led by Kyoto Uni

Kyoto University Research Information Repository	
Title	The Role of Granule Size on the Kinetics of Electrochemical Reduction of SiO2 Granules in Molten CaCl2
Author(s)	Yang, Xiao; Yasuda, Kouji; Nohira, Toshiyuki; Hagiwara, Rika; Homma, Takayuki
Citation	Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science (2016), 47(1): 788-797
Issue Date	2016-02
URL	http://hdl.handle.net/2433/230381
Right	This is a post-peer-review, pre-copyedit version of an article published in 'Metallurgical and Materials Transactions B'. The final authenticated version is available online at: https://doi.org/10.1007/s11663-015-0456-1; The full-text file will be made open to the public on 1 February 2017 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
Туре	Journal Article
Textversion	author

1	The Role of Granule Size on the Kinetics of Electrochemical Reduction
2	of SiO ₂ Granules in Molten CaCl ₂
3	
4	Xiao Yang ^a , Kouji Yasuda ^{b,c} , Toshiyuki Nohira ^a , Rika Hagiwara ^b , and Takayuki Homma ^d
5	
6	^a Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
7	^b Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-
8	8501, Japan
9	^c Environment, Safety and Health Organization, Kyoto University, Yoshida-honmachi, Sakyo-ku,
10	Kyoto 606-8501, Japan
11	^d Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-
12	8555, Japan
13	
14	Corresponding authors:
15	X. Yang (yang.xiao.6a@kyoto-u.ac.jp)
16	T. Nohira (nohira.toshiyuki.8r@kyoto-u.ac.jp)
17	
18	

1

Abstract

20	As a fundamental study to develop a new process for producing solar-grade silicon, the effect of
21	granule size on the kinetics of the electrochemical reduction of SiO_2 granules in molten $CaCl_2$ was
22	investigated. SiO ₂ granules with different size ranges were electrolyzed in molten CaCl ₂ at 1123 K
23	(850 °C). The reduction kinetics was evaluated on the basis of the growth rate of the reduced Si layer
24	and the behavior of the current during electrolysis. The results indicated that finer SiO_2 granules are
25	more favorable for a high reduction rate because the contact resistance between the bottom Si plate
26	and the reduced Si particles is small and the diffusion of O^{2-} ions in CaCl ₂ inside the porous Si shell
27	is easy. Electrolysis using SiO_2 granules less than 0.1 mm in size maintained a current density of no
28	less than 0.4 A $\rm cm^{\text{-2}}$ within 20 min, indicating that the electrochemical reduction of fine $\rm SiO_2$
29	granules in molten CaCl ₂ has the potential of becoming a high-yield production process for solar-
30	grade silicon.

31

I. INTRODUCTION

33	The global photovoltaic (PV) market has been growing rapidly in recent years. In 2013, the annual
34	installation of PV systems in the world reached 37 GW, ^[1] which was a 60-fold increase as compared
35	to 2003. Yet the power globally generated from solar energy was less than 0.5 pct of the total power
36	generation in 2012. ^[2] According to a study by the German Advisory Council on Global Change
37	(WBGU), solar energy is expected to become a major energy source, reaching 20 pct of the total
38	world energy by 2050 and 70 pct by 2100. ^[3] Presently, the dominant material for solar cells is
39	silicon, particularly crystalline silicon. Crystalline silicon solar cells represented 90.1 pct of the
40	global production of all types of solar cells in 2013. ^[4] Because they offers advantages in terms of
41	high conversion efficiency, high durability, non-toxicity, and abundant resources, silicon solar cells
42	are the only candidate to meet the market demand in the future when PV installation could climb to
43	several hundred GW per year.
44	The increasing demand for PV systems boosts the production of high-purity polycrystalline Si
45	dramatically. The global production of polycrystalline Si in 2013 saw a 10-fold increase since 2003
46	to 233,800 t, ^[5] more than 90 pct of which was supplied to the PV industry. Such growth is expected
47	to continue over the long term. For PV applications, the purity of Si must be at least 6N (99.9999
48	pct), and this product is called solar-grade Si (SOG-Si). The dominant technology for SOG-Si
49	production is the Siemens process, ^[6-8] which represents approximately 90 pct of the global

production. In spite of the ability to produce Si at purity levels above 9N, the Siemens process, 5051which utilizes chemical vapor deposition using trichlorosilane (SiHCl₃), requires high energy 52consumption and results in low productivity. Production of SOG-Si based on pyrolysis of 53monosilane (SiH₄) in a fluidized bed reactor (FBR) is the main competitor to the Siemens process and represents about 10 pct of the market.^[8-10] FBR consumes less energy and it is more economical 5455than the Siemens process, yet limitations in terms of purity control and productivity inhibit its commercial application. Upgrading metallurgical-grade silicon (UMG) is an emerging process for 5657SOG-Si production. The aim of this process is to cost-effectively refine metallurgical-grade Si by slag treatment, acid leaching, and directional solidification.^[11-13] However, UMG has a relatively 58small market share at present because of problems with purity control.^[8,14] Various attempts have 5960 been made to optimize the present technologies to improve energy efficiency and productivity and to reduce cost.^[15-20] Meanwhile, new SOG-Si production processes^[21-22] such as the carbothermic 61 reduction of silica using high-purity raw materials,^[23] refining of metallurgical-grade Si by different 62 approaches,^[24-32] metallothermic reduction of silicon compounds,^[33-40] and electrochemical 63 processes,^[41-48] are being developed to challenge the existing technologies. 64 65 Electrochemical reduction of solid oxides in molten salt has been widely studied since it was firstly reported by Fray and his colleagues.^[49-57] We originally demonstrated that solid silica (SiO₂) 66

67 can be electrochemically reduced to solid Si in molten salts via the solid-to-solid reaction: ^[58-71]

$$68 \qquad \text{SiO}_2(s) + 4e^- \rightarrow \text{Si}(s) + 2O^{2-} \tag{1}$$

Similar works have been reported by other researchers.^[72-84] Chen and his colleagues^[72-75] studied 69 70the reduction behavior of SiO₂ plates or pellets in molten CaCl₂ based on electrochemical measurements. We came up with a novel idea for SOG-Si production by combining direct 7172electrochemical reduction with the use of high-purity silica, acid leaching, and directional solidification.^[64] Impurities in the Si produced by this method were experimentally demonstrated to 73be at a low level.^[68] A semi-continuous electrochemical reduction process was thus proposed,^[69] in 7475which SiO_2 granules as the raw material supplied from the top side of the electrolysis cell are 76 reduced at the cathode placed at the bottom and recovered as slurry containing molten $CaCl_2$. The kinetic characteristics of the reducing process of SiO₂ granules were clarified by measuring the 77weight change of the samples during electrolysis.^[70] The apparent current density was 0.7 A cm⁻² at 7879the initial stage of electrolysis, which indicates the promise of this process in terms of productivity. 80 An integrated understanding of the mechanism and kinetics of the direct electrochemical reduction 81 of solid SiO₂ in a molten salt is crucial for upscaling of the laboratory experiment to commercial 82production. In our previous study, we systematically investigated the reduction behavior of SiO_2 83 granules on a bottom cathode in molten CaCl2 at 1123 K (850 °C) by visually observing changes to the reaction interfaces after different electrolysis durations.^[71] The overall reduction was found to 84

85	proceed via two different routes: (1) from the SiO_2 granules near the conductor to the distant
86	granules along the granule surfaces and (2) from the surface to the core in each partly reduced
87	granule. Formation of a core (SiO ₂)-shell (Si) structure for partly reduced SiO ₂ granules indicated
88	that the reduction along the granule surfaces was faster than that from the surface to the core. On the
89	basis of such findings, finer SiO ₂ granules are expected to be more favorable for a high reduction
90	rate owing to the larger surface area. However, this expectation needs to be experimentally
91	confirmed.
92	High productivity is crucial for every practical production process for SOG-Si, including molten
93	salt electrolysis. In this process, the size of SiO2 granules is considered to be one of the key
94	parameters that strongly affects the reduction kinetics and thus determines the productivity.
95	Therefore, the purpose of the present study was to clarify the effect of granule size on the kinetics of
96	the electrochemical reduction of SiO ₂ granules in molten CaCl ₂ . SiO ₂ granules with different size
97	ranges were electrolyzed in molten $CaCl_2$ at 1123 K (850 °C). The reduction kinetics was
98	quantitatively evaluated in terms of both the growth rate of the reduced layer and the behavior of the
99	current during electrolysis. A reaction model that illustrates the reduction process and the
100	dependence of reduction kinetics on granule size is proposed.

II. EXPERIMENTAL

102 A. Materials and Apparatus

- Approximately 400 g of $CaCl_2$ (Kojundo Chemical Lab. Co., Ltd., 99 pct) was used as the electrolyte bath. Prior to use, the $CaCl_2$ was dried under vacuum at 453 K (180 °C) for 72 h and 773
- 105 K (500 °C) for 24 h to remove the residual moisture. Approximately 0.13 g of SiO₂ granules
- 106 (Kojundo Chemical Lab. Co., Ltd., 99 pct) in four size ranges (less than 0.1 mm, 0.10-0.25 mm,
- 107 0.5-1.0 mm, and 1.0-2.0 mm), shown in Figure 1, were used in this study. These granules were

108 obtained from large granules (2.0–5.0 mm) after grinding and screening.

110 Figure 2(a) shows a schematic of the electrolysis cell. An Al_2O_3 crucible (Nikkato Corp., o.d. 90 ×

111 i.d. $80 \times$ height 100 mm) charged with CaCl₂ was set inside a SiO₂ vessel and heated to 1123 K

112 (850 °C) in a dry Ar atmosphere (100 mL min⁻¹). The working electrode (WE) comprised an Al_2O_3

113 tube (Nikkato Corp., o.d. 8 \times i.d. 5 \times height 15 mm) and a Si plate [Nilaco Corp., diameter 10.0 \times

thickness 0.5 mm, n-type, (100) plane], which served as a container and a current collector

115 respectively, as shown in Figure 2(b). SiO₂ granules were charged in the Al₂O₃ tube. A nickel wire

- 116 (Nilaco Corp., diameter 1.0 mm, 99 pct) used as the current lead was connected to the Si plate by
- 117 threading it into a drilled hole (diameter 1.1 mm). With this setup, electrical contact to the SiO₂
- 118 occurred only through the Si plate at the bottom of the Al_2O_3 tube.

********** Figure 2 **********

120	The counter electrode (CE) was a glassy carbon rod (Tokai Carbon Co., Ltd., diameter 5.2 mm).
121	The reference electrode (RE) was an Ag ⁺ /Ag electrode prepared by immersing a silver wire (Nilaco
122	Corp., diameter 1.0 mm, 99 pct) into CaCl ₂ containing 0.5 mol pct AgCl (Wako Pure Chemical Co.,
123	Ltd., 99.5 pct) in a mullite tube (Nikkato Corp., o.d. $6 \times i.d. 4 \times height 450 mm$). ^[63] A molybdenum
124	wire (Nilaco Corp., diameter 1.0 mm, 99 pct) was used to conduct the cyclic voltammetry to
125	calibrate the Ca^{2+}/Ca potential and check the potential of the Ag^+/Ag reference electrode.
126	B. Procedure
127	After conducting the cyclic voltammetry using the Mo wire to calibrate the Ca^{2+}/Ca potential, the
128	potential of the working electrode was set at 0.5 V vs. Ca^{2+}/Ca for the potentiostatic electrolysis for
129	10–100 min. The working electrode was immediately taken out from the melt after electrolysis and a
130	new one was immersed for another run. The post-electrolysis working electrode was cut vertically
131	into two halves to observe the cross section. In some cases, the post-electrolysis working electrode
132	was washed in 10 M HCl (aq.) for 3 h to disassemble the Si plate at the bottom. The upper surface of
133	the Si plate in contact with the SiO ₂ granules was observed.
134	

135

119

III. RESULTS

136 A. Contact of SiO₂ Granules with the Bottom Si Plate

137	Figure 3 compares the appearance of the upper surface of the bottom Si plate after electrolysis for
138	10 min using SiO_2 granules of different size ranges, as well as that of a blank test with no SiO_2
139	granules. In the case of the blank test [Figure 3(e)], the surface was essentially smooth and integrated.
140	When using SiO_2 granules less than 0.1 mm in size [Figure 3(a)], some parts of the surface were
141	broken, and a large amount of reduced Si, which appears brown in the figure, was attached to the
142	surface. This result indicates that the reduced Si and the bottom Si plate were in close contact with
143	each other during electrolysis. The broken surface was caused by disassembling the Si plate from the
144	post-electrolysis electrode. Since the crystallization rate for amorphous Si increases with increasing
145	temperature and reaches 1 μ m s ⁻¹ at 1123 K (850 °C), ^[85] the reduced Si, which was amorphous
146	immediately after its formation, might have rapidly crystallized and sintered to have the same
147	orientation as the bottom Si plate. In the case of SiO ₂ granules 1.0–2.0 mm in size [Figure 3(d)], only
148	a small amount of reduced Si was found on the surface. In Figures 3(a)–(d), it can be noticed that the
149	quantity of attached Si and broken areas are decreasing and the surface becomes more integrated
150	with increasing SiO_2 granule size. This trend indicates that the contact of SiO_2 granules with the
151	bottom Si plate was improved by decreasing the granule size.

152

********* Figure 3 **********

B. Growth of the Reduced Si Layer 153

154Figure 4 shows the cross sections of the working electrodes using SiO₂ granules with different

155	size ranges after electrolysis for (I) 20 min and (II) 60 min at 0.5 V vs. Ca^{2+}/Ca in molten $CaCl_2$ at
156	1123 K (850 °C). For each sample, a dark brown layer is observed above the Si plate at the bottom.
157	Formation of crystalline Si in this layer was confirmed by X-ray diffraction (XRD) and scanning
158	electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX). A downward shift of
159	unreduced SiO ₂ granules was not observed in Figure 4, indicating that the granules piled on the Si
160	plate as a whole did not apparently shrink downward after reduction. The thickness of the dark layer
161	at three positions in each cross section was measured using a ruler. The average thicknesses of the
162	reduced layers are plotted against electrolysis time in Figure 5. The increased thickness from 20 min
163	to 100 min indicates the propagation of the reduction from the bottom of the SiO_2 layer to the top.
164	Faster growth of the reduced layer was observed for the smaller granules, indicating a larger
165	reduction rate.
166	******** Figure 4 *********

********** Figure 5 **********

168 **C.** Behavior of the Current

Figure 6 shows typical current transient curves during electrolysis for 20 min using SiO_2 granules in the various size ranges. The current was larger at the beginning, and it gradually decreased as the electrolysis progressed. A larger current was observed for the smaller granules, indicating a faster reduction rate. Figure 6(e) shows the current of a blank electrolysis test for 10 min using the same

173	working electrode without a charge of SiO_2 granules. The detected background current is probably
174	due to the side electrochemical reactions of the residual moisture in the molten salt. In this study, the
175	background current was assumed to be independent of the electrolysis time and charge of SiO_2
176	granules. The effective current corresponding to SiO_2 reduction was considered to be the difference
177	between the measured current and the background current, as indicated in Figure 6.
178	****** Figure 6 ********
179	
180	IV. DISCUSSION
181	A. Effect of Granule Size on Contact Resistance
182	Figure 3 shows that contact between the SiO_2 granules and the bottom Si plate can be improved
183	by decreasing the granule size. Such a difference is schematically illustrated in Figure 7. Assuming
184	the granules are perfectly spherical in shape, the number of contact points equals the number of
185	granules in direct contact with the Si plate (N_I) , which can be calculated by
186	$N_I = \frac{A_{plate}}{\pi r_0^2} \tag{2}$
187	where A_{plate} is the geometrical area of the Si plate and r_0 is the granule radius. Apparently, small
188	granules guarantee a larger number of contact points and thus a greater total contact area as
189	compared with the large granules.
190	***** Figure 7 ********

As reduction proceeds along the granule surface and from the granule surface to the core, the reduction front gradually moves away from the initial point and spreads along the unreduced part of the SiO₂ granule.^[71] The effective potential at the reduction front is determined by the contact resistance between the bottom Si plate and the reduced part of the SiO₂ granules.^[73] Because the reduction kinetics is favored at more negative potentials,^[61] the usage of small granules guarantees a lower potential drop, thus improving the reduction kinetics.

197 **B.** Reaction Model for the Reduction during Electrolysis

198 Figure 8 illustrates the reduction of the SiO₂ granules piled on the Si plate based on our previous study.^[71] A reaction model is proposed to explain the reduction at three stages of electrolysis with 199200the following assumptions: the SiO₂ granules are perfectly spherical in shape; the effective area for 201each contact point between SiO_2 granule and Si plate is the same and independent of granule size; 202the granules never expand or shrink during electrolysis; the Si shell formed at the beginning of 203electrolysis is of an infinitesimal thickness that remains constant over short time periods; the diffusion coefficients of O^{2-} ions in CaCl₂ at the granule surface and inside the granule are 204205independent of granule size; partly reduced granules after electrolysis for large time t have an identical geometry; and the concentration of O²⁻ ions changes linearly in CaCl₂ in the crevices of the 206207Si shells from inside to outside.

208 ********* Figure 8 **********

At the start of the electrolysis (infinitesimal time t), reduction occurs at the contact points between

210 SiO₂ granules and the Si plate, as shown in Figure 8(a). Since diffusion of O²⁻ ions in CaCl₂ is the

211 rate-determining step for the reduction, from Fick's first law of diffusion, the reduction rate at this

212 moment $(\hat{n}_{Si}^{t \to 0})$ can be described by

213
$$\dot{n}_{Si}^{t \to 0} = \frac{\dot{n}_{O^{2}}^{t \to 0}}{2} = \frac{-1}{2} N_I A_{cont.} D_{surf.} \left(\frac{dC_{O^{2}}}{dr}\right)_{surf.} = \frac{-A_{plate}}{2\pi r_0^2} A_{cont.} D_{surf.} \left(\frac{dC_{O^{2}}}{dr}\right)_{surf.}$$
(3)

Where $\hat{n}_{O^{2^{-}}}^{t \to 0}$ is the formation rate of $O^{2^{-}}$ ions at the start of the electrolysis, $A_{cont.}$ is the effective area for each contact point, and $D_{surf.}$ and $\left(\frac{dC_{0^{2^{-}}}}{dr}\right)_{surf.}^{t}$ are the diffusion coefficient and concentration gradient of $O^{2^{-}}$ ions in CaCl₂ at the granule surface, respectively. Since A_{plate} is constant and $A_{cont.}$, $D_{surf.}$, and $\left(\frac{dC_{0^{2^{-}}}}{dr}\right)_{surf.}^{t}$ are considered to be independent of granule size, Eq. [3] indicates that the reduction rate at the start of electrolysis decreases with increasing granule radius. With increasing *t*, reduction proceeds upward along the granule surface and from surface to core

with the formation of a Si shell, as shown in Figure 8(b-1). The overall reduction rate $(\hat{n}_{Si}^{overall})$ can

221 be expressed as

222
$$\hat{n}_{Si}^{overall} = \hat{n}_{Si}^{surf.} + \hat{n}_{Si}^{ins.} \approx \hat{n}_{Si}^{surf.}$$
(4)

where $\hat{n}_{Si}^{surf.}$ and $\hat{n}_{Si}^{ins.}$ are the reduction rate along the surface and from the surface to the core, respectively. Since the reduction from the surface to the core is much slower than the reduction along the surface after electrolysis of small time *t*, only the latter is considered. As illustrated in Figure 8(b-2), the Si shell with a thickness of δ and the center of the granule form a spherical sector ACD, the cone angle of which is $2\theta \left(0 < \theta < \frac{\pi}{2}\right)$. The area of the reduction interface $\left(A_{inter.}^{smallt}\right)$ can

be calculated as the difference of the lateral area between the spherical sectors ACD and ABE.

229
$$A_{inter.}^{small t} = \pi r_0^2 sin\theta - \pi (r_0 - \delta)^2 sin\theta = \pi [r_0^2 - (r_0 - \delta)^2] sin\theta$$
(5)

230 The reduction rate at small $t (\hat{n}_{Si}^{small t})$ can be described as

231
$$\hat{n}_{Si}^{small t} = \frac{\hat{n}_{O^{2}}^{small t}}{2} = \frac{-N_I \pi}{2} [r_0^2 - (r_0 - \delta)^2] sin\theta \cdot D_{surf.} \left(\frac{dC_{O^2}}{dr}\right)_{surf.}$$
(6)

where $\hat{n}_{O^{2^{-}}}^{small t}$ is the formation rate of O²⁻ ions after electrolysis of small time *t*. Since the volume difference between the spherical sectors ACD and ABE is regarded as the volume of the reduced part of a single SiO₂ granule ($\Delta V_{SiO_2}^{small t}$), given as

235
$$\Delta V_{SiO_2}^{small t} = \frac{2}{3}\pi r_0^3 (1 - \cos\theta) - \frac{2}{3}\pi (r_0 - \delta)^3 (1 - \cos\theta) = \frac{2}{3}\pi [r_0^3 - (r_0 - \delta)^3] (1 - \cos\theta)$$
(7)

236 the reduction rate can also be calculated by

237

$$\hat{n}_{Si}^{small t} = \frac{dn_{Si}}{dt} = \frac{d\frac{\rho_{SiO_2}N_I\Delta V_{SiO_2}^{small t}}{M_{SiO_2}}}{dt} = \frac{2\rho_{SiO_2}N_I\pi d\{[r_0^3 - (r_0 - \delta)^3](1 - \cos\theta)\}}{3M_{SiO_2}dt}$$
$$= \frac{2\rho_{SiO_2}N_I\pi}{3M_{SiO_2}}[r_0^3 - (r_0 - \delta)^3]\sin\theta\frac{d\theta}{dt}$$
(8)

238 where n_{Si} is the number of moles of the reduced Si, ρ_{SiO_2} and M_{SiO_2} are the density and molar weight of

239 SiO₂, respectively. Combining Eqs. [6] and [8] gives

240
$$\frac{d\theta}{dt} = \frac{-3M_{SiO_2}[2r_0 - \delta]}{4\rho_{SiO_2}[3r_0^2 - 3r_0\delta + \delta^2]} D_{surf.} \left(\frac{dC_{O^2}}{dr}\right)_{surf.} \approx -\frac{M_{SiO_2}}{2\rho_{SiO_2}r_0} D_{surf.} \left(\frac{dC_{O^2}}{dr}\right)_{surf.}$$
(9)

241 The solution of Eq. [9] with the boundary condition $\theta = 0$ when t = 0 gives

242
$$\theta = \frac{-M_{SiO_2}t}{2\rho_{SiO_2}r_0} D_{surf.} \left(\frac{dC_{O^2}}{dr}\right)_{surf.}$$
(10)

243 The substitution of Eq. [10] into Eq. [6] gives

$$\hat{n}_{O^{2^{\circ}}}^{small t} = -\frac{A_{plate}}{r_0^2} [2r_0\delta - \delta^2] sin \left[\frac{-M_{SiO_2}t}{2\rho_{SiO_2}r_0} D_{surf.} \left(\frac{dC_{O^{2^{\circ}}}}{dr} \right)_{surf.} \right] \cdot D_{surf.} \left(\frac{dC_{O^{2^{\circ}}}}{dr} \right)_{surf.}$$

$$\approx -\frac{2\delta A_{plate} D_{surf.} \left(\frac{dC_{O^{2^{\circ}}}}{dr} \right)_{surf.}}{r_0} sin \left[\frac{-M_{SiO_2}t}{2\rho_{SiO_2}r_0} D_{surf.} \left(\frac{dC_{O^{2^{\circ}}}}{dr} \right)_{surf.} \right] \tag{11}$$

Equation [11] clearly indicates that reduction rate after electrolysis of small time t decreases with increasing granule radius. It is also understood from Eq. [11] that the reduction rate at the beginning of electrolysis would increase with increasing time t. Even though this tendency is not clearly observed in the current experiments because the amount of SiO₂ granules is too small (0.13 g), it was

presented in previous experiments on a larger scale (more than 10 g of SiO₂ granules).^[69]

After electrolysis of large time t, a core (SiO₂)–shell (Si) structure forms for all granules, as shown

251 in Figure 8(c-1). At this moment, the whole granule surface is reduced, and thus only the reduction

252 from the surface to the core continues. The reaction interface is the surface of the unreacted SiO₂

253 core. The reduction rate $(\hat{n}_{Si}^{large t})$ can be calculated as

254
$$\hat{n}_{Si}^{large t} = \frac{\hat{n}_{o^{2}}^{large t}}{2} = -2\pi r_i^2 N_{II} D_{ins.} \left(\frac{dC_{o^{2}}}{dr}\right)_{ins.}$$
(12)

255 where $\dot{n}_{Q^{2^{-}}}^{large t}$ is the formation rate of $O^{2^{-}}$ ions after electrolysis of large time t, r_i is the radius of the

unreduced SiO_2 core as shown in Figure 8(c-2), N_{II} is the number of granules reduced after large

257 time t, and
$$D_{\text{ins.}}$$
 and $\left(\frac{dC_{0^{2^{-}}}}{dr}\right)_{ins.}$ are the diffusion coefficient and concentration gradient of O²⁻ ions in

259 of O²⁻ ions,
$$\left(\frac{dC_{O^{2-}}}{dr}\right)_{ins.} = \frac{C_0 - C_i}{r_0 - r_i}$$
, where C_0 and C_i are the concentrations of O²⁻ ions at the outer and

260 inner surfaces of the Si shell, respectively, Eq. [12] becomes

261
$$\hat{n}_{Si}^{large t} = 2\pi r_i^2 N_{II} D_{ins.} \frac{c_i - c_0}{r_0 - r_i}$$
(13)

262 Since the volume of the reduced part of a single SiO₂ granule ($\Delta V_{SiO_2}^{larget}$) can be calculated as

263
$$\Delta V_{SiO_2}^{large t} = \frac{4}{3}\pi r_0^3 - \frac{4}{3}\pi r_i^3$$
(14)

the reduction rate can also be described by

265
$$\hat{n}_{Si}^{large t} = \frac{dn_{Si}}{dt} = \frac{d\frac{\rho_{SiO_2}N_{II}\Delta V_{SiO_2}^{large t}}{M_{SiO_2}}}{dt} = \frac{-4\rho_{SiO_2}N_{II}\pi r_i^2}{M_{SiO_2}}\frac{dr_i}{dt}$$
(15)

266 Combining Eqs. [13] and [15] yields

267
$$\frac{2(r_i - r_0)dr_i}{dt} = \frac{(C_i - C_0)D_{ins.}M_{SiO_2}}{\rho_{SiO_2}}$$
(16)

Assuming $D_{ins.}$, C_0 , and C_i are independent of time, the solution of Eq. [16] with the boundary

269 condition
$$r_i = r_0$$
 when $t = 0$ gives

270
$$(r_0 - r_i)^2 = \frac{(C_i - C_0)D_{ins.}M_{SiO_2}}{\rho_{SiO_2}}t$$
 (17)

271 Since the granule number can be described as

272
$$N_{II} = \frac{\frac{W_{SiO_2}}{\rho_{SiO_2}}}{\frac{4}{3}\pi r_0^3} = \frac{3W_{SiO_2}}{4\rho_{SiO_2}\pi r_0^3}$$
(18)

273 where W_{SiO_2} is the total weight of SiO₂, the substitution of Eqs. [17] and [18] into Eq. [13] yields

274
$$\hat{n}_{Si}^{large\ t} = \left[r_0 - \sqrt{\frac{(C_i - C_0)D_{ins.}M_{Sio_2}}{\rho_{Sio_2}}t}\right]^2 \frac{3W_{Sio_2}}{2r_0^3} \sqrt{\frac{(C_i - C_0)D_{ins.}}{M_{Sio_2}\rho_{Sio_2}t}}$$
(19)

Equation [19] is a monotonically decreasing function of r_0 , which indicates that the reduction rate at

an electrolysis time of large *t* decreases with increasing granule radius. Moreover, the reduction rate

- 277 also decreases with increasing electrolysis time. These tendencies are in accordance with the
- experimental results shown in Figure 6.

279 C. Apparent Current Density

280Based on the current transient curves during electrolysis (Figure 6), the apparent current density 281was evaluated. In the case of the blank test without charging with SiO₂ granules, only the current 282 (I_{blank}) contributed by the side electrochemical reactions (I_{side}) is obtained 283 $I_{blank} = I_{side}$ (20)284For the electrolysis after charging with SiO_2 granules, the overall current (I_{all}) is the result of both the SiO_2 reduction (I_{SiO_2}) and the side reactions. 285286 $I_{all} = I_{SiO_2} + I_{side}$ (21)287Assuming the current corresponding to side reactions is independent of the electrolysis time and 288charge of SiO₂ granules, the apparent current density corresponding to SiO₂ reduction (i_{SiO_2}) can be 289calculated by $i_{SiO_2} = \frac{I_{SiO_2}}{A_{plate}} = \frac{I_{all} - I_{blank}}{A_{plate}}$ 290 (22)

Using the data in Figure 6 and taking
$$I_{side} \equiv 0.05A$$
, the apparent current densities during
electrolysis for 20 min using SiO₂ granules with various size ranges were calculated and the results
are shown in Figure 9. It is clear that the current density gradually decreases with increasing
electrolysis time and that smaller SiO₂ granules results in a larger current density. In the case of
using SiO₂ granules less than 0.1 mm in size, electrolysis within 20 min maintained a current density
of no less than 0.4 A cm⁻². This result basically agrees with those of a previous study, in which the

297	current density was obtained by calculating from the weight change of the sample before and after
298	electrolysis. ^[70] These results indicate that the productivity would be improved by using fine SiO_2
299	granules as the raw materials for a new SOG-Si production process in the future.
300	****** Figure 9 ********
301	
302	IV. CONCLUSIONS
303	The effect of granule size on the kinetics of electrochemical reduction of SiO ₂ granules in molten
304	CaCl ₂ at 1123 K (850 °C) was clarified. Fine SiO ₂ granules are favorable for a high reduction rate by
305	lowering the contact potential drop between the bottom Si plate and the reduced Si. The use of fine
306	granules also improves the diffusion of O^{2-} ions in CaCl ₂ inside the porous Si shell formed on the
307	SiO_2 core. The electrolysis using SiO_2 granules less than 0.1 mm in size maintained a current density
308	of no less than 0.4 A $\rm cm^{-2}$ within 20 min, indicating that electrochemical reduction of fine $\rm SiO_2$
309	granules in molten CaCl ₂ has the potential to become a high-yield solar-grade silicon production
310	process.
311	ACKNOWLEDGMENTS
312	This study was partly supported by Core Research for Evolutionary Science and Technology

313 (CREST), Japan Science and Technology Agency (JST) and Grants-in-Aid for Scientific Research A

314 from the Japan Society for the Promotion of Science (JSPS).

315

316

317

NOMENCLATURE

$A_{\rm cont.}$	Effective area for each contact point between SiO ₂ granules and the Si plate
A_{plate}	Geometrical area of the bottom Si plate
Asmall t	Area of the reduction interface after electrolysis of small time t
C_{i}	Concentration of O^{2-} ions at the inner surface of the Si shell of the partly reduced
-1	SiO ₂ granules after electrolysis of large time t
C_0	Concentration of $O^{2^{-1}}$ ions at the outer surface of the Si shell of the partly reduced
Ū	SiO_2 granules after electrolysis of large time t
$D_{ m ins}$	Diffusion coefficient of $O^{2^{-1}}$ ions in CaCl ₂ in the crevice of the porous Si shell of the
113.	partly reduced SiO ₂ granules after electrolysis of large time t
Dourf	Diffusion coefficient of O^{2-} ions in CaCl ₂ at the SiO ₂ granule surface
$(dC_{0^{2}})$	Concentration gradient of O^{2} ions in CaCl ₂ in the crevice of the porous Si shell of
$\left(\frac{dr}{dr}\right)$	the partly reduced SiO ₂ granules after electrolysis of large time t
(dC_{-2})	Concentration gradient of O^{2} ions in CaCl ₂ at the SiO ₂ granule surface
$\left(\frac{\alpha c_{0^{2^{*}}}}{d\alpha}\right)$	
(ar) _{surf.}	Current obtained in the case of a test with charging SiO_2
I _{all}	Current obtained in the case of a blank test without charging SiO_2
I _{blank}	Current contributed by the side electrochemical reactions
Iside	Current contributed by SiO ₂ reduction
I_{SiO_2}	Apparent current density corresponding to SiO ₂ reduction
i_{SiO_2}	Molar weight of SiO_2
M_{SiO_2}	Number of SiO ₂ granules directly neighboring the Si plate
NI	Total number of SiO_2 granules
N_{II}	Number of moles of the reduced Si
n _{si}	Reduction rate of SiO ₂ granules at the start moment of the electrolysis
$\dot{n}_{s_i}^{t \to 0}$	Overall reduction rate of SiO ₂ granules
$\hat{n}_{s_i}^{overall}$	Reduction rate of SiO ₂ granules along surface
ń ^{surf.}	Reduction rate of SiO ₂ granules from surface to core
Si Lins.	Reduction rate of SiO_2 granules after electrolysis of small time t
n _{Si} (small t	Reduction rate of SiO_2 granules after electrolysis of large time t
$n_{Si}^{small t}$	Formation rate of O^{2-} ions at the start moment of the electrolysis
ń _{si} targe t	Formation rate of $O^{2^{-}}$ ions after electrolysis of small time t
$\dot{n}_{0^{2}}^{t \to 0}$	Formation rate of O^{2} ions after electrolysis of large time t
ń ^{small t}	Radius of the SiO_2 granule in Figure 8(b-2)
10 ²⁻	Radius of the unreduced core of the partly reduced SiO ₂ granule in Figure 8(c-2)
ń ₀₂₋	Electrolysis time
r_0	Volume of the reduced part of a SiO_2 granule after electrolysis of small time t
r _i	Volume of the reduced part of a SiO_2 granule after electrolysis of large time t
t	Total weight of SiO_2 granules
$\Delta V_{SiO_2}^{small t}$	Thickness of the reduced Si shell after electrolysis of small time <i>t</i> in Figure 8(b-2)

	ΔΙ	V ^{larget} Η V _{SiO2} Η W _{SiO2} Β θ	Half of the cone angle of the spherical sector ACD in Figure 8(b-2) Density of SiO_2
		ρ_{SiO_2}	
318			
319			
320			
321			
322			REFERENCES
323	1.	European	Photovoltaic Industry Association: Market Report 2013, European Photovoltaic
324		Industry A	ssociation, Brussels, March, 2014.
325	2.	Observ'ER	C: Fifteenth Inventory 2013 Edition–Worldwide Electricity Production from
326		Renewable	e Energy Sources, Observ'ER, Paris, June, 2013.
327	3.	German A	Advisory Council on Global Change: World in Transition-Towards Sustainable
328		Energy Sys	stems, Earthscan, London, 2003.
329	4.	Arumu Put	blishing Co.: Rare Metal News, Arumu Publishing Co., Tokyo, August, 2014.
330	5.	Arumu Pul	blishing Co.: Rare Metal News, Arumu Publishing Co., Tokyo, April, 2014.
331	6.	H. Schweid	ckert, K. Reuschel, and H. Gutsche: U.S. patent, US3,011,877, 1961.
332	7.	H. Gutsche	e: U.S. patent, US3,042,494, 1962.
333	8.	G. Bye and	B. Ceccaroli: Sol. Energy Mater. Sol. Cells, 2014, vol. 130, pp.634-46.
334	9.	H. W. Ling	g: U.S. Patent, US3,012,861, 1961.
335	10.	L. Bertrand	d, N. Star, and C. M. Olson: U.S. Patent, US3,012,862, 1961.

- 336 **11.** K. Morita and T. Miki: *Intermetallics*, 2003, vol. 11, pp. 1111–17.
- 337 12. V. Hoffmann, K. Petter, J. Djordjevic-Reiss, E. Enebakk, J. T. Håkedal, R. Tronstad, T.
- 338 Vlasenko, I. Buchovskaja, S. Beringov, and M. Bauer: Proc. 23rd EU PVSEC, Valencia, Spain,
- 339 1-5 Sept. 2008, pp. 1117–20.
- 340 13. Y. V. Meteleva-Fischer, Y. Yang, R. Boom, B. Kraaijveld and H. Kuntzel: JOM, 2012, vol. 64,
- 341 pp. 957–967.
- 342 14. IHS Technology: PV Manufacturing Technology Report 2014, IHS Technology, El Segundo

343 Feb., 2014.

- 15. S. Wakamatsu and H. Oda: PCT International Patent, WO2001/085613, 2001.
- 16. A. Søiland, M. G. Dolmen, J. Heide, U. Thisted, G. Halvorsen, G. Ausland, K. Friestad, P.
- 346 Preis, K. Peter, O. Graf, T. Bartel, and R. Tronstad: Sol. Energy Mater. Sol. Cells, 2014, vol.
- 347 130, pp. 661-67.
- 348 **17.** K. Yasuda, K. Morita, and T. H. Okabe: *Energy Technology*, 2014, vol. 2, pp. 141–54.
- 349 18. W. O. Filtvedt, M. Javidi, A. Holt, M. C. Melaaen, E. Marstein, H. Tathgar, and P. A.
- 350 Ramachandran: Sol. Energy Mater. Sol. Cells, 2010, vol. 94, pp. 1980–95.
- 351 **19.** B. G. Gribov and K. V. Zinov'ev: *Inorg. Mater.*, 2003, vol. 39, pp. 653–62.
- 352 **20.** H. Oda: *Kogyo Zairyo*, 2007, vol. 55, pp. 30–34.
- 353 21. A. F. B. Braga, S. P. Moreira, P. R. Zampieri, J. M. G. Bacchin, and P. R. Mei: Sol. Energy

- 354 Mater. Sol. Cells, 2008, vol. 92, pp. 418–24.
- 355 22. M. D. Johnston, L. T. Khajavi, M. Li, S. Sokhanvaran, and M. Barati, *JOM*, 2012, vol. 64, pp.
 356 935–45.
- 357 23. Y. Sakaguchi, M. Ishizaki, T. Kawahara, M. Fukai, M. Yoshiyagawa, and F. Aratani, *ISIJ Int.*,
- 358 1992, vol. 32, pp. 643–49.
- 359 24. K. Suzuki, T. Kumagai, and N. Sano: *ISIJ Int.*, 1992, vol. 32, pp. 630–34.
- 360 **25.** T. Ikeda and M. Maeda: *ISIJ Int.*, 1992, vol. 32, pp. 635–42.
- 361 26. J. C. S. Pires, J. Otubo, A. F. B. Braga, and P. R. Mei: J. Mater. Processing Tech. 2005, vol.
- 362 169, pp. 16–20.
- 363 27. J. L. Gumaste, B. C. Mohanty, R. K. Galgali, U. Syamaprasad, B. Nayak, S. K. Singh, and P. K.
- 364 Jena: Sol. Energy Mater., 1987, vol. 16, pp. 289–96.
- 365 **28.** T. Yoshikawa and K. Morita: *JOM*, 2012, vol. 64, pp. 946–51.
- 366 29. I. C. Santos, A. P. Goncalves, C. S. Santos, M. Almeida, M. H. Afonso, and M. J. Cruz:
- 367 *Hydrometallurgy*, 1990, vol. 23, pp. 237–246.
- 368 **30.** Y. Sun, Q. Ye, C. Guo, H. Chen, X. Lang, F. David, Q. Luo, and C. Yang: *Hydrometallurgy*,
- 369 2013, vol. 139, pp. 64–72.
- 370 **31.** J. Safarian and M. Tangstad: *Metall. Mater. Trans. B*, 2012, vol. 43, pp. 1427–45.
- 371 32. M. A. Martorano, J. B. F. Neto, T. S. Oliveira, and T. O. Tsubaki: *Mater. Sci. Eng. B*, 2011, vol.

372 176, pp. 217–26.

- 373 33. S. Honda, M. Yasueda, S. Hayashida, and M. Yamaguchi: Japanese Patent Application,
- 374 JP2007145663, 2007.
- 375 34. K. Saegusa and T. Yamabayashi: PCT International Patent WO2007/001093, 2007.
- 376 **35.** K. Yasuda and T. H. Okabe: *JOM*, 2010, vol. 62, pp 94–101.
- 377 36. K. Yasuda, K. Saegusa, and T. H. Okabe: *Metall. Mater. Trans. B*, 2011, vol. 42, pp. 37–49.
- 378 **37.** E. Robert and T. Zijlema: PCT International Patent WO2006/100114, 2006.
- 379 **38.** C. Rosenkilde: PCT International Patent WO2008/120994, 2008.
- 380 **39.** H. Tezuka: PCT International Patent WO2008/153181, 2008.
- **40.** K. Saito, H. Munakata, and T. Mizoguchi: PCT International Patent WO2011/071030, 2011.
- 41. R. Monnier, D. Barakat, and J. Giacometti: U.S. Patent, US3,254,010, 1966.
- 383 **42.** J. Olson and K. Carleton: *J. Electrochem. Soc.*, 1981, vol. 128, pp. 2698–99.
- 43. J. Cai, X. Luo, G. M. Haarberg, O. E. Kongstein, and S. Wang: J. Electrochem. Soc., 2012, vol.
- 385 159, pp. D155–58.
- 44. D. Elwell and R. S. Feigelson: *Sol. Energy Mater.*, 1982, vol. 6, pp. 123–45.
- 387 **45.** D. Elwell and G. M. Rao: *J. Appl. Electrochem.*, 1988, vol. 18, pp. 15–22.
- 46. T. Oishi, M. Watanabe, K. Koyama, M. Tanaka, and K. Saegusa: J. Electrochem. Soc., 2011,
- 389 vol. 158, pp. E93–99.

- 47. J. Xu and G. M. Haarberg: High Temperature Materials and Processes, 2013, vol. 32, pp. 97-
- 391 105.
- **48.** Y. Jiang, J. Xu, X. Guan, U.B. Pal, and S.N. Basu: *MRS Proceedings*, 2013, vol. 1493, pp. 231–
- 393 35.
- 49. G. Z. Chen, D. J. Fray, and T. W. Farthing: *Nat.*, 2000, vol. 407, pp. 361-64.
- **50.** X. Y. Yan and D. J. Fray: *Metall. Mater. Trans. B*, 2002, vol. 33, pp. 685–93.
- **51.** G. Z. Chen, E. Gordo, and D. J. Fray: *Metall. Mater. Trans. B*, 2004, vol. 35, pp. 223–33.
- **52.** K. S. Mohandas and D. J. Fray: *Metall. Mater. Trans. B*, 2009, vol. 40, pp. 685–99.
- **53.** X. Y. Yan and D. J. Fray: J. Appl. Electrochem., 2009, vol. 39, pp. 1349–60.
- 399 54. Q. Song, Q. Xu, X. Kang, J. Du, and Z. Xi: J. Alloy. Compd., 2010, vol. 490, pp. 241–46.
- **55.** M. Erdoğan and I. Karakaya: *Metall. Mater. Trans. B*, 2010, vol. 41, pp. 798–804.
- **56.** A. M. Abdelkader and D. J. Fray: *Electrochim. Acta*, 2012, vol. 64, pp. 10-16.
- **57.** W. Xiao and D. Wang: *Chem. Soc. Rev.*, 2014, vol. 43, pp. 3215-28.
- **58.** T. Nohira, K. Yasuda, and Y. Ito: *Nat. Mater.*, 2003, vol. 2, pp. 397–401.
- 404 59. K. Yasuda, T. Nohira, K. Amezawa, Y. H. Ogata, and Y. Ito: J. Electrochem. Soc., 2005, vol.
- 405 152, pp. D69–74.
- **60.** K. Yasuda, T. Nohira, Y. H. Ogata, and Y. Ito: *Electrochim. Acta*, 2005, vol. 51, pp. 561–65.
- **61.** K. Yasuda, T. Nohira, and Y. Ito: J. Phys. Chem. Solids, 2005, vol. 66, pp. 443–47.

- 408 62. K. Yasuda, T. Nohira, Y. H. Ogata, and Y. Ito: J. Electrochem. Soc., 2005, vol. 152, pp. D208–
- 409 12.
- 410 63. K. Yasuda, T. Nohira, R. Hagiwara, and Y. H. Ogata: J. Electrochem. Soc., 2007, vol. 154, pp.
- 411 E95–E101.
- 412 64. K. Yasuda, T. Nohira, R. Hagiwara, and Y. H. Ogata: *Electrochim. Acta*, 2007, vol. 53, pp.
 413 106–10.
- 414 **65.** K. Yasuda, T. Nohira, K. Takahashi, R. Hagiwara, and Y. H. Ogata: *J. Electrochem. Soc.*, 2005,
- 415 vol. 152, pp. D232–37.
- 416 66. Y. Nishimura, T. Nohira, K. Yasuda, Y. Fukunaka, and R. Hagiwara: Trans. Mater. Res. Soc.
- 417 *Jpn.*, 2010, vol. 35, pp. 47-49.
- 418 67. Y. Nishimura, T. Nohira, K. Kobayashi, and R. Hagiwara: J. Electrochem. Soc., 2011, vol.158,
- 419 pp. E55–59.
- 420 68. K. Yasuda, T. Nohira, K. Kobayashi, N. Kani, T. Tsuda, and R. Hagiwara: Energy Technology,
- 421 2013, vol. 1, pp. 245–52.
- 422 69. T. Toba, K. Yasuda, T. Nohira, X. Yang, R. Hagiwara, K. Ichitsubo, K. Masuda, and T.
- 423 Homma: *Electrochemistry*, 2013, vol. 81, pp. 559–65.
- 424 **70.** X. Yang, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma: *J. Electrochem. Soc.*, 2014, vol.
- 425 161, pp. D3116–19.

- 426 71. X. Yang, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma: Metall. Mater. Trans. B, 2014,
- 427 vol. 45, pp. 1337-44.
- 428 72. X. Jin, P. Gao, D. Wang, X. Hu, and G. Z. Chen: Angew. Chem., 2004, vol. 116, pp. 751–54.
- 429 **73.** W. Xiao, X. Jin, Y. Deng, D. Wang, X. Hu, and G. Z. Chen: *ChemPhysChem.*, 2006, vol. 7, pp.
 430 1750–58.
- 431 74. W. Xiao, X. Jin, Y. Deng, D. Wang, X. Hu, and G. Z. Chen: J. Electroanal. Chem., 2010, vol.
- 432 639, pp. 130–40.
- 433 **75.** W. Xiao, X. Jin, and G. Z. Chen: J. Mater. Chem. A., 2013, vol. 1, pp. 10243–50.
- 434 **76.** W. Xiao, X. Wang, H. Yin, H. Zhu, X. Mao, and D. Wang: *RSC Advances*, 2012, vol. 2, pp.
- 435 7588–93.
- 436 77. P. C. Pistorius and D. J. Fray: J. S. Afr. Inst. Min. Metall., 2006, vol. 106, pp. 31–41.
- 437 **78.** S. Lee, J. Hur, and C. Seo: *J. Ind. Eng. Chem.*, 2008, vol. 14, pp. 651–54.
- 438 **79.** E. Juzeliunas, A. Cox, and D. J. Fray: *Electrochem. Comm.*, 2010, vol. 12, pp. 1270–74.
- 439 **80.** E. Ergül, İ. Karakaya, and M. Erdoğan: *J. Alloy. Compd.*, 2011, vol. 509, pp. 899–903.
- 440 **81.** S. K. Cho, F. F. Fan, and A. J. Bard: *Electrochim. Acta*, 2012, vol. 65, pp. 57–63.
- 441 **82.** J. Zhao, S. Lu, L. Hu, and C. Li: *J. Energy Chem.*, 2013, vol. 22, pp. 819-25.
- 442 83. J. Zhao, J. Li, P. Ying, W. Zhang, L. Meng, and C. Li: *ChemCom.*, 2013, vol. 49, pp. 4477-79.
- 443 84. H. Nishihara, T. Suzuki, H. Itoi, B. An, S. Iwamura, R. Berenguer, and T. Kyotani: Nanoscale,

444 2014, vol. 6, pp. 10574-83.

85. G. Olson and J. Roth: *Mater. Sci. Rep.*, 1988, vol. 3, pp. 1-77.

Caption list

- 448 Figure 1—Appearances of the SiO₂ granules with size ranges of (a) less than 0.1 mm, (b) 0.10–0.25
- 449 mm, (c) 0.5–1.0 mm and (d) 1.0–2.0 mm.
- 450 Figure 2—A schematic of (a) the electrolysis cell and (b) the working electrode.
- Figure 3—Appearances of the upper surface of the bottom Si plate after electrolysis using SiO₂ granules with size ranges of (a) less than 0.1 mm, (b) 0.10–0.25 mm, (c) 0.5–1.0 mm, (d) 1.0-2.0 mm for 10 min and (e) a blank electrolysis test for 10 min at 0.5 V vs. Ca²⁺/Ca in molten CaCl₂ at 1123 K (850 °C).
- Figure 4—Cross sections of the working electrodes using SiO₂ granules with size ranges of (a) less
 than 0.1 mm, (b) 0.10–0.25 mm, (c) 0.5–1.0 mm and (d) 1.0–2.0 mm after electrolysis for
 (I) 20 min and (II) 60 min at 0.5 V vs. Ca²⁺/Ca in molten CaCl₂ at 1123 K (850 °C).
- Figure 5—Thickness of the reduced layers after electrolysis for 20, 60 and 100 min using SiO_2 granules with different size ranges at 0.5 V vs. Ca^{2+}/Ca in molten $CaCl_2$ at 1123 K (850 °C).
- Figure 6—Current transient curves during electrolysis using SiO₂ granules with size ranges of (a) less than 0.1 mm, (b) 0.10–0.25 mm, (c) 0.5–1.0 mm and (d) 1.0–2.0 mm for 20 min and (e) during a blank electrolysis test for 10 min at 0.5 V vs. Ca^{2+}/Ca in molten $CaCl_2$ at 1123 K (850 °C).
- Figure 7—Schematics of the contact between SiO₂ granules and the bottom current collector (Si
 plate).

467 Figure 8—Schematics of the reduction of the SiO₂ granules during electrolysis.

468 Figure 9—Variation of apparent current density during electrolysis within 20 min using SiO₂
469 granules with size ranges of (a) less than 0.1 mm, (b) 0.10–0.25 mm, (c) 0.5–1.0 mm and
470 (d) 1.0–2.0 mm at 0.5 V vs. Ca²⁺/Ca in molten CaCl₂ at 1123 K (850 °C).

Figure 1—Appearances of the SiO₂ granules with size ranges of (a) less than 0.1 mm, (b) 0.10–0.25 mm, (c) 0.5–1.0 mm and (d) 1.0–2.0 mm.

Figure 2—A schematic of (a) the electrolysis cell and (b) the working electrode.

(a) Less than 0.1 mm (b) 0.10-0.25 mm (c) 0.5-1.0 mm (d) 1.0-2.0 mm (e) Blank test

Figure 3—Appearances of the upper surface of the bottom Si plate after electrolysis using SiO₂ granules with size ranges of (a) less than 0.1 mm, (b) 0.10–0.25 mm, (c) 0.5–1.0 mm, (d) 1.0–2.0 mm for 10 min and (e) a blank electrolysis test for 10 min at 0.5 V vs. Ca²⁺/Ca in molten CaCl₂ at 1123 K (850 °C).

(II) Electrolysis for 60 min

Figure 4—Cross sections of the working electrodes using SiO₂ granules with size ranges of (a) less than 0.1 mm, (b) 0.10–0.25 mm, (c) 0.5–1.0 mm and (d) 1.0-2.0 mm after electrolysis for (I) 20 min and (II) 60 min at 0.5 V vs. Ca²⁺/Ca in molten CaCl₂ at 1123 K (850 °C).

Figure 5—Thickness of the reduced layers after electrolysis for 20, 60 and 100 min using SiO₂ granules with different size ranges at 0.5 V vs. Ca²⁺/Ca in molten CaCl₂ at 1123 K (850 °C).

Figure 6—Current transient curves during electrolysis using SiO₂ granules with size ranges of (a) less than 0.1 mm, (b) 0.10–0.25 mm, (c) 0.5–1.0 mm and (d) 1.0–2.0 mm for 20 min and (e) during a blank electrolysis test for 10 min at 0.5 V vs. Ca²⁺/Ca in molten CaCl₂ at 1123 K (850 °C).

Figure 7—Schematics of the contact between SiO₂ granules and the bottom current collector (Si plate).

Figure 8—Schematics of the reduction of the SiO₂ granules during electrolysis.

Figure 9—Variation of apparent current density during electrolysis within 20 min using SiO₂ granules with size ranges of (a) less than 0.1 mm, (b) 0.10–0.25 mm, (c) 0.5–1.0 mm and (d) 1.0–2.0 mm at 0.5 V vs. Ca^{2+}/Ca in molten $CaCl_2$ at 1123 K (850 °C).

