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Abstract

Retinal neuronal cell death underlies many incurable eye diseases such as retinitis

pigmentosa (RP) and glaucoma, and causes adult blindness. We have shown that

maintenance of ATP levels via inhibiting ATP consumption is a promising

strategy for preventing neuronal cell death. Here, we show that branched chain

amino acids (BCAAs) are able to increase ATP production by enhancing

glycolysis. In cell culture, supplementation of the culture media with BCAAs, but

not glucose alone, enhanced cellular ATP levels, which was canceled by a

glycolysis inhibitor. Administration of BCAAs to RP mouse models, rd10 and

rd12, significantly attenuated photoreceptor cell death morphologically and

functionally, even when administration was started at later stages. Administration

of BCAAs in a glaucoma mouse model also showed significant attenuation of

retinal ganglion cell death. These results suggest that administration of BCAAs
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could contribute to a comprehensive therapeutic strategy for retinal

neurodegenerative diseases such as RP and glaucoma.

Keyword: Ophthalmology

1. Introduction

Retinitis pigmentosa (RP) is one of several incurable eye diseases; it leads to blindness,

with approximately 1.5million people affected worldwide, and its incidence is about 1

in 4,000 people (Hartong et al., 2006). No established therapies are available, although

potential therapies, including regenerative medicine (Ng et al., 2014), gene therapy

(Acland et al., 2001), and neurotropic factor therapy (Sieving et al., 2006), are currently

being pursued. A much more common disease, glaucoma, is one of the leading causes

of blindness worldwide, accounting for 4.0e15.5% of adult blindness (Bourne et al.,

2013), and it ranks in the top third of causes of incurable visual impairment inWestern

countries (Klaver et al., 1998); moreover, the number of patients is increasing world-

wide (Quigley andBroman, 2006). Strategies to reduce intraocular pressure are used in

glaucoma treatment (Collaborative Normal-Tension Glaucoma Study Group, 1998;

Leske et al., 2004). However, there remain considerable numbers of patients, up to

33% of the total, whose visual field impairment progresses despite intraocular pressure

within the normal limit (CollaborativeNormal-TensionGlaucoma StudyGroup, 1998;

Hitchings, 1992). Thus, new therapeutic strategies that prevent cell death and prevent

or retard disease progression are eagerly awaited.

We previously focused our efforts on the maintenance of ATP levels by inhibiting

ATP consumption. KUSs (Kyoto University Substances), which specifically block

the ATPase activities of valosin-containing protein (VCP), the most abundant solu-

ble ATPase in all types of cells including neurons, have shown promise for prevent-

ing neuronal cell death in mouse models of RP (Hasegawa et al., 2016b; Ikeda et al.,

2014), glaucoma (Nakano et al., 2016), and retinal artery occlusion (Hata et al.,

2017). The efficacies were apparently coupled with the mitigation of endoplasmic

reticulum (ER) stress. Following this line of reasoning, an alternative, but not mutu-

ally exclusive, therapeutic strategy for the maintenance of ATP levels in the diseased

states would be the enhancement of ATP production by novel compound(s).

It is known that neural cells, including retinal neurons, demand a large amount of en-

ergy (Futterman and Kinoshita, 1959; Winkler, 1981). Consistently, chronic hypogly-

cemia has been shown to be associated with retinal cell death in mice (Punzo et al.,

2009; Umino et al., 2006). On the other hand, chronic hyperglycemia is related to

diseased conditions such as diabetesmellitus, coronary heart disease, stroke, renal fail-

ure, and diabetic retinopathy (Zimmet et al., 2016). An epidemiological survey has

shown that the incidence of glaucoma is high in patients suffering from diabetes

2 https://doi.org/10.1016/j.heliyon.2018.e00544

2405-8440/� 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Article Nowe00544

https://doi.org/10.1016/j.heliyon.2018.e00544
http://creativecommons.org/licenses/by/4.0/


mellitus (Zhao et al., 2015). Because ATP levels are a hallmark of cell health, these

results indicate that excessive blood glucose is inefficiently used as a source of ATP,

or is even harmful to cells in these pathological conditions. Nevertheless, glucose is

themost abundant energy source in humans, especially those with high serum glucose.

Thus, in order to enhance ATP production, it would be ideal to take advantage of high

serum glucose by finessing metabolic regulatory pathways.

Branched chain amino acids (BCAAs) have aliphatic side-chains with branches,

which include leucine (Leu), isoleucine (Ile), and valine (Val). Supplementation

with BCAAs is commonly used by athletes to increase bulk and power of muscles,

and thus it appears to counteract ATP depletion and possible muscle cell death, espe-

cially after strenuous training. Supplementation with BCAAs has also been used to

improve hypoalbuminemia in patients with decompensated liver cirrhosis

(Kawaguchi et al., 2014; Plauth et al., 2006). Efficacies of BCAAs in these patients

have been evidenced by a reduced incidence of complications, such as liver cancer,

rupture of esophageal varices, or progression to hepatic failure (Kawaguchi et al.,

2014; Muto et al., 2005), indicating that BCAA administration is able to maintain

or improve the functions of hepatic cells. BCAAs also activate mammalian target

of rapamycin (mTOR) (Anthony et al., 2000; Efeyan et al., 2012; Matsumura

et al., 2005; Proud, 2004a, 2004b), which regulates cell growth, proliferation, and

survival (Hung et al., 2012; Yang and Guan, 2007). mTOR is activated by phosphor-

ylation of Ser2481 and Ser2448 (Copp et al., 2009; Yang and Guan, 2007), and

mTOR signaling is stimulated by amino acids, hormones, and mitogens, while it

is repressed in response to cellular stresses including DNA damage, nutrient with-

drawal, depletion of cellular energy, and hypoxia (Efeyan et al., 2012; Proud,

2004b). Moreover, it has been reported that activation of mTOR by insulin pro-

longed photoreceptor survival in mouse models of RP (Punzo et al., 2009). In addi-

tion, upregulation of mTOR is reported to promote retinal ganglion cell survival and

axonal regeneration after optic nerve crush injury (Duan et al., 2015; Morgan-

Warren et al., 2013, 2016; Morquette et al., 2015).

In this study, we show that supplementation with BCAAs enhances the utilization of

glucose and the production of ATP in cultured cells, especially in high glycemic con-

ditions. We also demonstrate significant efficacies of BCAAs against several mouse

models of incurable eye diseases, such as RP and glaucoma.

2. Results

2.1. BCAA supplementation, rather than excessive glucose, raises
ATP levels and protects cultured cells under stress conditions

A formulation of BCAAs (L-isoleucine: L-leucine: L-valine ¼ 1: 2: 1.2), marketed

as LIVACT�, has been used clinically to improve protein-nutritional status in
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patients with liver cirrhosis (Muto et al., 2005; Ohashi et al., 1989). We therefore

used this formulation and refer to it as BCAAs hereinafter. HeLa cells were cultured

under an amino acid-free condition, and then ER stress was induced by the addition

of tunicamycin. As observed previously (Ikeda et al., 2014), ATP levels decreased

significantly upon the addition of tunicamycin (p < 0.0001) (Fig. 1A). It is notable

that the ATP levels appeared neither to recover nor increase by raising extracellular

glucose concentrations (2 or 4.5 g/L, conditions similar to those after a meal or hy-

perglycemia; p ¼ 0.99 and 0.72, for 2 and 4.5 g/L glucose, respectively) (Fig. 1A).

Likewise, live cell numbers decreased under the ER stress condition (p < 0.0001)

and were not improved by raising the glucose concentration (p ¼ 0.997 and 0.95,

for 2 and 4.5 g/L glucose, respectively) (Fig. 1B and C). On the other hand, addition

of 40 mM BCAAs (see details in Materials & Methods) significantly increased the

ATP levels in the presence of 1 or 2 g/L of glucose, (p < 0.0001) (Fig. 1A). Simi-

larly, the ability of BCAAs to enhance ATP production was also observed in the

presence of 4.5 g/L of glucose, although the effect did not achieve statistical signif-

icance at that concentration (because 4.5 g/L glucose alone produced a modest in-

crease in the ATP level) (Fig. 1A). Addition of 40 mM BCAAs significantly

increased the live cell numbers with all tested glucose concentrations (1, 2, and

4.5 g/L of glucose, p < 0.0001) (Fig. 1B and C). BCAAs improved the ATP levels

and live cell numbers in a dose-dependent manner (ATP levels, p ¼ 0.001 and p <

0.0001; live cell numbers, p < 0.01 and p < 0.01, for the addition of 4.0 and 40 mM

BCAA, respectively, vs. controls with tunicamycin and no BCAAs) (Fig. 1D and E).

These results indicate that the addition of BCAAs, but not supplementary glucose

alone, enhances the production of ATP and promotes cell survival in cultured cells

under ER stress.

In order to clarify which amino acid in the BCAA formulation is responsible for the

ATP production, as well as the protection of cells from ER stress, HeLa cells were

cultured separately with 40 mM Ile, Leu, or Val, and each culture was challenged

with tunicamycin. ATP levels were strongly restored by Ile and Val and weakly

by Leu (Fig. 1F). Live cell numbers increased commensurately with the degree of

the recovery of ATP levels (p < 0.05 and p < 0.001, with the addition of BCAAs

or Val, respectively, vs. tunicamycin challenge without BCAAs) (Fig. 1G). Among

the three BCAA components, Val showed the most potent effect to promote cell sur-

vival. BCAAs also promoted cell survival similar to Val, and since BCAAs have

already been used in human patients, we therefore used the LIVACT� BCAA

formulation in further experiments. It is important to note that Leu, which is a potent

activator of mTOR, had no beneficial effect on cell survival with this form of ER

stress (Fig. 1G).

We have previously reported that inhibitors of the mitochondrial respiration chain

complex are also able to induce ER stress and cell death, which were observed after

the decrease in ATP levels (Nakano N. et al., 2016; Nakano M. et. al., 2017).
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We examined the effect of BCAAs under these conditions, and confirmed that

BCAA supplementation significantly maintained ATP levels and protected cells

from cell death provoked by antimycin, a specific inhibitor of mitochondrial respi-

ratory chain complex III (p < 0.05 for antimycin treatment with the addition of

BCAAs vs. antimycin treatment without BCAAs) (Fig. 1H and I). BCAAs tended,

albeit not significantly, to maintain ATP levels and to protect cells from cell death

upon treatment with oligomycin, a specific inhibitor of mitochondrial respiratory

chain complex V (Fig. 1H and I). Interestingly, BCAAs did not lead to maintenance

of ATP levels or cell protection upon inhibition of glycolysis by 2-deoxy-D-glucose

(Fig. 1J and K). Furthermore, recoveries of ATP levels and cell numbers by

administration of BCAAs under ER stress conditions were abrogated when

glycolysis was inhibited by 2-deoxy-D-glucose (Fig. 1L and M). In addition, uptake

of glucose was promoted in the BCAA-treated cells (Fig. 1N). These results indicate

that addition of BCAAs enhances glycolytic ATP production, and thereby promotes

cell survival in cultured cells under stress conditions.

As HeLa cells are not an ideal model for studies of retinal degeneration, we also

tested a cell line that presumably would more closely approximate cells at risk in

RP. Maintenance of ATP levels and protection of cells by BCAAs was confirmed

in 661W cells (Al-Ubaidi et al., 2008), a mouse photoreceptor-derived cell line

(Fig. 2).

Next, we examined the expression of ER stress marker proteins by western blotting

analyses. C/EBP-homologous protein (CHOP) (Zinszner et al., 1998) was upregu-

lated by treatment of HeLa cells with tunicamycin, or 661W cells with oligomycin.

The stress-induced elevated CHOP protein levels were significantly suppressed by

the addition of high concentrations of BCAAs in HeLa cells (p < 0.01 for CHOP

by the addition of 80 mM BCAAs) (Figs. 3A and S1A). Similar results were ob-

tained in experiments using 661W cells (Figs. 3B and S1B). Together, these results

suggest that treatment with BCAAs could at least partially rectify the ATP decrease

and ER stress and promote cell survival in vitro under cell death-inducing patholog-

ical conditions.

Phosphorylated mTOR (at Ser2481), which is an activated form of mTOR, a regu-

lator of cell survival (Hung et al., 2012; Yang and Guan, 2007), was upregulated by

the addition of BCAAs (Figs. 3C and S1C). Phosphorylation of eIF4E-binding pro-

tein 1(4E-BP1), which is a target of mTOR (Hung et al., 2012; Yang and Guan,

2007), was also increased by the addition of BCAAs (Figs. 3C and S1D). Phosphor-

ylation of another target of mTOR, phosphoprotein 70 ribosomal protein S6 kinase

(p70S6K) (Hung et al., 2012; Yang and Guan, 2007), was not observed in this con-

dition (Fig. S1E). These results suggest that activation of mTOR by BCAAs might

also contribute to promote cell survival in vivo under cell death-inducing patholog-

ical conditions.
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Fig. 1. BCAAs prevent ATP decrease and cell death in cultured cells. (AeC) ATP decrease and cell

death are prevented by BCAA administration but not by supplemental glucose. HeLa cells were cultured

under an amino acid deficit and tunicamycin (TM) (3 mg/mL) with different concentrations of glucose (G,

1, 2 and 4.5 g/L), with or without branched chain amino acids (BCAA, B) (40 mM) for 16 hours. (A)

Relative ATP levels determined by luciferase activity. *p < 0.05, **p < 0.01 and ***p < 0.001, Tukey

HSD. N ¼ 6, (B) Live cell numbers counted after trypsinization. ***p < 0.001, Tukey HSD. N ¼ 6, (C)

Representative photographs of HeLa cells. Scale bar: 20 mm. (D and E) Dose dependency of cell protec-

tive effect by BCAAs. HeLa cells were cultured with TM (3 mg/mL) and with different concentrations of

BCAAs (0, 0.04, 4 or 40 mM) for 16 hours. (D) Relative ATP levels determined by luciferase activity.

*p < 0.05, **p < 0.01 and ***p < 0.001, vs. TM without BCAAs, N ¼ 6, Tukey HSD. (E) Live cell

numbers counted after trypsinization. **p < 0.01 and ***p < 0.001, vs. TM without BCAAs, Tukey

HSD. (F and G) Prevention of decrease of ATP and cell death by each BCAA and by the formulation

of BCAAs. HeLa cells were cultured under an amino acid deficit and TM (3 mg/mL). A formulation

of BCAAs, or sole isoleucine, leucine, or valine (40 mM each) were added, and cells were cultured
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2.2. BCAA supplementation attenuates pathologies of retinal
degeneration in rd10 mice

We next focused on photoreceptor cell death in the retina in vivo. We used rd10, a

mouse model of RP, which has a missense mutation in the Pde6b gene (Chang

et al., 2007), to determine whether BCAAs can mitigate disease progression. Admin-

istration of BCAAs to rd10 mice began at 7 days of age (N ¼ 17 and 18 in BCAA-

for 16 hours. (F) Relative ATP levels determined by luciferase activity. *p < 0.05, **p < 0.01 and

***p < 0.001, vs. TM without BCAA, N ¼ 6, Tamhane. (G) Live cell numbers counted after trypsini-

zation. *p < 0.05 and ***p < 0.001, vs. TM without BCAA, N ¼ 6, Tukey HSD. B, the formulation of

BCAAs; I, isoleucine; L, leucine; V, valine. (H and I) Attenuation of decrease of ATP and cell death by

BCAAs. HeLa cells were cultured under an amino acid deficit with antimycin (A, 30 mM) or oligomycin

(O, 1mg/mL), with or without BCAAs (B, 40 mM) for 24 hours. (H) Relative ATP levels determined by

luciferase activity. *p < 0.05, Tukey HSD, N ¼ 6. (I) Live cell numbers counted after trypsinization. *p

< 0.05, Tamhane. N ¼ 6. (J and K) Effect of BCAAs on the decrease of ATP and cell death induced by

2-deoxy-D-glucose. HeLa cells were cultured with or without 2-deoxy-D-glucose (2DG, 50 or 100 mM),

and with or without BCAAs (B, 40 mM) for 24 hours. (J) Relative ATP levels determined by luciferase

activity. *p < 0.05, Tamhane, N ¼ 6. (K) Live cell numbers counted after trypsinization. *p < 0.05,

**p < 0.01 and ***p < 0.001, Tamhane, N ¼ 6. (L and M) Inhibition of glycolysis abrogated the effect

of BCAAs on the decrease of ATP and cell death under ER stress conditions. HeLa cells were cultured

with or without 2DG (50 mM) and with or without BCAAs (B, 40 mM) in the presence of TM (3 mg/mL)

for 16 hours. (L) Relative ATP levels determined by luciferase activity. *p < 0.05. **p < 0.01 and ***p

< 0.001, vs. TM with neither BCAA nor 2DG, Tamhane, N ¼ 6. (M) Live cell numbers counted after

trypsinization. **p < 0.01 and ***p < 0.001, vs. TM with neither BCAAs nor 2DG, Tamhane, N ¼ 6.

(N) Calculated amount of consumed glucose/cell. HeLa cells were cultured with or without BCAAs (B,

40 mM) in the presence of TM (1 mg/mL) for 7 hours. **p < 0.01, vs. TM without BCAAs, Tukey HSD,

N ¼ 3.

Fig. 2. BCAAs prevent ATP decrease and cell death in photoreceptor-derived cells. (AeC) ATP

decrease and cell death are prevented by BCAA administration in 661W photoreceptor-derived cells.

661W cells were cultured under an amino acid deficit and oligomycin (1 mg/mL, A and B) or tunicamy-

cin (TM, 1 mg/mL, C) with or without BCAAs (40 mM) for 24 hours. (A) Relative ATP levels deter-

mined by luciferase activity. *p < 0.05 and ***p < 0.001, vs. oligomycin without BCAAs, Tukey

HSD, N ¼ 6. (B and C) WST (water-soluble tetrazolium salts) values reflecting relative live cell numbers

are shown as optical density (OD) at 450 nm. ***p < 0.001, vs. oligomycin or TM without BCAAs,

Tukey HSD, N ¼ 3.
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administered and control groups, respectively). Spectral domain optical coherence to-

mography (SD-OCT) examinationswere performed to assess the total retinal thickness

and the photoreceptor layer thickness, which is the sum of the outer nuclear layer

(ONL), photoreceptor myoid zone, photoreceptor ellipsoid zone, and outer segment

layer thickness. The total retinal thickness and the photoreceptor layer thickness did

not differ significantly between groups at 24 and 30 days of age. However, both

were significantly thicker in the BCAA-treated group than the non-treated control

group at 37 days of age (total retinal thicknesses were 149.8 � 3.3 and 144.2 � 5.7

mm, respectively, p < 0.01, unpaired t-test, Fig. 4A; photoreceptor layer thicknesses

were 15.1 � 3.3 and 10.1 � 4.8 mm, respectively, p < 0.01, unpaired t-test, Fig. 4B

and C). Histological examination of retinal sections of 37-day-old rd10mice showed

Fig. 3. BCAAs prevent ER stress in cultured cells. (AeC) Western blot analysis of HeLa (A and C) and

661W (B) cells. (A and C) HeLa cells were cultured with TM (3 mg/mL) with or without BCAAs for 6

hours. (B) 661W cells were cultured with oligomycin (1 mg/mL) with or without BCAAs for 24 hours. (A

and B) C/EBP-homologous protein (CHOP), (C) phosphorylated mammalian target of rapamycin

(pmTOR, phosphorylated at S2481) and phosphorylated translational suppressor eIF4E binding

protein-1 (p4E-BP1) were analyzed. Actin was used for a loading control. Complete scans of western

blots are shown in Fig. S4A�C.
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that more photoreceptor cells (represented by their nucleus numbers) remained in the

ONL in the BCAA-treated mice than in the control mice (Fig. 4D). Electron micro-

scopic analyses revealed that vacuole-like pathological structures at the innermost

ONLwere less numerous in BCAA-treated 21-day-old mice than the control mice (ar-

rowheads, Fig. 4E). The numbers of vacuole-like structures were reduced in both con-

trol and BCAA-treatedmice at 30 days of age, andwere undetectable at 37 days of age

(arrowheads, Fig. 4F and G, respectively). More photoreceptor cells remained in the

BCAA-treated mice than in the control mice, even though the number was severely

reduced at 37 days of age (Fig. 4G). These results are consistent with reports that

demonstrated the activation of autophagy during photoreceptor cell death (Bo et al.,

2015; Punzo et al., 2009), and the cell death peaking at 25 days of age in rd10 mice

(Barhoum et al., 2008). We then investigated expression levels of autophagy-related

proteins, e.g. LC3, autophagy substrate SQSTM1 (p62), and lysosomal-associated

membrane protein (LAMP) 2 in the retina of rd10 mice. However, there was no sig-

nificant difference in the expression of these proteins between the BCAA-treated

and control rd10 mice from 19 to 37 days of age (Fig. 5).

Immunohistochemical analyses showed that staining of M-opsin, which is a photo-

pigment of cones sensitive to light at the middle of the visible spectrum, and staining

of S-opsin, which is a photopigment of cones sensitive to short-wavelength visible

light, were almost undetectable in the 37-day-old control rd10 mice. In contrast,

expression of M-opsin and S-opsin was detected in the BCAA-treated mice, albeit

at much lower levels than in wild-type mice (Fig. 4H and I).

To evaluate the effect of BCAAs on photoreceptor functions, scotopic electroretinog-

raphy, which measures retinal function in the dark, was performed at 24 days of age,

and photopic electroretinography, which measures retinal function in the light, was

performed at 30 and 37 days of age. At 24 days of age, the scotopic electroretinography

a-wave, which reflects photoreceptor functions (Hood and Birch, 1990a, 1990b), was

significantly larger in theBCAA-treated group than the control group (43.2� 48.6 and

24.7� 3.2mV, respectively, p¼ 0.03, unpaired t-test, at stimulus intensity of 3 cds/m2;

and 53.0� 54.1 and 32.3� 34.4mV, respectively, p¼ 0.03, unpaired t-test, at stimulus

intensity of 30 cds/m2, Fig. 6A and B). The scotopic electroretinography b-wave at a

stimulus intensity of 0.01 cds/m2, which reflects rod-system response (McCulloch

et al., 2015), was significantly larger in the BCAA-treated group than the control group

(40.1� 50.2 and 18.8� 16.7mV, respectively, p< 0.01, unpaired t-test, Fig. 6C). The

b-wave at a stimulus intensity of 3 cds/m2, which is derived from bipolar cells (Hood

and Birch, 1996), was also significantly larger in the BCAA-treated group than the

control group (121.3 � 115.9 and 76.4 � 61.3 mV, respectively, p ¼ 0.01, unpaired

t-test, Fig. 6C). At 30 and 37 days of age, the b-wave of photopic electroretinography

was significantly larger in theBCAA-treated group than the control group (14.8� 11.0

and 10.0 � 9.7 mV, respectively, p ¼ 0.03, unpaired t-test, at stimulus intensity of 3

cds/m2; 24.9 � 21.2 and 15.7 � 12.0 mV, respectively, p ¼ 0.01, unpaired t-test, at
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Fig. 4. Prevention of morphological deterioration in rd10 mice by BCAAs. (A and B) Total retinal thick-

ness (A) and the photoreceptor layer thickness (B, the sum of the outer nuclear layer thickness and photo-

receptor myoid zone, ellipsoid zone, outer segment layer thickness, indicated by black rectangles in C) in

rd10 mice measured on spectral-domain optical coherence tomography (SD-OCT) images at 24, 30, and

37 days of age. **p < 0.01, unpaired t-test. N ¼ 34 eyes of 17 mice in the BCAA group and 36 eyes of

18 mice in the control group, respectively. (C) SD-OCT images of eyes in 37-day-old rd10 mice admin-

istered supplemental BCAAs, or water as a control, which had the median photoreceptor layer thickness.

(D) Vertical retinal sections of 37-day-old rd10 mice administered BCAAs, or water as a control. (EeG)

Electron microscopic images of 21-day-old (E), 30-day-old (F), and 37-day-old (G) rd10 mice adminis-

tered BCAAs, or water as a control. Intracellular vacuoles are seen in photoreceptors at the innermost

ONL (white arrowheads). (H and I) Retinal sections from 37-day-old rd10 mice administered BCAAs,

or water as a control, or age-matched wild-type (WT) mice, were stained with or without an anti-M-opsin

(H, green), or anti-S-opsin antibody (I, red). Nuclei were counter-stained with DAPI (blue). Abbrevia-

tions: RNFL, retinal nerve fiber layer; GCL, Ganglion cell layer; IPL, Inner plexiform layer; INL, Inner
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stimulus intensity of 10 cds/m2; and 36.3� 22.4 and 20.6� 16.3mV, respectively, p<

0.001, unpaired t-test, at stimulus intensity of 30 cds/m2, at 30 days of age, Fig. 6D, E

and F). These experiments show that BCAA treatment protected photoreceptors with

regard to both morphology and function in rd10 mice.

2.3. Treatment of adult rd12 mice with BCAAs attenuates disease
features at a later disease stage

In order to ascertain whether BCAAs can protect photoreceptors at a later stage of

retinal degeneration, we used rd12, another mouse model for retinal degeneration,

which has a nonsense mutation in the Rpe65 gene (Pang et al., 2005). Thirteen-

month-old rd12 mice, when retinal degeneration had already started (Hasegawa

et al., 2016a), were assigned to two groups, the BCAA-treated and non-treated con-

trol groups (N¼ 17 mice for each). The BCAA-treated group was allowed ad libitum

access to water containing BCAAs, whereas the control group was allowed ad libitum

access to water without BCAAs. At 13 months of age, total retinal thickness and

photoreceptor layer thickness, which were measured on SD-OCT images, were not

significantly different (p ¼ 0.40 and p ¼ 0.20, respectively, unpaired t-test). After

6 months of administration of BCAAs (at 19 months of age), total retinal and photo-

receptor layers were significantly thicker in the BCAA-treated group than the non-

treated control group (total retinal thickness, 194.4 � 12.6 and 184.9 � 10.2 mm,

respectively, p < 0.01, unpaired t-test; photoreceptor layer thickness, 45.3 � 6.8

and 39.4 � 7.4 mm, respectively, p < 0.01, unpaired t-test, Fig. 7A, B and C).

In order to assess intact retinal function, photopic electroretinography was recorded

at the age of 19 months. b-wave amplitudes of photopic electroretinography were

very small in both groups, but they were significantly larger in the BCAA-treated

group than the non-treated control group (14.9 � 6.0 and 12.2 � 5.0 mV, respec-

tively, p ¼ 0.046, at a stimulus intensity of 10 cds/m2, Fig. 7D and E).

nuclear layer; OPL, Outer plexiform layer; ONL, Outer nuclear layer; IS, inner segment of the photore-

ceptor cell; OS, outer segment of the photoreceptor cell; and RPE, Retinal pigment epithelium. Scale

bars: 50 mm in C; 20 mm in D, H and I; 10 mm in E, F and G.

Fig. 5. Analysis of LC3, p62, and LAMP2 showing no influences on autophagy by BCAAs in rd10

mice. Western blot analysis of rd10 mice treated with BCAAs, or water as a control. Neural retinas

of 19-, 21-, 23-, 30-, and 37-day-old rd10 mice were analyzed. Autophagy related protein LC3

(LC3), autophagy substrate SQSTM1 (p62) and lysosomal-associated membrane protein (LAMP) 2

were analyzed. Actin was used as a loading control. White triangle, LC3-I; black triangle, LC3-II; W,

wild-type mice; C, control rd10 mice; B, BCAA-treated rd10 mice; P, positive control. Complete scans

of western blots are shown in Fig. S4D.
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These results indicate that administration of BCAAs, even started after the onset of

the disease, provides a modest protection of photoreceptor cells both morphologi-

cally and functionally in rd12, a mouse model of retinal degeneration.

Fig. 6. Prevention of functional deterioration in rd10mice by BCAAs. (AeC) Dark-adapted electroretinog-

raphy (ERG) at stimulus intensities of 0.01, 3, and 30 cds/m2 in 24-day-old rd10mice administered BCAAs,

or water as a control. a-wave (A) or b-wave (C) amplitudes. (B) ERG recordings at a stimulus intensity of 30

cds/m2 from 24-day-old rd10mice that showed themedian b-wave amplitudes. (DeF) Light-adapted ERG at

a stimulus intensities of 3, 10, and 30 cds/m2 in 30-day-old (D and F) or 37-day-old (E) rd10 mice adminis-

tered BCAAs or water as a control. (D and E) b-wave amplitudes in 30-day-old (D) or 37-day-old (E) rd10

mice. (F) ERG recording at a stimulus intensity of 30 cds/m2 from 30-day-old rd10 mice which showed the

median b-wave amplitudes. *p < 0.05, **p < 0.01, ***p < 0.001, unpaired t-test.

12 https://doi.org/10.1016/j.heliyon.2018.e00544

2405-8440/� 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Article Nowe00544

https://doi.org/10.1016/j.heliyon.2018.e00544
http://creativecommons.org/licenses/by/4.0/


2.4. Administration of BCAAs to glaucoma model mice
attenuates retinal ganglion cell death

We then examined if administration of BCAAs can prevent or delay retinal gan-

glion cell death in vivo. Glutamate-aspartate transporter (GLAST) knockout mice

manifest chronic retinal ganglion cell loss and are used as a glaucoma model

(Harada et al., 2007). We created GLAST (þ/�) mice expressing cyan fluorescent

protein (CFP) in the retinal ganglion cells (referred to as GLAST (þ/�)-CFP

Fig. 7. Prevention of morphological and functional deterioration in later disease stage rd12 mice by

BCAAs. (A and B) Total retinal thickness (A) and the photoreceptor layer thickness (B, the sum of outer

nuclear layer thickness and photoreceptor myoid zone, ellipsoid zone, outer segment layer thickness,

black rectangles in C) of rd12 mice administered BCAAs or water as a control, measured on SD-

OCT images. (C) SD-OCT images of 19-month-old rd12 mice retinas. Scale bar (white bar): 50 mm.

(D) b-wave amplitudes of light-adapted ERG at a stimulus intensity of 10 cds/m2 in 19-month-old

rd12 mice administered BCAAs or water as a control. (E) Light-adapted ERGs at a stimulus intensity

of 10 cds/m2 in 19-month-old rd12 mice. *p < 0.05, **p < 0.01, unpaired t-test.
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mice) (Feng et al., 2000). Two groups of GLAST (þ/�)-CFP mice were fed

normal diets, and BCAAs were daily administered to the BCAA-treated group

(see Materials & Methods). At 12 months of age, retinal flat mounts showed

that CFP-positive retinal ganglion cells were significantly better retained in the

BCAA-treated group than the control group without BCAAs (124.8 � 7.5 and

110.0 � 9.6 cells, respectively, p ¼ 0.016, unpaired t-test, Fig. 8A, B and C). He-

matoxylin and eosin (HE)-stained retinal sections from BCAA-treated mice had a

thicker retinal nerve fiber layer than sections from the control group (Fig. 8D). The

cross-sectional area of the optic nerve, which is presented as the median value,

was larger in the BCAA-treated group than the control group (70,673 mm2

(N ¼ 4) and 45,352 mm2 (N ¼ 5), respectively) (Fig. 8E). These data demonstrate

that BCAAs protected retinal ganglion cells in the glaucoma model.

2.5. BCAA administration reduces ER stress, activates mTOR,
and suppresses apoptosis in RP and glaucoma mouse models

We investigated potential mechanisms of retinal protection by the administration of

BCAAs in these animal models of retinal diseases. Western blot analyses of retinal

samples from 19-month-old rd12 mice revealed that the expression of CHOP

(Zinszner et al., 1998) was reduced both in neural retinas and the mixed samples

of retinal pigment epithelium and choroid (RPE/choroid) in the BCAA-treated

mice, compared to the non-treated control (Figs. 9A, S2A-D). Immunohistochemical

analysis of retinas from 21-day-old rd10 mice showed that CHOP expression was

reduced at the outer layers of the retina in the BCAA-treated group, compared to

those in the non-treated control group (the outer nuclear layer, inner segment of

the photoreceptor and retinal pigment epithelium, Fig. 9B). In BCAA-treated 18-

month-old GLAST (þ/�) mice, CHOP expression was also reduced in the retinal

ganglion cells, compared to the non-treated control mice (Fig. 9C).

Expression of phosphorylated-mTOR (pmTOR) in the RPE/choroid and in the neu-

ral retina showed a tendency to be suppressed in control 19-month-old rd12 mice,

relative to wild-type mice, and showed a tendency to be partially restored in

BCAA-treated rd12 mice (Fig. S2E). p70S6K (Hung et al., 2012; Yang and

Guan, 2007), one of the major targets of mTOR, showed a tendency to be more acti-

vated in the neural retinas of BCAA-treated rd12 mice than controls (Fig. S2F). To

ascertain whether suppression of ER stress by BCAA administration may forestall

apoptosis, cleaved caspase-3, which is generated in apoptotic cells, was analyzed.

The protein levels of cleaved caspase-3 were lower in the neural retinas of

BCAA-treated rd12 mice than the non-treated controls (Fig. 9A). These results

are consistent with the idea that BCAAs suppress ER stress, which in turn results

in reduction of apoptosis in these animal models of retinal diseases.
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Fig. 8. Prevention of retinal ganglion cell death in GLAST (þ/�) mice by BCAAs. (AeC) Retinal flat

mount of 12-month-old GLAST (þ/�):Thy1-CFP mice administered BCAAs, or water as a control. (A)

The CFP-positive retinal ganglion cells were counted at a distance of 1200 mm from the optic nerve head

center. The white squares (250 mm squares) indicate areas in which CFP-positive retinal ganglion cells

were counted. (B) Magnified images of retinal flat mounts from GLAST (þ/�):Thy1-CFP mice that

showed the median retinal ganglion cell counts. (C) Numbers of CFP-positive retinal ganglion cells

on the retinal flat mount. N ¼ 6 eyes of 6 mice in the BCAA group and N ¼ 4 eyes of 4 mice in the

control group, respectively, *p < 0.05, unpaired t-test. (D) Hematoxylin and eosin (HE)-stained vertical

retinal sections of 12-month-old GLAST (þ/�) mice administered BCAAs, or water as control. Abbre-

viations: RNFL, retinal nerve fiber layer; GCL, ganglion cell layer; IPL, Inner plexiform layer; INL, In-

ner nuclear layer; OPL, Outer plexiform layer; ONL, Outer nuclear layer; IS, inner segment of the

photoreceptor cell; OS, outer segment of the photoreceptor cell; and RPE, Retinal pigment epithelium.

(E) HE-stained optic nerve cross-sections from 18-month-old GLAST (þ/�) mice that showed the me-

dian cross-section areas. Scale bars: 50 mm in B, D and E.
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Fig. 9. Suppression of ER stress by BCAAs leads to suppression of cleaved caspase-3 in mouse models.

(A) Western blot analysis of 19-month-old rd12 mice treated with BCAAs, or water as a control. Extracts

from dissected neural retinas and the combination of retinal pigment epithelium (RPE), choroid, and

sclera (RPE/choroid) were analyzed with an anti-CHOP or cleaved caspase-3 antibody. Complete scans
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3. Discussion

In this study, we showed that BCAAs worked against cell death in vitro and in vivo.

In cultured cells, BCAAs enhanced the utilization of glucose to produce ATP and

suppressed cell death under ER stress-induced conditions. In glaucoma and retinal

degeneration, ER stress has been proposed as an underlying mechanism. Consis-

tently, administration of BCAAs to mouse models of RP and glaucoma suppressed

cell death of retinal neuronal cells, including the retinal ganglion cells and photore-

ceptors, and preserved visual functions to a certain extent.

We have shown that maintenance of the ATP level is an effective therapeutic strat-

egy in preventing cell death in mouse models of RP and glaucoma. In our previous

studies, we reported the development of KUSs as novel inhibitors of the ATPase ac-

tivities of VCP, the most abundant soluble ATPase in all types of cells (Ikeda et al.,

2014). Indeed, KUSs manifested significant efficacies in mouse models of RP

(Hasegawa et al., 2016b; Ikeda et al., 2014) and glaucoma (Nakano et al., 2016).

We subsequently looked for compounds that would enhance ATP production

(Nakano et al., 2017). Ideally, such materials should have no toxicity in humans.

From this point of view, various nutritional supplements, which are daily taken by

humans, would be good candidates. Carbohydrates (sugars), lipids, and proteins

(amino acids) are three major nutrients, or energy sources. Among them, sugars

and lipids would not be suitable, because the intake of high amounts of sugars

and lipids raises the risk of metabolic syndrome and obesity. In contrast, high intake

of amino acids does not appear to be harmful to humans. For example, supplemental

BCAAs have been taken daily by athletes to improve their condition. In addition,

BCAAs, as LIVACT�, has been used as a therapeutic drug for patients with liver

cirrhosis. In the literature, BCAAs have been shown to improve glucose metabolism

in cirrhotic rat liver and improve glucose uptake in rat skeletal muscle (Doi et al.,

2005; Matsumura et al., 2005; Nishitani et al., 2002). We then decided to examine

the efficacies of BCAAs to enhance ATP production.

As expected, BCAA supplementation maintained ATP levels in cells treated with

tunicamycin, an ER stress inducer, which in turn reduced ER stress levels and

protected cells from cell death. We originally assumed that BCAAs were

of western blots are shown in Fig. S4E. (B) Vertical retinal sections of 21-day-old rd10 mice stained with

or without an anti-CHOP antibody (red). Abbreviations: RNFL, retinal nerve fiber layer; GCL, Ganglion

cell layer; IPL, Inner plexiform layer; INL, Inner nuclear layer; OPL, Outer plexiform layer; ONL, Outer

nuclear layer; IS, inner segment of the photoreceptor cell; OS, outer segment of the photoreceptor cell;

and RPE, Retinal pigment epithelium. (C) Vertical retinal sections of 18-month-old GLAST (þ/�) mice

stained with or without an anti-CHOP antibody. Note that more cells remained in the GCL of BCAA-

treated mouse than in that of control mouse. Note also that more cells were strongly stained by the

CHOP antibody (arrowheads) in control mouse than in BCAA-treated mouse. Scale bars: 20 mm in B

and C.
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metabolized as sources of ATP production. However, BCAAs functioned to

enhance glucose uptake and utilization, because the effects were canceled by

the addition of 2-deoxy-D-glucose, an inhibitor of glycolysis. It was surprising

to observe that glucose supplementation itself did not suppress the decrease in

ATP levels; nor did it inhibit cell death under the same stress condition where

BCAA supplementation did (Fig. 1). BCAAs are known to activate mTOR. In

our ER stress-inducing cell culture model, however, administration of Leu alone,

which is a potent activator of mTOR, could not apparently inhibit cell death.

Nevertheless, we found that BCAAs activated mTOR in certain levels in the

retina of the mouse disease models (Fig. S2E and F). Therefore, it remains

possible that activation of mTOR by BCAAs would also contribute to the delay

of retinal neuronal cell death in vivo.

We confirmed that peritoneal BCAA administration increased the BCAA concentra-

tion in eyes in a dose-dependent manner (Fig. S3). In the pilot experiment with rd10

mice given two doses (1.5 g/kg/day or 4.5 g/kg/day) of BCAAs, we found that the

1.5 g/kg/day BCAA administration appeared to be sufficient to achieve neuroprotec-

tive effects; administration of 1.5 g/kg/day BCAAs to rodents has been reported to

maintain almost the same plasma concentration of BCAAs as patients given 12 g of

LIVACT� per day, which is the clinically accepted dose for patients with liver

cirrhosis (Matsumura et al., 2005).

It is notable that BCAAs worked against the progression of retinal degeneration,

even when treatment started at later stages of the diseases, when photoreceptor

degeneration had progressed considerably (Fig. 7), and that BCAAs suppressed

degeneration of cone photoreceptors, which are important in central vision and

in quality of vision (Fig. 4). These data suggest that administration of BCAAs,

as the formulation of LIVACT�, at the clinically used dosage would be effective

to delay disease progression in patients with RP or glaucoma. We found that

among the constituents of BCAAs, Ile and Val were better in the suppression of

ATP loss than Leu (Fig. 1). This is consistent with a report that Ile has a stronger

glucose uptake stimulating effect than Leu (Doi et al., 2005). Another report

demonstrated that supplemental administration of Leu caused food intake reduction

and growth suppressing effects, which were reversed by supplementation with Ile

and Val (Harper et al., 1984). Thus, BCAAs as LIVACT�, containing Leu, Ile,

and Val, have been used in patients with liver cirrhosis (Muto et al., 2005) and

are considered to possess very high levels of safety (Holecek, 2013; Muto et al.,

2005).

In conclusion, BCAAs worked against cell death via enhancing ATP production,

supporting our proposal that ATP maintenance is an effective therapeutic strategy

for protecting cells from cell death-inducing insults. BCAAs protected not only

rod photoreceptors but also cone photoreceptors and worked against cell death
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even when the administration was started at later stages of retinal degeneration in a

mouse model of retinal degeneration. BCAA administration also suppressed the loss

of retinal ganglion cells in a glaucoma mouse model. BCAAs show great potential

for use as an easily available and effective therapeutic strategy for incurable eye dis-

eases, including RP as well as glaucoma.

4. Materials & methods

4.1. Cell culture

HeLa cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) contain-

ing 4.5 g/L of glucose without amino acids (048-333575; Wako Pure Chemical In-

dustries, Ltd.) without serum, or in DMEM without glucose without amino acids

(specially ordered, Funakoshi Co., Ltd.). Glucose was added (0, 1, 2 or 4.5 g/L)

when the cells were cultured in DMEM without glucose without amino acids.

BCAAs (L-isoleucine: L-leucine: L-valine ¼ 1:2:1.2, the same as LIVACT�; Aji-

nomoto Co.) were added to the medium (0, 0.04, 4.0, 20, 40, or 80 mM, calculated as

126.829 g/mol as the molecular weight, which was calculated from the respective

molecular weights and the abundance ratio in the formulation). In experiments

with separate additions, Ile, Leu, or Val was added at a concentration of 40 mM. Tu-

nicamycin (Nacalai Tesque, 3 mg/mL) was added to induce ER stress. Antimycin

(Sigma, 30 mM) or oligomycin (Sigma, 1 mg/mL) was added to inhibit mitochondrial

respiratory chain complex III or complex V. 2-deoxy-D-glucose (Nacalai Tesque,

50, or 100 mM) was added as an inhibitor of glycolysis. Cells were cultured for

16 hours in the medium with or without tunicamycin, and with or without BCAAs

for measurements of relative ATP levels or live cell numbers. Cells were cultured for

24 hours in the medium with or without antimycin, oligomycin, or 2-deoxy-D-

glucose, and with or without BCAAs for measurements of relative ATP levels or

live cell numbers. Relative ATP levels in cultured cells were measured by luciferase

activities with an ARVO multilabel counter using ATP assay reagent for cells (Toyo

B-net) (Ikeda et al., 2014). Live cell numbers were measured with a TC10 automated

cell counter (Bio RAD) after trypsinization. Cells were cultured for 6 hours in the

medium with or without tunicamycin and with or without BCAAs for western blot-

ting analysis. Glucose concentration was measured using a Glucose Colorimetric

Assay Kit (BioVision), and consumption of glucose/cell was calculated.

661W cells were kindly provided by Dr. Muayyad R. Al-Ubaidi (University of

Houston, Houston, TX, USA). Cells were cultured for 24 hours in the medium

with or without oligomycin (1 mg/mL) or tunicamycin (1mg/mL), and with or

without BCAAs for measurements of relative ATP levels or viability of the cells us-

ing WST (water soluble tetrazolium salts)-8 reagent (Cell count reagent SF, Nacalai

Tesque, Kyoto, Japan).
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4.2. Experimental animals

This study was conducted in accordance with the Association for Research in Vision

and Ophthalmology (ARVO) Statement for the Use of Animals in Ophthalmic and

Vision Research. All protocols were approved by the Institutional Review Board of

Kyoto University Graduate School of Medicine (MedKyo 14213, 15531, 16501,

17272). Model mice for retinal degeneration, rd10 mice (Chang et al., 2007) and

rd12 mice (Pang et al., 2005) and B6. Cg-Tg (Thy1-CFP) 23Jrs/J mice, in which

retinal ganglion cells express CFP (Feng et al., 2000; Murata et al., 2008), were ob-

tained from the Jackson Laboratory. Glutamate-aspartate transporter (GLAST)

knockout mice, which manifest retinal ganglion cell loss and are used as a glaucoma

model (Harada et al., 2007), were a gift from Dr. Koichi Tanaka (Tokyo Medical and

Dental University). GLAST knockout mice and Thy1-CFP mice were crossed to

obtain GLAST (þ/�):Thy1-CFP mice (Nakano et al., 2016). Mice were maintained

in a 14-hour light/10-hour dark cycle and were fed ad libitum. Before SD-OCT im-

aging or electroretinography acquisition, mice were anesthetized with an intraperito-

neal injection of a ketamine (70 mg/kg)/xylazine (14 mg/kg) mixture. Pupils were

dilated with tropicamide and phenylephrine eye drops (0.5% each).

4.3. Administration of BCAAs

We confirmed that BCAA administration increased the BCAA concentration in

eyes in a dose-dependent manner (Fig. S3). One-month-old GLAST

(þ/�):Thy1-CFP mice were assigned to either a BCAA group or a control group.

BCAA group mice had intraperitoneal administration of BCAAs (0.375 g/kg/day)

from 1 month to 2 months of age and then started oral medication with BCAAs

from 2 months of age. These mice had ad libitum access to water containing

7.5 g/L of BCAAs. For oral ad libitum administration of BCAAs, we measured

the amount of water decrement in the water bottles and weighed the mice to

calculate the administration dosage. The administration with ad libitum access

to water containing 7.5 g/L was about 1.5 g/kg/day with an assumption that

the mice drank all the amount of the decrement. Control group mice had intraper-

itoneal administration of saline from 1 month to 2 months of age and were pro-

vided with access to water ad libitum after weaning. Seven-day-old rd10 mice

were assigned to either the BCAA group or control group and had daily intraper-

itoneal administration of BCAAs (0.75 g/kg, twice a day: 1.5 g/kg/day) or saline,

and the BCAA group mice were then switched to oral medication with ad libitum

access to the water containing BCAAs at 24 days of age. Other 7-day-old rd10

mice had daily intraperitoneal administration of BCAAs (0.75 g/kg, twice a day:

1.5 g/kg/day) and then were assigned to either the BCAA group or an increased

dose BCAA group at weaning. These mice had ad libitum access to water con-

taining 7.5 g/L of BCAAs (BCAA group, about 1.5 g/kg/day) or 22.5 g/L of
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BCAAs (increased dose BCAA group, about 4.5 g/kg/day) to examine dose-

dependency of the effect of BCAAs. We confirmed that the increased dose

administration of BCAAs was not superior to the 1.5 g/kg/day of BCAA admin-

istration. Based on these results, we considered that the 1.5 g/kg/day dose is suf-

ficient to show neuroprotective efficacy in vivo and used that dosage for in vivo

experiments thereafter. Thirteen-month-old rd12 mice were assigned to either a

BCAA group or a control group and the BCAA group started oral medication

with ad libitum access to water containing 7.5 g/L of BCAAs (BCAA group, esti-

mated intake was thus about 1.5 g/kg/day) while the control group had ad libitum

access to water.

4.4. SD-OCT acquisition

Speckle noise-reduced SD-OCT with the eye-tracking function based on Spectralis�
HRAþOCT (Multiline OCT; Heidelberg Engineering) (Nakano et al., 2011) was

used to obtain fundus images. A 25-diopter adaptor lens was placed on the objective

lens of the Multiline OCT in order to focus onto the mouse retina. Vertical B-scans

through the optic nerve head were obtained by averaging one hundred individual B-

scans (manufacturer-set maximum), and 19 vertical B-scans evenly spaced over a

30� � 15� area through the optic nerve head were obtained by averaging 50 individ-
ual B-scans for volume mapping.

4.5. Analysis of SD-OCT images

In rd10 and rd12 model mice, we assessed total retinal thickness, which was eval-

uated as the distance between the inner limiting membrane and the outer side of

the Bruch’s membrane, and photoreceptor layer thickness, which was evaluated as

the sum of ONL thickness and photoreceptor myoid zone, photoreceptor ellipsoid

zone, and outer segment layer thickness (black rectangles in Figs. 4C and 7C).

The vitreoretinal interface, outer plexiform layer/ONL, RPE anterior border, and

Bruch’s membrane posterior border were manually determined and then built-in

software of the Spectralis HRA-OCT was used to measure the thickness of each

layer. A volume map around the optic nerve head was used to assess total retinal

thickness within 366 mm of the optic nerve head in all directions (circular area)

and the circular area within 122 mm of the optic nerve head was excluded from an-

alyses. The values measured at the upper, lower, right, and left regions were aver-

aged. Photoreceptor layer thickness was measured at 244 mm above and below

the center of the optic nerve head using a single vertical scan, and then these two

measurements were averaged to obtain the final photoreceptor layer thickness.

Eyes were excluded from the retinal thickness measurements when retinal detach-

ment was observed.
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4.6. Electroretinography recording and analysis

A gold-loop corneal electrode with a light-emitting diode (Mayo Corp.) was used

to record electroretinography. A reference electrode was placed in the mouth, and

a ground electrode was placed in the anus. A light-emitting diode stimulator

(Mayo Corp.) was used to produce stimuli. Scotopic electroretinography was re-

corded after overnight dark adaptation with stimulus intensity of 0.01 (rod

response), 3 (mixed cone and rod response), and 30 cds/m2 (McCulloch et al.,

2015). Photopic electroretinography was recorded with stimulus intensity of 3,

10, and 30 cds/m2 and a background illumination of 30 cd/m2 (McCulloch

et al., 2015). The electroretinography response was amplified (PowerLab 2/25;

AD instruments), and up to 4 responses were averaged in scotopic electroretinog-

raphy, and 30 to 50 responses were averaged in photopic electroretinography, to

obtain the final electroretinography waveform. The stimulus interval was set at

�15 seconds for scotopic 0.01 electroretinography, �60 seconds for scotopic 3

and 30 electroretinographies, and at 1.0 second for photopic electroretinographies.

Chart & Scope software (AD instruments) was used to analyze the amplitudes of

the a-wave, which has been reported to reflect rod function (Hood and Birch,

1990b) and the b-wave, which has been reported to derived from bipolar cells

(Hood and Birch, 1996).

4.7. Histological evaluation of retinas and optic nerve

Eyeballs of 12-month-old GLAST (þ/�) mice, 18-month-old GLAST (þ/�) mice,

21-day-old rd10 mice, 37-day-old rd10 mice, and 19-month-old rd12 mice were

enucleated after pentobarbital overdose. To identify the superior portion of the

retina, a suture was placed on the edge of the superior conjunctiva. The eyes were

fixed in 4% paraformaldehyde for 24 hours at 4 �C and embedded in paraffin.

Through the suture and at the point of insertion of the optic nerve, serial 6-mm

paraffin-embedded sections were cut. Sections including the center of the optic nerve

head were stained with hematoxylin and eosin (HE), or with antibodies, and photo-

graphed under an optical microscope (BZ-9000; Keyence).

Eyeballs and linked optic nerves of 18-month-old GLAST (þ/�) mice were cut and

then fixed in 4% paraformaldehyde for 24 hours at 4 �C and embedded in paraffin.

Serial 6-mm paraffin-embedded sections were cut to obtain optic nerve cross-sections

(Nakano et al., 2016).

4.8. Electron microscopy

Eyeballs of 21-, 30-, and 37-day-old rd10 mice were enucleated after perfusion fix-

ation with 4.0% paraformaldehyde and were immediately postfixed in a mixture of

2.5% glutaraldehyde and 10% formaldehyde overnight. The tissue was further fixed
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by immersing in 1% osmium tetroxide for 90 minutes. The tissue was then dehy-

drated (with a graded series of ethanol [50e100%] baths), cleared in propylene ox-

ide, and embedded in epoxy resin. Ultrathin sections were cut with an

ultramicrotome and stained with uranyl acetate and lead citrate and then were exam-

ined by transmission electron microscopy (H-7650; Hitachi Co.).

4.9. Retinal flat mounts

Eyeballs of 12-month-old GLAST (þ/�):Thy1-CFP mice were enucleated after

pentobarbital overdose and then, after 1 hour fixation in 4% paraformaldehyde,

retinal flat mounts without uvea and sclera were made (Nakano et al., 2016). CFP

positive retinal ganglion cells were manually counted in a 250-mm square at a dis-

tance of 1200 mm away from the disc center on the retinal flat mounts in a masked

fashion (Fig. 8A).

4.10. Western blotting

Eyeballs of 19-month-old rd12 mice and 19-, 21-, 23-, 30-, and 37-day-old rd10

mice were enucleated after pentobarbital overdose, and immediately after enucle-

ation, eyeballs were immersed in cold Hanks’ balanced salt solution. Incisions

were made using pinholes at the corneas, then using the incisions the sclera was

peeled to take the mixture of the retinal pigment epithelium, choroid and sclera sepa-

rately from the neural retina. The lens and iris were removed, and then separate ex-

tracts were prepared from dissected neural retina and the mixture of retinal pigment

epithelium, choroid, and sclera (RPE/choroid), and these were analyzed by standard

western blotting techniques. Two eyes from two 19-month-old rd12 mice with sup-

plemental BCAAs and two eyes from two mice without BCAA treatment, and four

eyes from four 19-,21-,23-,30-, and 37-day-old rd10 mice and four eyes from four

mice without BCAA treatment were analyzed. The relative intensities of bands

were quantified using Image Lab 4.1 (Bio-Rad).

4.11. Antibodies

Anti-CHOP and anti-short wavelength sensitive opsin (S-opsin) antibodies were

purchased from Santa Cruz Biotechnology; anti-middle wavelength sensitive opsin

(M-opsin) and anti-actin antibodies were purchased from Millipore; anti-cleaved

caspase-3, anti-phospho-mTOR (Ser 2481), anti-phospho-mTOR (Ser 2448), anti-

mTOR, anti-phospho-p70S6K (pp70S6K), anti-phospho-4E-BP1 antibodies were

purchased from Cell Signaling Technology, an anti-LC3 antibody was purchased

from MBL, an anti-LAMP2 antibody was purchased from Abcam transduction Lab-

oratories, and an anti-p62 (lck ligand) antibody was purchased from BD.
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4.12. Statistical analysis

Data are presented as mean � standard deviation. Unpaired t-tests were used to

compare parameters of mice administered BCAAs or minus-BCAA controls. A Tu-

key HSD test or Tamhane test was used to compare parameters with multiple con-

ditions in HeLa or 661W cells. The level of statistical significance was set at

p < 0.05.
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