5.1379 (74)
X212 abcadedecb −0.4617 (138) −0.4539 (206) −0.0078 −0.4593 (114)
X213 abcadeebcd −2.4516 (29) −2.4515 (42) −0.0001 −2.4516 (23)
X214 abcadeebdc 0.6801 (39) 0.6777 (69) 0.0023 0.6795 (34)
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X215 abcadeecbd 0.0724 (24) 0.0763 (43) −0.0038 0.0734 (21)
X216 abcadeecdb −1.3029 (42) −1.3013 (56) −0.0016 −1.3023 (33)
X217 abcadeedbc −2.2261 (71) −2.2348 (117) 0.0086 −2.2285 (60)
X218 abcadeedcb −1.6396 (84) −1.6319 (92) −0.0077 −1.6361 (62)
X219 abcbaddeec 1.3579 (311) 1.3595 (178) −0.0015 1.3591 (155)
X220 abcbadedec −2.5734 (222) −2.5667 (214) −0.0068 −2.5699 (154)
X221 abcbadeecd 0.6650 (161) 0.6680 (206) −0.0030 0.6662 (127)
X222 abcbadeedc 0.8293 (178) 0.8025 (201) 0.0267 0.8175 (133)
X223 abcbcdeeda 17.5168 (349) 17.5020 (156) 0.0148 17.5045 (142)
X224 abcbdadeec 2.4729 (110) 2.5001 (196) −0.0273 2.4794 (96)
X225 abcbdaedec 0.3434 (39) 0.3419 (12) 0.0015 0.3421 (12)
X226 abcbdaeecd 1.0443 (58) 1.0390 (77) 0.0052 1.0424 (46)
X227 abcbdaeedc 0.5835 (97) 0.5991 (203) −0.0156 0.5864 (87)
X228 abcbdceeda −6.8113 (333) −6.8120 (208) 0.0007 −6.8118 (176)
X229 abcbddaeec −1.9843 (323) −1.9807 (210) −0.0036 −1.9818 (176)
X230 abcbddeeca 15.6844 (350) 15.6718 (199) 0.0126 15.6749 (173)
X231 abcbdeadec −0.7737 (28) −0.7723 (10) −0.0014 −0.7725 (10)
X232 abcbdeaedc 0.4608 (38) 0.4604 (12) 0.0004 0.4605 (11)
X233 abcbdecdea 8.6698 (116) 8.6613 (192) 0.0085 8.6675 (99)
X234 abcbdeceda −2.5793 (179) −2.5995 (210) 0.0202 −2.5878 (136)
X235 abcbdedaec 0.7486 (35) 0.7478 (11) 0.0009 0.7478 (10)
X236 abcbdedcea 2.0560 (180) 2.1072 (205) −0.0512 2.0782 (135)
X237 abcbdedeca −12.9913 (363) −12.9686 (187) −0.0227 −12.9734 (166)
X238 abcbdeeadc 1.2747 (45) 1.2837 (92) −0.0090 1.2765 (41)
X239 abcbdeecda −2.8075 (345) −2.8021 (201) −0.0053 −2.8035 (174)
X240 abcbdeedca 10.9428 (298) 10.9241 (209) 0.0187 10.9303 (171)
X241 abccaddeeb 13.8142 (357) 13.7745 (201) 0.0397 13.7841 (175)
X242 abccadedeb −10.4867 (377) −10.4478 (177) −0.0389 −10.4549 (160)
X243 abccadeedb 3.8891 (336) 3.8802 (199) 0.0089 3.8825 (171)
X244 abccdadeeb −3.3041 (334) −3.2721 (187) −0.0320 −3.2797 (163)
X245 abccdaedeb 0.0658 (83) 0.0880 (192) −0.0222 0.0693 (76)
X246 abccdaeedb −0.3959 (174) −0.3816 (213) −0.0143 −0.3902 (134)
X247 abccddaeeb 15.9539 (344) 15.9573 (191) −0.0034 15.9565 (167)
X248 abccddeaeb −1.9165 (278) −1.9008 (209) −0.0157 −1.9065 (167)
X249 abccdeadeb 4.0116 (46) 4.0143 (66) −0.0027 4.0125 (37)
X250 abccdeaedb −1.0558 (68) −1.0478 (128) −0.0080 −1.0540 (60)
X251 abccdedaeb −1.3906 (76) −1.3435 (198) −0.0472 −1.3846 (71)
X252 abccdedeab −10.9091 (343) −10.8565 (179) −0.0526 −10.8677 (158)
X253 abccdedeba 17.8437 (352) 17.8230 (196) 0.0207 17.8279 (171)
X254 abccdeeadb 2.2265 (175) 2.2133 (217) 0.0132 2.2213 (136)
X255 abccdeedab 8.1598 (340) 8.1520 (173) 0.0078 8.1536 (154)
X256 abccdeedba −14.0405 (342) −13.9856 (194) −0.0549 −13.9990 (169)
X257 abcdabceed 5.7475 (51) 5.7447 (79) 0.0029 5.7467 (43)
X258 abcdabdeec −0.5254 (39) −0.5246 (55) −0.0008 −0.5252 (32)
X259 abcdabeced 0.0053 (27) 0.0050 (10) 0.0003 0.0050 (9)
X260 abcdabedec −0.3958 (20) −0.3927 (8) −0.0031 −0.3932 (8)
X261 abcdabeecd 6.4046 (30) 6.3974 (50) 0.0072 6.4027 (26)
X262 abcdabeedc −2.2854 (24) −2.2848 (38) −0.0005 −2.2852 (20)
X263 abcdacbeed −2.8330 (35) −2.8190 (62) −0.0139 −2.8297 (30)
X264 abcdacdeeb 4.8826 (64) 4.8752 (95) 0.0074 4.8803 (53)
X265 abcdacebed −0.6756 (20) −0.6730 (9) −0.0026 −0.6734 (8)
X266 abcdacedeb 0.1206 (23) 0.1225 (9) −0.0019 0.1223 (8)
X267 abcdaceebd −0.6608 (19) −0.6591 (31) −0.0017 −0.6603 (16)
X268 abcdaceedb 0.1185 (31) 0.1214 (56) −0.0029 0.1192 (27)
X269 abcdadbeec −0.7190 (56) −0.7206 (88) 0.0016 −0.7195 (47)

(Table continued)
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TABLE I. (Continued)

Diagram G Expression Value (Error) in Ref. [34] Value (Error) in this work Difference Weighted average

X270 abcdadceeb −1.6881 (97) −1.6705 (217) −0.0176 −1.6851 (88)
X271 abcdadebec 0.2492 (23) 0.2505 (9) −0.0012 0.2503 (8)
X272 abcdadeceb −0.7285 (32) −0.7297 (11) 0.0012 −0.7296 (10)
X273 abcdadeebc −2.0474 (45) −2.0422 (75) −0.0052 −2.0460 (39)
X274 abcdadeecb 0.8675 (72) 0.8768 (117) −0.0093 0.8701 (61)
X275 abcdaebced −0.7496 (12) −0.7478 (8) −0.0018 −0.7484 (7)
X276 abcdaebdce −0.5547 (10) −0.5540 (5) −0.0007 −0.5541 (4)
X277 abcdaebdec 2.7936 (10) 2.7944 (6) −0.0008 2.7942 (5)
X278 abcdaebecd −0.1577 (23) −0.1602 (9) 0.0025 −0.1598 (9)
X279 abcdaebedc 0.8399 (15) 0.8408 (8) −0.0009 0.8406 (7)
X280 abcdaecbed −1.0127 (8) −1.0114 (5) −0.0013 −1.0118 (4)
X281 abcdaecdeb −1.3732 (25) −1.3703 (9) −0.0030 −1.3707 (9)
X282 abcdaecebd 0.4907 (18) 0.4922 (9) −0.0015 0.4919 (8)
X283 abcdaecedb −0.0427 (23) −0.0396 (8) −0.0030 −0.0400 (8)
X284 abcdaedbec −0.2670 (9) −0.2673 (5) 0.0003 −0.2673 (4)
X285 abcdaedceb 0.0271 (16) 0.0277 (7) −0.0007 0.0276 (6)
X286 abcdaedebc 0.8014 (21) 0.8041 (9) −0.0026 0.8036 (8)
X287 abcdaedecb 0.2014 (19) 0.2021 (9) −0.0008 0.2020 (8)
X288 abcdaeebcd 4.2112 (28) 4.2137 (45) −0.0025 4.2119 (24)
X289 abcdaeebdc −1.5651 (19) −1.5662 (35) 0.0011 −1.5654 (17)
X290 abcdaeecbd −3.7763 (23) −3.7736 (42) −0.0027 −3.7756 (20)
X291 abcdaeecdb 1.5957 (32) 1.5890 (62) 0.0067 1.5943 (28)
X292 abcdaeedbc 0.9114 (36) 0.9144 (49) −0.0030 0.9125 (29)
X293 abcdaeedcb −1.2653 (41) −1.2582 (58) −0.0070 −1.2629 (33)
X294 abcdbaceed −3.3891 (25) −3.3873 (36) −0.0018 −3.3885 (20)
X295 abcdbadeec 1.7883 (26) 1.7913 (44) −0.0030 1.7891 (22)
X296 abcdbaeced 0.5511 (13) 0.5528 (8) −0.0017 0.5522 (7)
X297 abcdbaedec −0.4696 (16) −0.4693 (9) −0.0003 −0.4694 (7)
X298 abcdbaeecd −1.9142 (28) −1.9153 (44) 0.0011 −1.9145 (23)
X299 abcdbaeedc −0.2907 (22) −0.2887 (39) −0.0020 −0.2902 (19)
X300 abcdbceeda −9.4327 (194) −9.4309 (210) −0.0018 −9.4318 (142)
X301 abcdbdaeec −1.3351 (81) −1.3445 (122) 0.0094 −1.3380 (68)
X302 abcdbdeeca −1.8294 (223) −1.8502 (216) 0.0208 −1.8401 (155)
X303 abcdbeadec 0.3341 (7) 0.3348 (3) −0.0007 0.3347 (3)
X304 abcdbeaecd −0.3397 (16) −0.3381 (9) −0.0016 −0.3385 (8)
X305 abcdbeaedc 0.4715 (14) 0.4719 (7) −0.0004 0.4718 (6)
X306 abcdbeceda 0.1228 (55) 0.1167 (86) 0.0062 0.1210 (46)
X307 abcdbedeca −0.3071 (59) −0.3024 (107) −0.0048 −0.3060 (52)
X308 abcdbeeadc 1.8122 (22) 1.8126 (40) −0.0004 1.8123 (19)
X309 abcdbeecda −4.2448 (173) −4.2500 (213) 0.0051 −4.2469 (134)
X310 abcdbeedca 0.2490 (191) 0.2397 (211) 0.0093 0.2448 (142)
X311 abcdcabeed −0.5291 (58) −0.5389 (78) 0.0098 −0.5326 (47)
X312 abcdcadeeb −1.2454 (139) −1.2693 (90) 0.0239 −1.2622 (76)
X313 abcdcaebed 0.9660 (38) 0.9654 (12) 0.0006 0.9654 (11)
X314 abcdcaedeb 0.8266 (29) 0.8335 (11) −0.0069 0.8327 (10)
X315 abcdcaeebd −1.3728 (43) −1.3787 (67) 0.0059 −1.3745 (36)
X316 abcdcaeedb 0.0094 (39) 0.0272 (89) −0.0178 0.0123 (36)
X317 abcdcbeeda 1.4535 (221) 1.4828 (204) −0.0293 1.4693 (150)
X318 abcdcdaeeb −8.7568 (343) −8.7479 (201) −0.0089 −8.7502 (174)
X319 abcdcdeaeb 0.6801 (179) 0.6449 (213) 0.0352 0.6655 (137)
X320 abcdceadeb 0.5627 (17) 0.5641 (9) −0.0014 0.5637 (8)
X321 abcdceaedb −0.9005 (26) −0.8961 (10) −0.0044 −0.8967 (9)
X322 abcdcedaeb 0.9338 (23) 0.9364 (9) −0.0025 0.9360 (9)
X323 abcdceeadb −0.0053 (40) 0.0092 (85) −0.0145 −0.0026 (36)
X324 abcdceedab −8.8058 (243) −8.8139 (209) 0.0081 −8.8105 (158)

(Table continued)
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TABLE I. (Continued)

Diagram G Expression Value (Error) in Ref. [34] Value (Error) in this work Difference Weighted average

X325 abcdceedba 11.5958 (343) 11.5456 (198) 0.0503 11.5582 (172)
X326 abcddabeec −9.0047 (145) −8.9830 (204) −0.0217 −8.9974 (118)
X327 abcddaceeb 1.5517 (229) 1.5868 (209) −0.0351 1.5709 (154)
X328 abcddaebec −0.2781 (42) −0.2745 (74) −0.0035 −0.2772 (36)
X329 abcddaeceb −0.9627 (67) −0.9506 (103) −0.0121 −0.9591 (56)
X330 abcddaeebc −4.9591 (88) −4.9451 (125) −0.0141 −4.9545 (72)
X331 abcddaeecb 4.7241 (127) 4.7164 (215) 0.0077 4.7221 (109)
X332 abcddbaeec 3.0539 (161) 3.0436 (206) 0.0103 3.0500 (127)
X333 abcddbeeca 6.8088 (341) 6.8339 (194) −0.0251 6.8278 (169)
X334 abcddcaeeb 5.1727 (340) 5.1696 (189) 0.0031 5.1703 (165)
X335 abcddceaeb −2.0294 (132) −2.0421 (212) 0.0127 −2.0329 (112)
X336 abcddeabec −0.7685 (20) −0.7730 (30) 0.0045 −0.7700 (17)
X337 abcddeaceb −1.2039 (32) −1.1991 (55) −0.0048 −1.2027 (27)
X338 abcddeaebc −1.8505 (38) −1.8492 (69) −0.0012 −1.8502 (33)
X339 abcddeaecb 0.4111 (40) 0.4151 (59) −0.0040 0.4124 (33)
X340 abcddebeca −2.1543 (202) −2.1472 (214) −0.0071 −2.1509 (147)
X341 abcddecaeb 1.7815 (33) 1.7782 (65) 0.0033 1.7808 (30)
X342 abcddeeacb 2.6063 (125) 2.6128 (115) −0.0065 2.6099 (84)
X343 abcdeabced 3.8873 (30) 3.8962 (10) −0.0089 3.8952 (9)
X344 abcdeabdce 3.4223 (18) 3.4239 (9) −0.0016 3.4236 (8)
X345 abcdeabdec −1.0075 (18) −1.0069 (9) −0.0006 −1.0070 (8)
X346 abcdeabecd 0.2864 (20) 0.2904 (9) −0.0041 0.2898 (8)
X347 abcdeabedc −2.6846 (21) −2.6875 (9) 0.0029 −2.6870 (9)
X348 abcdeacbed −0.4899 (15) −0.4905 (9) 0.0005 −0.4903 (7)
X349 abcdeacdeb 2.0800 (36) 2.0793 (9) 0.0007 2.0794 (9)
X350 abcdeacebd 1.4643 (11) 1.4649 (6) −0.0007 1.4648 (5)
X351 abcdeacedb 0.2554 (20) 0.2536 (8) 0.0017 0.2539 (8)
X352 abcdeadbec −0.1260 (8) −0.1257 (4) −0.0003 −0.1258 (4)
X353 abcdeadceb 0.1950 (16) 0.1952 (8) −0.0002 0.1952 (7)
X354 abcdeadebc −2.0503 (20) −2.0501 (9) −0.0002 −2.0501 (8)
X355 abcdeadecb −1.0738 (25) −1.0747 (9) 0.0009 −1.0746 (8)
X356 abcdeaebcd 2.0684 (24) 2.0685 (9) −0.0002 2.0685 (9)
X357 abcdeaebdc 0.3746 (16) 0.3760 (8) −0.0014 0.3757 (7)
X358 abcdeaecbd 0.0463 (16) 0.0474 (8) −0.0011 0.0472 (7)
X359 abcdeaecdb −0.1396 (17) −0.1381 (9) −0.0015 −0.1384 (8)
X360 abcdeaedbc −0.4604 (37) −0.4592 (10) −0.0012 −0.4593 (10)
X361 abcdeaedcb 2.5600 (26) 2.5629 (9) −0.0029 2.5625 (8)
X362 abcdebadec −0.5714 (12) −0.5729 (8) 0.0014 −0.5724 (6)
X363 abcdebaecd −2.3442 (19) −2.3475 (9) 0.0033 −2.3468 (8)
X364 abcdebaedc 2.3957 (18) 2.4006 (9) −0.0049 2.3995 (8)
X365 abcdebceda 0.4177 (30) 0.4187 (44) −0.0011 0.4180 (24)
X366 abcdebdeca 5.6759 (43) 5.6790 (110) −0.0031 5.6763 (40)
X367 abcdebeadc −0.7176 (12) −0.7168 (8) −0.0008 −0.7170 (7)
X368 abcdebecda −0.3404 (45) −0.3420 (79) 0.0015 −0.3408 (39)
X369 abcdebedca −3.3812 (59) −3.3665 (121) −0.0147 −3.3783 (53)
X370 abcdecadeb −1.4763 (12) −1.4741 (7) −0.0022 −1.4747 (6)
X371 abcdecaedb 0.0045 (10) 0.0050 (4) −0.0005 0.0049 (4)
X372 abcdecdaeb −1.2900 (33) −1.2913 (9) 0.0013 −1.2912 (9)
X373 abcdeceadb 0.5851 (24) 0.5877 (9) −0.0025 0.5874 (8)
X374 abcdecedab 0.9188 (266) 0.9318 (166) −0.0130 0.9281 (141)
X375 abcdecedba 1.0991 (163) 1.0880 (210) 0.0111 1.0949 (129)
X376 abcdedabec 1.0484 (16) 1.0514 (7) −0.0030 1.0509 (6)
X377 abcdedaceb 0.4264 (27) 0.4313 (9) −0.0049 0.4307 (8)
X378 abcdedaebc 1.3196 (21) 1.3238 (9) −0.0042 1.3232 (8)
X379 abcdedaecb −0.3201 (17) −0.3198 (9) −0.0003 −0.3198 (8)

(Table continued)
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HOKUSAI-BigWaterfall, which is almost twice faster than
other two systems and allows us to increase the number of
sampling points to 1.6 × 1010. So far approximately
3.3 × 107 core · hours of the computer resources have been
dedicated to obtain the 389 new values listed in Table I. All
389 integrals of new calculation have achieved the required
precision and every uncertainties have been reduced to less
than 0.022. After consistency between new and old
calculations were checked for each integral, we combined
two results except for the X024 integral. Finally, for every
integral, the combined uncertainty is reduced to less
than 0.018.

IV. MAPPING OF FEYNMAN PARAMETERS

The convergence speed of the VEGAS integration of a
Set V integral does depend on a choice of mapping of the
Feynman parameters to the integration variables, although
analytically any choices of mappings should give the same
value. The shape of an integrand looks very different if a
mapping is different. A mapping should be chosen so that
the shape of an integrand is as flat as possible in the entire
integration domain. In addition, the results of VEGAS
numerical integration with different mappings can be
regarded as independent of each other.
In general, an integrand of the higher order perturbation

theory of the anomalous magnetic moment has very sharp
peaks where UVor IR cancellation occurs. Thus, a mapping
must be selected in such away that as small a number of sharp
peaks as possible are formed as seen by the VEGAS
integration variables. There is no definite rule to select the
bestmapping, but an integral shows better behavior and faster
convergence against the VEGAS iterations if its mapping
reflects the structure of divergent subdiagrams. Themappings
of the previous calculation in Ref. [34] and also in this work
were chosen according to this policy. When a mapping is
properly chosen, singular regions are concentrated at the
edges of only a few integration variables. This means that the
sharp peaks spread out in the surface volumes of the whole
integration domain.We further apply the power-law stretches
to these edges before performing numerical integration in
order to accelerate convergence [51].

For the new calculation we have rewritten the mappings
of all 389 integrals to different but “better” ones.
Recalculation of the Set V integrals with different mappings
provides us with a useful check of reliability of the VEGAS
integration results. Since the choice of mapping is not
deterministic, it was not automated in the earlier version of
GENCODEN, and a default thirteen-dimensional mapping
was commonly used for all integrals of Set V. (The latest
version of GENCODEN writes down a mapping according to
given instructions.) The mapping part occupies 30 lines of a
FORTRAN code within about 100,000 lines of the integrand
and it is the only part modified by the human hand before
the numerical integration is carried out.
Even though the execution time is limited, the consistent

results of the numerical integration with two different
“better” mappings indicate that the VEGAS integration
result should be reliable.

V. MAPPING ERROR IN X024 CORRECTED

We have integrated all 389 integrals of Set Vaccording to
the scheme outlined above. A preliminary result was
reported in Ref. [34]. In order to improve it further we
have carried out a new and independent numerical evalu-
ation of the integrals of Set V. During this work we
discovered that one of the integrals, called X024, was
given a wrong value in the previous calculation due to an
incorrect mapping of Feynman parameters onto the
VEGAS integration variables. The 14 Feynman parameters
of X024 subject to a linear constraint can be mapped onto
an 11-dimensional unit hypercube because of the presence
of two self-energy subdiagrams.
The X024 has a vertex subdiagram S78 consisting of the

fermion lines 7 and 8 and the photon line e. It causes UV
divergence when the sum z78e ¼ z7 þ z8 þ ze tends to zero.
Though its divergence is canceled by a UV counterterm, the
integrand shows a very sharp peak near z78e ¼ 0. So, we
assigned one of the VEGAS integration variables
qðiÞ; i ¼ 1; 2;…, to the sum z78e as z78e ∝ qð9Þ that was
further mapped as z78 ¼ z78e × qð10Þ and ze ¼ z78e − z78.
We were supposed to divide z78 into z7 and z8 using the
eleventh integration variable such that z7 ¼ z78 × qð11Þ

TABLE I. (Continued)

Diagram G Expression Value (Error) in Ref. [34] Value (Error) in this work Difference Weighted average

X380 abcdedbeca −1.0268 (48) −1.0216 (91) −0.0052 −1.0257 (43)
X381 abcdedcaeb 1.0861 (29) 1.0882 (9) −0.0022 1.0880 (9)
X382 abcdedeacb −1.7712 (80) −1.7582 (142) −0.0130 −1.7681 (70)
X383 abcdeeabdc −4.8034 (22) −4.7978 (35) −0.0056 −4.8018 (19)
X384 abcdeeacdb 1.9266 (31) 1.9384 (57) −0.0118 1.9293 (27)
X385 abcdeeadbc −0.7427 (19) −0.7408 (30) −0.0019 −0.7421 (16)
X386 abcdeeadcb 0.6887 (38) 0.6877 (59) 0.0010 0.6884 (32)
X387 abcdeebdca 1.9508 (152) 1.9763 (208) −0.0255 1.9597 (123)
X388 abcdeecadb −0.4349 (40) −0.4336 (49) −0.0013 −0.4344 (31)
X389 abcdeedacb −0.0433 (68) −0.0525 (123) 0.0092 −0.0455 (59)
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and z8 ¼ z78 − z7. Instead, we treated z78 as though the
lines 7 and 8 were the adjacent lines of a self-energy
subdiagram, and assigned the halved value to z7 ¼ z78=2.
Thus the integral was evaluated with 10 dimensions. This
resulted in the wrong value of X024 in the previous
calculation.
The correction of this error changes the X024 integral

from −6.0902ð246Þ to −7.3480ð139Þ. We carefully exam-
ined the mapping parts of the other 388 integrals and found
no error. The new numerical values of these 388 integrals
are consistent with the previous results as shown in Table I
that lists the results of old evaluation, except that the wrong
value of X024 is removed, the results of new independent
evaluation, and the statistical combination of these two sets
of results.

VI. RESIDUAL RENORMALIZATION TERMS

To obtain the physical contribution of Set V, the
standard on-shell renormalization prescription has to be
followed. The K-operation prescription adopted in the
numerical evaluation, however, is different from that, and
thus must be adjusted for the difference. The IR sub-
traction terms introduced by R- and/or I-operations to
make each diagram IR-finite should also be restored. The
IR divergences that reside in these two types of adjust-
ments compensate with each other among several dia-
grams of Set V, leaving finite terms behind. This residual
renormalization leads to the expression of the physical

contribution Að10Þ
1 ½SetV� given by

Að10Þ
1 ½Set V� ¼ ΔM10 þ ΔM8ð−7ΔLB2Þ þ ΔM6f−5ΔLB4 þ 20ðΔLB2Þ2g

þ ΔM4f−3ΔLB6 þ 24ΔLB4ΔLB2 − 28ðΔLB2Þ3g þ ΔM4ð2Δdm4ΔL2� Þ
þM2f−ΔLB8 þ 8ΔLB6ΔLB2 − 28ΔLB4ðΔLB2Þ2 þ 4ðΔLB4Þ2 þ 14ðΔLB2Þ4g
þM2Δdm6ð2ΔL2� Þ þM2Δdm4ð−16ΔLB2ΔL2� − 2Δdm2�ΔL2� þ ΔL4� Þ: ð27Þ

ΔMn, ΔLBn, Δdmn are obtained from the magnetic mo-
ment amplitudes, the sum of vertex and wave-function
renormalization constants, and the mass renormalization
constants, respectively, of the nth-order diagrams without a
fermion loop. Here the renormalization condition is the
standard on-shell one. An asterisk (�) indicates that the
quantity be derived from diagrams having a two-point
vertex insertion. UV divergences of all quantities are
removed by the K-operations, while IR divergences are
removed by the R- and/or I-operations. The overall IR
divergences in the vertex and wave-function renormaliza-
tion constants Ln and Bn, respectively, cannot be handled
by R- nor I-operations. They are, however, canceled when
two are summed because of the Ward-Takahashi identity.
The precise definitions of these symbols are given in
Refs. [52,55]. Their numerical values are listed in Table II,
where most of the numbers are copied from Table II of
Ref. [34]. Now that the eighth-order contribution has been
confirmed [32], it implies that the residual renormalization
constants used to derive (10) should also be correct. The
value ΔM8 ¼ 1.738 12 ð85Þ in the previous work is re-
placed by a new and more accurate value ΔM8 ¼
1.738 467 ð20Þ derived from the almost exact eighth-order
result Eq. (5) of Ref. [32].
Among many quantities appearing in (27), only three,

ΔL4�, ΔM10, and ΔLB8, have not been independently
checked. The quantity ΔL4� is derived from the fourth-
order vertex diagrams with a two-point vertex insertion and
was obtained by carrying out small and quick numerical
calculations. The finite magnetic moment amplitude of

tenth order ΔM10 is obtained by summing up the last
columns of Table I. The finite part of the vertex and wave-
function renormalization constants of eighth order ΔLB8 is
also obtained by numerical means.

TABLE II. Residual renormalization constants used to calculate

Að10Þ
1 ½Set V�. TheΔMn,ΔLBn, andΔdmn are the sum of the finite

magnetic moment amplitudes, the sum of the finite parts of vertex
and wave-function renormalization constants, and the sum of the
finite parts of the mass-renormalization constants, respectively,
all derived from the nth order-diagrams without a fermion loop of
the QED perturbation theory. ΔM10 is newly calculated in this
work. ΔM8 is derived from the near-exact result Eq. (5) of
Ref. [32]. Other finite integrals are copied from the previous work
Table II of Ref. [34].

Integral Value (Error)

ΔM10 2.350 (192)
ΔM8 1.738 467 (20)
ΔM6 0.425 8135 (30)
ΔM4 0.030 833 612…
M2 0.5
ΔLB8 2.0504 (86)
ΔLB6 0.100 801 (43)
ΔLB4 0.027 9171 (61)
ΔLB2 0.75
ΔL4� −0.459 051 (62)
ΔL2� −0.75
Δdm6 −2.340 815 (55)
Δdm4 1.906 3609 (90)
Δdm2� −0.75
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To obtain the value of ΔLB8, we have to deal with 518
eighth-order vertex diagrams and 74 self-energy diagrams.
The Ward-Takahashi identity relates seven vertex diagrams
to one self-energy diagram. Because of the time-reversal
symmetry, the number of self-energy-like diagrams is
reduced to 47. Extraction of the finite part of the renorm-
alization constants in a form of Feynman-parametric
integral from a self-energy-like diagram was carried out
by using an automatic code generator similar to
GENCODEN. The validity of the code generator has been
checked for the sixth-order quantity ΔLB6, which leads to
the correct eighth-order contribution (10). The divergence
structure of the 47 finite integrals of ΔLB8 and the 8
integrals of ΔLB6 can be symbolically expressed as shown
by Eq. (B14) of Ref. [34]. The 47 integrals, which are 10-
dimensional integrals, are then numerically evaluated by
VEGAS. Their values are listed in Table III.
Collecting all these results and substituting numerical

values into Eq. (27), we obtain (14) as the best estimate for
the Set V contribution to ae.

VII. CONCLUSION

We have reevaluated all 389 integrals representing the
tenth-order Set V diagrams. The error in the integral X024
was identified and corrected. For the other 388 integrals,
different sets of integration variables were prepared and
independent numerical evaluation was performed. More
statistics have been accumulated which enabled us to obtain
the more reliable and accurate numerical results. Together
with the semianalytic eighth-order result, the uncertainty of
the QED contribution to the electron anomalous magnetic
moment (ae) has been reduced to the same order of
uncertainty as that of the hadronic contribution.
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APPENDIX: UPDATES FOR THE MUON g− 2
The world average of the measurements of the muon

anomalous magnetic moment (aμ) is dominated by the
BNL experiments and is given as [44,57]

TABLE III. Integrals contributing to the residual renormaliza-
tion constants ΔLB8. The 47 10-dimensional integrals derived
from the eighth-order vertex and self-energy renoromalization
constants are evaluated by VEGAS. The second column shows
the diagarm representation by photon labels attached to the
fermion line of a self-energy diagram. For LB04; LB11;
LB12; LB16; LB17; LB18; LB29, and LB30, double-double pre-
cision for real numbers is partially used. Others are evaluated in
double precision.

Integral Expression Value (Error)

LB01 abacbdcd −0.190 96 (80)
LB02 abacbddc 0.604 07 (177)
LB03 abaccdbd 0.427 96 (150)
LB04 abaccddb −1.005 69 (198)
LB05 abacdbcd −0.819 62 (71)
LB06 abacdbdc −0.101 17 (96)
LB07 abacdcbd −0.165 26 (94)
LB08 abacdcdb 0.473 20 (185)
LB09 abacddbc 0.773 21 (187)
LB10 abacddcb −0.484 03 (177)
LB11 abbcaddc −0.403 21 (185)
LB12 abbccdda 0.606 68 (189)
LB13 abbcdacd 0.904 58 (109)
LB14 abbcdadc 0.164 56 (142)
LB15 abbcdcad 0.136 19 (136)
LB16 abbcdcda −1.013 14 (239)
LB17 abbcddac −0.975 11 (193)
LB18 abbcddca 3.204 32 (195)
LB19 abcadbcd 0.217 77 (18)
LB20 abcadbdc −0.445 27 (40)
LB21 abcadcbd −0.168 93 (11)
LB22 abcadcdb 0.177 41 (40)
LB23 abcaddbc 0.602 13 (115)
LB24 abcaddcb 0.067 22 (87)
LB25 abcbdadc 0.013 43 (23)
LB26 abcbdcda 0.351 36 (94)
LB27 abcbddac 0.260 02 (130)
LB28 abcbddca −0.858 51 (231)
LB29 abccddab −0.491 48 (145)
LB30 abccddba 0.496 81 (217)
LB31 abcdabcd −0.831 79 (28)
LB32 abcdabdc 0.387 67 (29)
LB33 abcdacbd 0.259 53 (11)
LB34 abcdacdb −0.312 91 (30)
LB35 abcdadbc −0.369 11 (36)
LB36 abcdadcb 0.077 06 (48)
LB37 abcdbadc −0.174 46 (21)
LB38 abcdbcda 0.086 96 (37)
LB39 abcdbdac 0.220 33 (33)
LB40 abcdbdca 0.179 34 (183)
LB41 abcdcdab 0.292 11 (58)
LB42 abcdcdba −0.310 87 (91)
LB43 abcddabc 0.629 11 (39)
LB44 abcddacb −0.154 60 (108)
LB45 abcddbca −0.296 17 (106)
LB46 abcddcab −0.325 17 (66)
LB47 abcddcba 0.334 83 (116)
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aμðexpt:Þ ¼ 116 592 089 ð63Þ × 10−11½0.5 ppm�: ðA1Þ

A new experiment is currently being prepared at Fermilab
using the storage ring that was used for the previous BNL
measurements and was moved from BNL [58]. The first
result of the Fermilab E989 experiment is expected to be
announced in Spring 2018 [59]. Another new experiment is
being prepared at J-PARC [60]. Cold muon beam and a
storage ring with 66 cm diameter are used for this E34
experiment [61]. Two measurements with completely
different apparatus will provide us far deeper insight on
the physics of muon g − 2.
The QED contribution to aμ is affected by the improved

values of the mass-independent eighth- and tenth-order
terms and by the new values of the fine-structure constant.
Two independent determinations of α lead to two values of
the QED contribution of aμ. By using the α from the Rb-
atom experiment (19) or that from the electron g − 2 (21),
the QED contribution of aμ is given as

aμðQED; αðRbÞÞ ¼ 1 165 847 189.71 ð7Þð17Þð6Þð72Þ
× 10−12; ðA2Þ

or

aμðQED; αðaeÞÞ ¼ 1 165 847 188.41 ð7Þð17Þð6Þð28Þ
× 10−12; ðA3Þ

respectively, where the assigned uncertainties are due to the
lepton-mass ratios, the numerical evaluation of the eighth-
order QED term, the numerical evaluation of the tenth-
order QED term, and the fine-structure constant from left to
right. By now the entire eighth-order QED term has been
cross-checked by two or more independent calculations.
The mass-dependent eighth-order QED terms involving the
electron or tau-lepton have been calculated by numerical
means [62,63] and the results are confirmed by analytic
calculation [15,64,65]. The QED predictions (A2) and (A3)
are changed by þ0.20 × 10−12 and −0.05 × 10−12, respec-
tively, from those given in Ref. [63], which does not affect
comparison of theory and measurement of aμ.
To compare theory of aμ to measurement, the hadronic

and electroweak contributions must be added to the
dominant QED contribution (A2) or (A3). The hadronic
vacuum-polarization (HVP) contribution has been calcu-
lated by three groups based on newest measurements of the
hadronic cross section. The LO-HVP contribution is found
in Refs. [39,66,67]. Recently a remarkable progress has
been achieved in lattice calculation of the LO-HVP con-
tribution [68,69], although it is not yet competitive in
precision to the dispersion calculation based on measured
hadronic cross sections. Reevaluation of the NLO-HVP
contribution by means of the dispersion integral is given in
Refs. [39,66]. The NNLO-HVP contribution is given in
Ref. [70]. All the HVP contributions are summarized as

aμðHVP;LOÞ ¼

8>><
>>:

689.46 ð3.25Þ × 10−10 ½39�
692.23 ð2.54Þ × 10−10 ½66�
693.1 ð3.4Þ × 10−10 ½67�

; ðA4Þ

aμðHVP;NLOÞ ¼
�
−9.927 ð0.067Þ × 10−10 ½39�
−9.83 ð0.04Þ × 10−10 ½66� ; ðA5Þ

aμðHVP;NNLOÞ ¼ 1.24 ð0.01Þ × 10−10 ½70� : ðA6Þ

The largest uncertainty of the theory of aμ comes from
the hadronic light-by-light (HLbL) contribution. Various
hadron models have been used to compute it. The widely
accepted value of the LO-HLbL term is 10.5 ð2.6Þ × 10−10

[71] or 11.6 ð4.0Þ × 10−10 [72]. Both cover almost all
model-dependent results [73–80]. Recently, the axial
meson contribution to the HLbL has been revised [81],
which makes the LO-HLbL contribution smaller. Other
revisions have been made for the tensor-exchange contri-
bution [81] and for the π0 exchange contribution based on
the lattice calculation [82]. By collecting these modifica-
tions, the LO-HLbL becomes [83]

aμðHLbL;LOÞ ¼ 10.0 ð2.9Þ × 10−10: ðA7Þ
The NLO-HLbL term was estimated to be [84]

aμðHLbL;NLOÞ ¼ 0.3 ð0.2Þ × 10−10: ðA8Þ
In the last few years, lattice QCD calculation of the

HLbL contribution has become feasible [85–89]. Though
the systematic uncertainty has not yet been determined,
Ref. [87] gives the lattice QCD result as

aμðHLbL;LOÞ ¼ 5.35 ð1.35Þ × 10−10; ðA9Þ
where the uncertainty is due to statistics only.
The data-driven dispersion approach to HLbL similar to

but far more complicated than that to HVP has been
formulated [90,91]. It is a very promising method though
it requires long and difficult theoretical works [92,93]. The
contribution from the two-π intermediate states has been
recently determined [94], which is more accurate than that
determined using the hadronic models.
For the electroweak contribution, up to two-loop calcu-

lations are known [95,96]. The two-loop weak correction
was reevaluated using the latest measured mass of the
Higgs boson [97] and the total contribution becomes

aμðWeakÞ ¼ 15.36 ð10Þ × 10−10: ðA10Þ

The theoretical prediction of aμ are obtained by sum-
ming up the QED, hadronic, and weak contributions. We
use the model calculation (A7) for the LO-HLbL contri-
bution. The three values of the LO-HVP estimates listed in
Eq. (A4) lead the theoretical prediction of aμ as
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aμðtheoryÞ ¼

8>><
>>:

116 591 783 ð51Þ × 10−11 ½39�
116 591 812 ð47Þ × 10−11 ½66�
116 591 820 ð52Þ × 10−11 ½67�

: ðA11Þ
The difference between measurement and theory ranges
from 269 ∼ 306 × 10−11 corresponding to 3.3 ∼ 3.8σ
discrepancy.
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