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We show that a detectable tensor-to-scalar ratio (r ≥ 10−3) on the CMB scale can be generated even 
during extremely low energy inflation which saturates the BBN bound ρinf ≈ (30 MeV)4. The source of the 
gravitational waves is not quantum fluctuations of graviton but those of SU (2) gauge fields, energetically 
supported by coupled axion fields. The curvature perturbation, the backreaction effect and the validity 
of perturbative treatment are carefully checked. Our result indicates that measuring r alone does not 
immediately fix the inflationary energy scale.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The inflationary paradigm has been successful over the past few 
decades to serve as a mechanism to produce the observed inho-
mogeneities in the universe such as the cosmic microwave back-
ground (CMB) anisotropies and large-scale structure (LSS), while 
resolving the conceptual difficulties in the hot big bang scenario. 
An important prediction in the framework is generation of the 
B-mode polarization in the CMB [1], whose signal is conventionally 
quantified by the tensor-to-scalar ratio r ≡ Ph/Pζ |k=kCMB . The cur-
rent bound is r < 0.07 at kCMB = 0.05 Mpc−1 with 95% confidence 
[2], and a number of proposed missions are expected to improve 
the bound to O(10−3) (see e.g. [3]). The conventional relationship 
between the tensor-to-scalar ratio and the Hubble parameter dur-
ing inflation is

rvac = P−1
ζ

2H2
inf

π2M2
Pl

≈ 10−3
(

H inf

8 × 1012GeV

)2

, (1)

where H inf is the Hubble parameter during inflation and Pζ ≈
2.2 × 10−9 has been used [4]. An immediate implication of (1) is 
that detection of r would fix the inflationary scale at such high 
energy levels as beyond our current experimental reach.

E-mail address: t.fujita@tap.scphys.kyoto-u.ac.jp (T. Fujita).

Considering the ongoing and upcoming experimental efforts for 
B-mode detection, it is right time to test the validity of the con-
ventional prediction (1). In general, the value of r at cosmological 
scales can be estimated as the spectrum of the energy fraction of 
gravitational wave (GW) at the horizon crossing divided by Pζ

r � P−1
ζ

1

ρinf

dρGW

d ln k

∣∣∣
k=aH inf

, (2)

where ρinf ≡ 3M2
Pl H

2
inf and dρGW/d ln k � H2M2

PlPh at the horizon 
crossing. The energy density of GW from the vacuum fluctuations 
produced during the quasi de Sitter expansion must be character-
ized by the Hubble scale dρvac

GW/d ln k � H4
inf, leading to the con-

ventional relation rvac ∝ H2
inf.

On the other hand, if GW is induced by another energy source, 
the conventional relation (1) may be altered. Provided that an en-
ergy source ρs generates GWs with efficiency γ , one generally 
expects

r � P−1
ζ

γ

ρinf

dρs

d ln k

∣∣∣
k=aH inf

, (3)

which can be significant even if ρs � ρinf and γ � 1 thanks to 
the smallness of Pζ . Conventionally, however, an efficient energy 
transfer from a source to GW has been assumed to be rather 
difficult. The reasoning is rooted in the decomposition theorem in 
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cosmology, which states that perturbations around a homogeneous 
and isotropic background can be decomposed into scalar, vector 
and tensor sectors that are mutually decoupled at the linearized 
order. Since GW is the only tensor degree of freedom in the Ein-
stein gravity, we have no choice but use the source term from 
scalar δS or vector perturbation δV i which is schematically written 
as

�hij(t, x) = O (S)
i j (t,∂) δS(t, x) + O (V )

i jk (t,∂) δVk(t, x) , (4)

where O (S)
i j and O (V )

i jk are operators traceless and transverse in 
the indices i j that depend on time and spatial derivatives. How-
ever, the decomposition theorem bans the existence of such op-
erators at the linear order. Although the second order effects 
(e.g. ∂iδS∂ jδS, δV iδV j ) are allowed to generate GW, the efficiency 
of the energy transfer is suppressed, because the coefficients of 
the source term effectively becomes the order of perturbation, 
O (S)

i j , O (V )

i jk =O(δS, δV j) [5].

There is a loophole in this argument. If O (V )

i jk in (4) consists 
of the background vector field V̄ i(t), GW can be sourced at linear 
order by V̄ iδV j . It is known that SU (2) gauge fields can achieve 
this without disrupting background isotropy by taking a particular 
configuration.1 Moreover this isotropic configuration is realized as 
an attractor solution, if SU (2) gauge fields are coupled to a rolling 
pseudo-scalar field [6]. Therefore SU (2) gauge fields can source 
the GW through the terms V̄ iδV j without violating the isotropy of 
the universe at the linear order, thus with a high efficiency of the 
energy transfer.

As we shall see later, the energy source ρs to generate GW is 
the (linear) perturbation of a SU (2) gauge field. It is produced 
as quantum fluctuations and thus acquires the amplitude O(H inf)

around the horizon crossing. In addition, however, it experiences 
a transient instability around horizon crossing and is amplified by 
an exponential factor. As a result, the energy fraction of the source 
and the efficiency factor of energy transfer in (3) are given by

1

ρinf

dρs

d ln k
∼ H2

inf

M2
Pl

e4mQ , γ ∼ ρA

ρinf
≡ �A, (5)

where s now denotes the perturbation of SU (2) gauge field, ρA is 
its background energy density, and mQ is the SU (2) mass param-
eter in the units of H inf. For values of mQ with H inf

√
�A e2mQ �

O(1012) GeV, one can realize a detectable r even in the case of 
low-energy inflation.

In this letter, we seek the lowest possible inflation energy scale 
with which SU (2) gauge fields produce primordial GWs detectable 
by the upcoming observations (i.e. r ≥ 10−3). Although this GW 
generation mechanism has been studied in previous works [6–8], 
it was not revealed to what extent the tensor-to-scalar ratio can 
be enhanced. To this end, for the first time, we numerically solve 
the background and perturbations taking into account the backre-
action. We also quantify the effect on the scalar tilt ns , and verify 
the perturbative treatment by calculating the 1-loop correction of 
the SU (2) perturbation.

2. Spectator axion-S U (2) model

In our consideration of GW production, we leave the gravity 
sector as the standard Einstein–Hilbert and the inflation model 
unspecified, which is also responsible for generating the observed 

1 This does not restrict possible models to those with SU (2) only, as long as the 
symmetry in the models allow this configuration.

curvature perturbation. We then consider the axion-SU (2) sector 
with the action [8] (see also [9]):

Lχ A = −1

2
(∂μχ)2 − V (χ) − 1

4
F a
μν F aμν + λ

4 f
χ F a

μν F̃ aμν, (6)

where χ is a pseudo-scalar field (axion) with a cosine-type po-
tential V (χ) = μ4 [1 + cos(χ/ f )] with dimensionful parameters μ
and f , F a

μν ≡ 2∂[μ Aa
ν] − gεabc Ab

μ Ac
ν and F̃ aμν are the field strength 

of SU (2) gauge field and its dual, respectively, and λ is a dimen-
sionless coupling constant.

At the background level, it is shown that the isotropic config-
uration of the SU (2) gauge fields, Aa

0 = 0 and Aa
i = δa

i a(t)Q (t), is 
an attractor solution while the vacuum expectation value (vev) of 
χ(t) slowly rolls down its potential [6,8]. At the perturbation level, 
δAa

μ contains two scalar δQ , M , two vector Mi and two tensor ti j
polarizations as dynamical degrees of freedom [6,8]. Interestingly, 
ti j is coupled to the metric tensor modes hij already at the linear 
order, and only one circular polarization mode of ti j is substan-
tially amplified due to a transient instability around the horizon 
crossing. It then efficiently sources only one polarization of GW hij

at the linear order, if mQ ≡ g Q /H >
√

2 [7]. Therefore we focus 
on ti j among the perturbations of Aa

μ .
The Einstein equation at the background yields

3M2
Pl H

2 = ρφ + ρχ + ρA + ρt, (7)

−Ḣ/H2 = εφ + εχ + εA + εt , (8)

where ρχ = χ̇2/2 + V (χ), ρA = 3εA M2
Pl H

2/2, εA = εE + εB , εE ≡
(Q̇ + H Q )2/M2

Pl H
2, εB ≡ g2 Q 4/M2

Pl H
2, εχ = χ̇2/2M2

Pl H
2, and 

dot denotes the cosmic time derivative. The inflaton part ρφ and 
εφ ≡ −ρ̇φ/6M2

Pl H
3 depend on the inflation model, and ρt and 

εt ≡ −ρ̇t/6M2
Pl H

2 denote the contributions from the perturbation 
ti j on the background dynamics, which will be discussed later. The 
equations of motion for χ(t) and Q (t) are

χ̈ + 3Hχ̇ − μ4

f
sin

(
χ

f

)
+ 3gλ

f
Q 2 (

Q̇ + H Q
) + T χ

B R = 0, (9)

Q̈ + 3H Q̇ +
(

Ḣ + 2H2
)

Q + 2g2 Q 3 − gλ

f
Q 2χ̇ + T Q

B R = 0,

(10)

where we include the backreaction terms, T Q
B R and T χ

B R , from ti j . 
Without the backreaction, one can show that the effective potential 
of Q uplifted by the coupling to χ acquires a non-zero minimum 
at Q min � (

μ4 sin(χ/ f )/3gλH
)1/3

, if χ slowly rolls and the cou-
pling is sufficiently strong [6,8].

The tensor perturbations consist of ti j and hij , and each of them 
can be decomposed into the circular polarization modes tR/L and 
hR/L , respectively. At the linearized order, one finds their equations 
of motion coupled together among the same polarizations, written 
in the Fourier space as [8],

∂2
x tR,L +

[
1 + 2mQ ξ

x2
∓ 2

mQ + ξ

x

]
tR,L ≈ 0 (11)

∂2
x ψR,L +

(
1 − 2

x2

)
ψR,L ≈ Sψ

R,L, (12)

where x ≡ k/aH and ψR,L(t, k) are the mode functions of the 
canonical gravitational wave, ψi j ≡ aMPlhij/2. While tR/L are 
sourced by ψR/L in principle, the former is always parametri-
cally larger than the latter for our concern, and thus ignoring the 
right-hand side of (11) is a justified approximation. We have also 
neglected slow-roll suppressed and subdominant terms in (11) and 
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(12). Here, ξ(t) ≡ λχ̇/2 f H is well approximated by mQ + m−1
Q in 

the slow-roll regime. Without loss of generality mQ is assumed 
to be positive, and then tR becomes unstable for xmax > x > xmin, 
with xmax,min ≡ mQ + ξ ± (m2

Q + ξ2)1/2. Assuming mQ = const., we 
obtain the homogeneous solution to (11) as

tR(t,k) = 1√
2k

e
π
2 (mQ +ξ) Wβ,α

(
−2ik

aH

)
, (13)

where Wβ,α(z) is the Whittaker function with α ≡
−i

√
2mQ ξ − 1/4 and β ≡ −i(mQ + ξ). We have used the WKB so-

lution in the sub-horizon limit, tR(k/aH → ∞) = (2k)−1/2(2x)βeix , 
as the initial condition. Then tR is amplified around the horizon 
crossing by the factor of e

π
2 (mQ +ξ)Wβ,α(−2ixmin) ≈ e1.85mQ , while 

it decays as matter, ρt ∝ a−3 i.e. tR ∝ a−1/2, on super-horizon 
scales. The source term for ψR/L reads

Sψ
R,L ≡ 2

√
εE

x
∂xtR,L + 2

√
εB

x2

(
mQ ∓ x

)
tR,L , (14)

and the generated tR sources ψR , producing additional GW.2 Us-
ing (13), one can obtain the sourced ψR by using Green’s function 
method, giving the GW power spectrum

P(s)
h = εB H2

π2M2
Pl

F2(mQ ), (15)

where F2 ≈ 2e3.62mQ and its full expression can be found in [8]. 
Note that (13) and (15) assume constant εB , mQ and ξ , while to 
determine their values and time variations one needs to solve the 
background dynamics, (7)–(10).

3. Checklist

In order to settle the final allowed strength of GW signals from 
this model, we need to ensure some computational and observa-
tional consistencies. We list them and show the resulting parame-
ter region in the following subsections.

3.1. Backreaction

The produced tR (13) backreacts on the background dynamics 
through eqs. (7)–(10) with the terms

ρt = 1

2a2

∫
d3k

(2π)3

[∣∣ṫR
∣∣2 +

(
k2

a2
− 2mQ H

k

a

)
|tR |2

]
, (16)

T χ
B R = − λ

2a3 f

d

dt

∫
d3k

(2π)3

(
amQ H − k

) |tR |2, (17)

T Q
B R = g

3a2

∫
d3k

(2π)3

(
ξ H − k

a

)
|tR |2, (18)

where we ignore the sub-leading backreaction from tL or ψR,L . 
We first estimate these contributions analytically. Using (13) and 
background relation ξ ∼= mQ + m−1

Q and changing variables into 
x = k/aH with the integration domain 0 < x < xmax, one can write 
|ρt | = H4Iρ(mQ ), |T χ

B R | = λH4Iχ (mQ )/ f and T Q
B R = g H3IQ (mQ ), 

where all the I ’s approximately follow Iρ,χ,Q ∝ e3.7mQ . For a 
given value of g , these terms would easily dominate (7), (9) and 
(10) for large mQ , if one took mQ as a free parameter. However, 

2 For the particular values of mQ which are mQ ≈ 8.2, 14, 20, 25, 31, 37, 43 and 
48 in the slow-roll limit, those three terms in Eq. (14) are canceled out and GW is 
produced only from vacuum fluctuations. For this reason, we see some sharp spikes 
in Fig. 1 and the right panel of Fig. 2.

Fig. 1. The allowed values of the SU (2) gauge self-coupling constant g . Since this 
constraints are proportional to e1.85mQ as mentioned in the main text, the coupling 
constant g shown in the plot is rescaled by this factor. In the upper yellow shaded 
region, the backreaction is expected to be strong and disrupts the background evo-
lution. In the lower blue shaded region, the energy fraction of the gauge field is 
significant enough to make the scalar spectral index becomes too red beyond the 
2σ region of Planck constraints for r = 10−3. The black dotted contours for the val-
ues of H inf are superimposed in the case with r = 10−3. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

this would infer that strong backreaction prevents the system from 
reaching such a parameter region. The conditions to ensure that 
each of ρt and T χ,Q

B R is subdominant in (7), (9) and (10) are trans-
lated into upper bounds on g ,

g < Gρ,χ,Q (mQ ), (19)

where Gρ,χ,Q ∝ I−1/2
ρ,χ,Q . In Fig. 1, we show the strongest con-

straints coming from Gχ , though they are almost degenerate.
For large mQ , the backreaction is not completely negligible even 

in the allowed region shown in Fig. 1. In those cases, one has 
to resort to full numerical calculations simultaneously solving all 
equations of motion for background fields, (8)–(10) and for pertur-
bations, (11) and (12) with full source terms included. Fig. 2 shows 
our numerical result for the following parameters:

H inf = 3 × 10−22 GeV, μ = 0.055 GeV,

f = 1.5 × 1017 GeV, λ = 3000, g = 1.9 × 10−36, (20)

where the corresponding maximum of mQ is around 44. The 
tensor-to-scalar ratio rR = PhR /Pζ (k∗) where k∗ is the pivot 
scale for CMB observations indeed exceeds the detectable limit 
10−3 even with such a extremely low inflationary energy scale 
∼ 36 MeV.

3.2. Curvature perturbation

Previous attempts to generate GW from scalar or vector fields 
are tightly constrained by the CMB observation on the curvature 
perturbation ζ [5,10]. In our model, the inflaton fluctuation δφ is 
assumed to be responsible for generating ζ compatible with the 
CMB observation. Contributions from the other scalar modes δχ , 
δQ and M to ζ are negligible, because the density perturbations 
δρ induced by them are suppressed by the end of inflation and 
thus the adiabatic perturbation is dominated by δφ the end of in-
flation, unless χ becomes a curvaton [8].3

3 The scalar perturbations in the SU (2) field are heavy during inflation, and the 
slow-roll phase of χ typically lasts for a finite period during inflation, after which 
χ also becomes heavy. In this case their contribution to the curvature perturbation 
is negligible. If a scenario where χ stays light even after the inflation is realized in 
some choice of parameters, on the other hand, then χ would become a curvaton, 
which is a case beyond the scope of our current study.
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Fig. 2. (Left panel) The energy densities of the inflaton ρφ (blue), the axion ρχ (yellow), the SU (2) gauge field ρA (green) and the backreaction from the amplified 
perturbation ρtR (red) are shown. The inflationary energy scale is as low as ρφ ≈ (30MeV)4. The horizontal axis represents the backward e-folds, and N∗ corresponds to 
the scale at which the tensor perturbation is maximal. This scale can be identified as the CMB pivot scale since the inflaton sector is independent of the gauge field sector. 
Although ρtR is negative while the instability is getting stronger, the total energy of the SU (2) gauge field is always positive. (Right panel) The tensor-to-scalar ratio r due 
to the sourced GW only with the right-handed polarization. On the CMB scale k∗ it exceeds the threshold value r = 10−3 (yellow dashed line) and thus it is detectable for 
the upcoming CMB missions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In addition, we investigate another channel in which the second 
order effect of tR produces the inflaton perturbation, tRtR → δφ, 
through the gravitational interaction. This effect arises only at the 
second order due to the absence of linear couplings between δφ
and tR , while the sourcing of tR to the GW is first-order, thus 
ζ (s) = −Hδφ(s)/φ̇ ∝ (tR/MPl)

2 is expected to be negligible for the 
parameter range of our interest. We will address this effect in de-
tail in the upcoming work.

Even though the part of δφ sourced by the second order of tR

or the linear order of the scalar perturbations in the axion-SU (2)

sector only has negligible effects, that of δφ originated from its 
own vacuum fluctuations can be influenced by the background 
fields χ and Q , due to their contribution to Ḣ . As a result, the 
spectral index in our model reads,

ns − 1 = 2
(
ηφ − 3εφ − εχ − εA

) � 2
(
ηφ − εB

)
, (21)

where in the last step we have used εA � εB � εφ, εχ , true 
with the parameters of our interest. The Planck measures ns =
0.9645 ± 0.0049 [4], and without assuming an accidental cancel-
lation between εB and ηφ , we require a bound on εB as

εB(t∗) � 2 × 10−2, (22)

where t∗ denotes the time of the horizon crossing of the CMB 
modes. Note that this constraint can be relaxed if ηφ is positive. 
When (22) saturates, in our model, εB can explain the red-tilted 
curvature perturbations without a huge hierarchy of slow-roll pa-
rameters ηφ � εφ . It is a quite intriguing possibility for small-field 
inflationary models since all slow-roll parameters are naively ex-
pected to be equivalently small in that class of inflation. We nu-
merically checked that nS (k∗) within 2σ of Planck constraints is 
realized solely by εB for the parameters (20).

The bound (22) is translated into a lower bound on g =
Hm2

Q /(MPl
√

εB), with (15),

g = πm2
Q

εBF
√

rPζ � 5 × 10−4
m2

Q

F

( r

0.001

)1/2
. (23)

We plot this as the light-blue shaded region in Fig. 1.

3.3. Perturbativity

Since the amplitude of tR is substantially amplified due to the 
instability in our model, we need to ensure that it does not in-
validate our perturbative calculation. We thus impose that the 

1-loop contribution to the two-point function 〈tRtR〉 should be 
negligible to that of the tree level. The terms −F a

μν F aμν/4 +
λχ F a

μν F̃ aμν/(4 f ) lead to three- and four-point vertices, and it can 
be shown that their one-loop diagrams give contributions of the 
same order [10]. We here focus on the latter and demonstrate 
that the perturbativity condition gives no additional bounds on the 
model parameters. The four-point interaction Hamiltonian reads

Ĥ (4)
I (η) = g2

4

∫
d3x

[
(t̂i j t̂i j)

2 − t̂i j t̂ jlt̂lmt̂mi

]
, (24)

giving rise to, using the in–in formalism,

〈t̂i j(τ ,k)t̂i j(τ ,k′)〉1loop = δ(k + k′) 7g2

10π2

×
τ∫

−∞
dη Im[t2

R(k, τ )t∗ 2
R (k, η)]

∫
dk̃ k̃2 |tR(k̃, η)|2, (25)

where we ignored the left-handed mode. Defining Rt as the ra-
tio of (25) divided by the tree-level contribution, (2π)3δ(k +
k′)|tk(τ )|2, evaluated at the time when tR reaches its maximum 
value, we ensure Rt � 1 to safely ignore the higher-order loops 
and to justify the perturbative approach. Evaluating (25) with (13), 
we verify that Rt � 1 is satisfied up to mQ = 50 for r = 10−3.

4. Conclusion

The main message of this Letter is that the detection of primor-
dial gravitational waves does not necessarily exclude low-energy 
inflation. Once an SU (2) gauge field has a background configura-
tion that respects the spatial rotation, its perturbations are coupled 
to the GW at the linear order. The former is amplified by insta-
bilities around the horizon crossing, whose power is then linearly 
transferred to the latter. We have demonstrated that the GW power 
spectrum produced from this mechanism can be as significant as 
at detectable levels respecting all the consistency conditions, even 
if the inflationary energy scale is close to the BBN bound.

Having a possible alternative source of GW, it is crucial to dis-
criminate the generation mechanism of primordial GW to reveal 
the true energy scale of inflation. Fortunately, our model has the 
following distinct predictions to be distinguished from the conven-
tional vacuum GW. (i) The fully parity-violating GW may be de-
tected through CMB temperature and B-mode (TB) or E-mode and 
B-mode polarization (EB) cross-correlation by the upcoming satel-
lite mission such as LiteBIRD [11]. (ii) Our model produces a siz-
able tensor non-Gaussianity with a particular shape [12]. (iii) The 
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conventional consistency relation, nT = −rvac/8, is broken, where 
nT is the tensor spectral index. With the future observation, these 
signatures will carry important information for rigorous determi-
nation of inflationary energy scale.
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