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Abstract We introduce a method for computing interfacial motions governed
by curvature dependent acceleration. Our method is a thresholding algorithm
of the MBO-type which, instead of utilizing a diffusion process, thresholds
evolution by the wave equation to obtain the desired interfacial dynamics.
We also develop the numerical method and present results of its application,
including investigations of volume preserving and multiphase motions.

1 Introduction

In this report, we propose a numerical scheme for the computation of the
so-called hyperbolic mean curvature flow (HMCF)

γtt(t, s) = −κ(t, s)ν(t, s), γ(0, s) = γ0(s), γt(0, s) = v0(s)ν0. (1)

Here γ : [0, T )×I → R2 is a family of smooth curves, κ denotes the curvature,
ν is the unit outer normal vector and subscripts denote partial derivatives,
e.g., γt = ∂γ/∂t.

This and similar types of hyperbolic problems have been derived as models
of oscillatory interface motions. For example, [12] derives a model equation
based on Hamilton’s principle, considering stationary points of a geometrical
action with local energy density consisting of kinetic and internal energy

e =
1
2
(
|γt|2 + 1

)
.
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If the initial velocity is normal to the interface, the velocity remains normal
during the motion, which leads to the equation

γtt = eκν −∇e.

Employing the variational structure, the authors show that the flow is locally
well-posed and study conditions under which blow-up occurs. In the case of
graphs, they show uniqueness of solution satisfying a certain entropy condition.

A similar equation
γtt = κν −∇e,

which is found to be related to a hyperbolic Monge-Ampère equation, is studied
in [10,11] with an emphasis on the development of singularities. The derivation
of the equation is not given but its relation to equations for the motion of
relativistic strings in Minkowski space is mentioned.

On the other hand, regarding damped oscillations, which appear on the
solid-liquid interface of some crystals during melting or crystallization, [6,15]
derived the model equation

ρvt + βv = (ψ + ψ′′)κ− F,

(also see the references therein). Here, v, dv
dt are the normal velocity and normal

acceleration, and ψ, β, ρ, F denote the interfacial energy, kinetic coefficient,
effective density and a driving force for crystallization, respectively.

Equation (1) is also addressed in [7], where local existence and relations
for the evolution of geometrical quantities are shown. It is a special case of a
model equation for the motion of bubbles obtained in [8],

µut = −pν − σκν + f − µu(∇ · u− ν ·Du · ν) − uµt.

Here, ut is the derivative of the velocity vector, µ denotes mass density, p is a
factor corresponding to pressure, σ is surface tension and f denotes additional
sources of momentum.

Numerical solution of the above hyperbolic mean curvature flows has been
addressed only scarcely. Except for front tracking schemes, [6] develops a crys-
talline algorithm for the motion of closed convex polygonal curves. These meth-
ods cannot directly manage singularities, such as topological changes or the
presence of junctions in the multiphase case, yet such problems can be resolved
by adopting the level-set approach. A level-set method for curvature depen-
dent accelerations based on the results of Sethian and Osher is presented in
[8]. In this method, a nonlinear ill-posed problem has to be solved and it is
not clear how the ideas can be extended to the multiphase setting. Just after
this article was finished, we learned about the interesting work [1], where an
algorithm based on the level-set approach is developed for the computation
of time sections of minimal surfaces in Minkowski space, which represents a
relativistic generalization of the HMCF considered here.

In this paper we aim at constructing a numerical scheme based on threshold
dynamics of the MBO type. The MBO algorithm was presented in [13] and
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is based on the fact that frequent thresholding of the solution to the heat
equation approximates the evolution of level sets according to the standard
(parabolic) mean curvature flow. It is not obvious that such a method would
be feasible for curvature accelerated motions. Nevertheless, investigating the
formulae for the solution to the wave equation has revealed that level sets of the
solutions whose initial condition is the signed distance to the interface, evolve
with normal acceleration equal to their mean curvature, when the thresholding
interval approaches zero.

A justification of the above observation can be given by the following for-
mal analysis of radially symmetric solutions to the wave equation. The d-
dimensional wave equation utt = c2∆u in polar coordinates reads:

utt = c2
(
urr +

d− 1
r

ur +
1
r2
∆Sd−1u

)
,

where ∆Sd−1 is the Laplace-Beltrami operator on the (d−1)-sphere. Assuming
radial independence, this reduces to

utt = c2
(
urr +

d− 1
r

ur

)
.

Integrating twice with respect to time yields

u(τ, r) = u0(r) + v0(r)τ + c2
∫ τ

0

∫ s

0

(
urr +

d− 1
r

ur

)
dt ds,

where v0 denotes the initial velocity. We would like to find the relation satisfied
by the zero level-set position rn+1 (that is, u(τ, rn+1) = 0), assuming that
time is discretized and that the initial conditions are given by signed distance
functions dn, dn−1 to the previous two interface positions rn, rn−1 at times
0 and −τ , respectively. Hence, setting u0(r) = dn = rn − r and v0(r) =
(dn − dn−1)/τ = (rn − rn−1)/τ , we derive

u(τ, r) = 2rn − rn−1 − r + c2
∫ τ

0

∫ s

0

(
urr +

d− 1
r

ur

)
dt ds.

Now, up to first order, urr(t, r) = urr(0, r) + O(t) and, similarly ur(t, r) =
ur(0, r)+O(t). Since the initial conditions are one-dimensional signed distance
functions, we can compute their derivatives to obtain that near the interface:

u(τ, r) = 2rn − rn−1 − r + c2
∫ τ

0

∫ s

0

(
−d− 1

r

)
dt ds+O(τ3)

= 2rn − rn−1 − r − c2(d− 1)τ2

2r
+O(τ3).

The radius rn+1 at the next time step is given by the zero level-set position
of u(τ, r), hence

rn+1 − 2rn + rn−1

τ2
= −c

2(d− 1)
2rn+1

+O(τ).
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Since the left-hand side represents a discretization of the acceleration, this
suggests that the interface evolves approximately according to hyperbolic mean
curvature flow if we take c2 = 2

d−1 . In particular, for d = 2 we have c2 = 2,
and for d = 3 we obtain c = 1.

In the following, we will present and formally justify the resulting algorithm
(which we call HMBO, the hyperbolic MBO algorithm) in the two-dimensional
setting, together with its device for propagating velocities over the redistancing
step without the need for explicit computation of velocities. We then comment
on potential extensions of our scheme to more general flows, such as those in-
volving phase volume constraints and the motion of junctions. We also include
several numerical results and numerical confirmations regarding the proposed
method.

2 The HMBO algorithm

The proposed HMBO algorithm for a numerical approximation {γn}N
n=0 of the

motion (1) in the case of a planar closed curve reads as follows, where N is a
positive integer.

Given: initial curve γ0, its normal velocity v0, a final time T and a time
step τ = T/N .

1. Extend v0 in a suitable way to a neighborhood of γ0.
2. For t ∈ [0, τ ] solve the initial value problem

utt(t, x) = ∆u(t, x), u(0, x) = d0(x), ut(0, x) = −v0(x), (2)

where d0(x) is the signed distance function to γ0.
3. Define γ1 as the zero level set of u(x, τ).
4. For n = 1, 2, . . . , N − 1 repeat

(a) For t ∈ [0, τ ] solve the initial value problem

utt(t, x) = 2∆u(t, x), u(0, x) = 2dn(x)−dn−1(x), ut(0, x) = 0, (3)

where dn(x) is the signed distance function to γn.
(b) Define γn+1 as the zero level set of u(x, τ).

In this section, we explain the ideas behind the derivation of the above
HMBO algorithm and provide a formal justification for its convergence. We
divide the explanation into two parts. We begin by addressing the construc-
tion of the first curve γ1 (steps 1 - 3 in the algorithm), which will clarify the
reason why a threshold-type scheme for the wave equations leads to accelera-
tions proportional to curvature. Then we treat further HMBO steps (step 4 in
the algorithm), focusing on obtaining the propagation of interfacial velocities
throughout the evolution.
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2.1 The first time step of the HMBO algorithm

Given an initial closed smooth planar curve γ0 and its smooth initial normal
velocity v0, we construct an approximation γ1 of the curve’s evolution by
HMCF at time τ . This is done as follows:

1. Extend v0 to the neighborhood of γ0 in R2 as

v0(x1, x2) = v0(x̂1, x̂2),

where (x̂1, x̂2) is the orthogonal projection of (x1, x2) on γ0, i.e., the nearest
point to (x1, x2) on the curve γ0.

2. Solve the initial value problem

utt = c2∆u, u(0, x) = d(x), ut(0, x) = −v0(x), (4)

where d(x) is the signed distance function to γ0, and where we take c =
1 here, (but we keep the general coefficient c for later convenience). We
remark that the velocity v0 is defined only in a neighborhood of γ0 but,
since γ0 is smooth and τ can be taken small enough, this fact will not
hinder the subsequent step due to the finite speed of propagation.

3. Define γ1 as the zero level set of u(x, τ).

We now examine the evolution of the interface, making use of the explicit
representation formula. Here and in the sequel, x = (x1, x2) and y = (y1, y2)
are points in R2. Using the Poisson formula, we find that the solution u to (4)
reads

u(t, x) =
1

2πct

∫
B(x,ct)

d(y) + ∇d(y) · (y − x) − tv0(y)√
c2t2 − |y − x|2

dy, (5)

where B(x, r) denotes the ball centered at x with radius r.
In order to analyze the resulting motion, we take a point on the interface

and rotate and translate the coordinate system, so that the point becomes the
origin and the outer normal to the interface points in the direction of the x2-
axis. We assume that the interface is smooth in a neighborhood of the origin.
Then the value of the signed distance function at any point y ∈ B(x, ct) can
be approximated by the following Taylor expansion (see [2]), provided that
x in (5) is close to the origin and t is sufficiently small (depending on the
smoothness of the interface):

d(y1, y2) = y2 +
1
2
κy2

1 +
1
6
κx1y

3
1 − 1

2
κ2y2

1y2 +
∑
|α|=4

eα(y)yα.

Here κ is the curvature of the interface at the chosen point (now the origin) and
the eα’s are smooth functions. We remark that the error functions, denoted by
eα (with α multiindex), will vary from place to place and are always assumed
to be smooth and bounded functions of their variables.

We now proceed to calculate the contribution of each term in the signed
distance expansion to the solution u(t, x) of the wave equation.



6 Elliott Ginder, Karel Svadlenka

For the first term y2 we have

u1(t, x) =
1

2πct

∫
B(x,ct)

y2 +
(

0
1

)
·
(
y1 − x1

y2 − x2

)
√
c2t2 − |y − x|2

dy

=
1

2πct

∫
B(0,1)

2(ctz2 + x2) − x2

ct
√

1 − |z|2
c2t2 dz

=
1
2π

∫
B(0,1)

x2√
1 − |z|2

dz

=
x2

2π

∫ 1

0

∫ 2π

0

r√
1 − r2

dθ dr

= x2

Here we use the change of variables z = (y − x)/ct to transform the domain
of integration to a fixed ball B(0, 1). Also we use the fact that the function
z2/
√

1 − |z|2 is odd with respect to the x2-axis, hence its integral over B(0, 1)
vanishes.

By a similar calculation, the second term 1
2κy

2
1 gives

u2(t, x) =
1

2πct
κ

2

∫
B(x,ct)

y2
1 +

(
2y1
0

)
·
(
y1 − x1

y2 − x2

)
√
c2t2 − |y − x|2

dy

=
κ

4π

∫
B(0,1)

3c2t2z2
1 + x2

1√
1 − |z|2

dz

=
κ

2
(c2t2 + x2

1).

The third term 1
6κx1y

3
1 contributes to the solution as follows:

u3(t, x) =
κx1

12πct

∫
B(x,ct)

y3
1 +

(
3y2

1

0

)
·
(
y1 − x1

y2 − x2

)
√
c2t2 − |y − x|2

dy

=
κx1

12π

∫
B(0,1)

9c2t2x1z
2
1 + x3

1√
1 − |z|2

dz

=
κx1x1

6
(3c2t2 + x2

1).

The fourth term − 1
2κ

2y2
1y2 yields

u4(t, x) = − κ2

4πct

∫
B(x,ct)

y2
1y2 +

(
2y1y2
y2
1

)
·
(
y1 − x1

y2 − x2

)
√
c2t2 − |y − x|2

dy

= −κ
2

4π

∫
B(0,1)

3c2t2x2z
2
1 + 6c2t2x1z1z2 + x2

1x2√
1 − |z|2

dz

= −κ
2x2

2
(c2t2 + x2

1).
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The velocity term is approximated by its Taylor series as follows:

uv(t, x) =
1

2πct

∫
B(x,ct)

tv0(y)√
c2t2 − |y − x|2

dy

=
t

2π

∫
B(0,1)

v0(x+ ctz)√
1 − |z|2

dz

=
t

2π

∫
B(0,1)

v0(0) + ∇v0(0) · (x+ ctz) +
∑

|α|=2 eα(t, x, z)(t, x)α√
1 − |z|2

dz

= v0(0)t+ ∂
∂x1

v0(0)tx1 +
∑
|α|=3

eα(t, x)(t, x)α,

since ∂v0
∂x2

(0) = 0.
Finally, the error term in the signed distance expansion can be evaluated

as

ue(t, x)

=
1

2πct

∑
|α|=4

∫
B(x,ct)

eα(y)yα + ∇ (eα(y)yα) · (y − x)√
c2t2 − |y − x|2

dy

=
1
2π

∑
|α|=4

∫
B(0,1)

eα(x+ ctz)(x+ ctz)α + ∇ (eα(y)yα) |y=x+ctz · ctz√
1 − |z|2

dz

=
∑
|α|=4

eα(t, x)(t, x)α.

The solution to the wave equation with initial condition d in the neighbor-
hood of the origin can thus be written in the following way:

u(t, x) = x2 +
κ

2
(c2t2 + x2

1) +
κx1x1

6
(3c2t2 + x2

1) −
κ2x2

2
(c2t2 + x2

1)

−v0(0)t− ∂v0
∂x1

(0)tx1 +
∑
|α|=3

eα(t, x)(t, x)α. (6)

From this result we can make the following observation. If the distance
travelled by the interface in the normal direction (i.e., the x2-direction) after
time τ is denoted by δ0, then this distance can be calculated from the relation
u(τ, 0, δ0) = 0. In particular,

0 = u(τ, 0, δ0) = δ0 +
1
2
κc2τ2 − 1

2
δ0κ

2c2τ2 − v0(0)τ +
∑
|α|=3

eα(τ, δ0)(τ, δ0)α.

This relation implies that, in terms of the order in τ , the second order approx-
imation of δ0 is v0(0)τ − 1

2κc
2τ2. Therefore, the error term can be estimated

by O(τ3) and solving the above equation for δ0, we obtain

δ0 =
v0(0)τ − 1

2κc
2τ2 +O(τ3)

1 − 1
2κ

2c2τ2
= v0(0)τ − 1

2
κc2τ2 +O(τ3). (7)
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This means that the interface moves with initial velocity v0 and with an ac-
celeration equal to −c2κ, the c2-multiple of the curvature. Thus taking c = 1,
we obtain the desired approximation of the interface γ1 ≈ γ(τ).

Remark. Regarding the problem in three dimensions, assuming for simplicity
c = 1, v0 ≡ 0, the signed distance can be expanded as

d(y) = y3 +
1
2
κ1y

2
1 +

1
2
κ2y

2
2 +H.O.T.,

where κ1 and κ2 are the principal curvatures, and a similar approach employing
the Kirchhoff’s formula suggests the validity of our method:

u(t, x) =
1

4πt2

∫
∂B(x,t)

(
d(y) + ∇d(y) · (y − x) − tv0(y)

)
dS(y)

= x3 +
1
2
κ1(t2 + x2

1) +
1
2
κ2(t2 + x2

2) +H.O.T.

This yields the distance in the x3-direction traveled by interface in time τ as

δ0 = −1
2
(κ1 + κ2)τ2 +O(τ3),

confirming that our scheme can also be used with the three-dimensional wave
equation, and likely in any higher dimension.

2.2 Further time steps of HMBO

If we want to apply the above scheme to all time steps, the velocities along
the interface would need to be computed. This would severely complicate
the numerical solution, even if the velocity field was known. The difficulties
inherent to such an approach are made clear, for example, when considering
evolutions that involve topological changes (e.g., interfaces that split apart, or
contact each other). On the other hand, if we reset the initial velocity to zero,
the interface will always accelerate from zero velocity and the accumulated
velocities will not propagate. Hence, we need to provide a modification of the
above scheme which inherits the velocity from the previous time step and
accelerates the interface depending on its curvature.

In order to design a scheme that avoids computation of interface velocities,
it is necessary to account for the position of the interface at both the previous
and the current time step. Thus, it is natural to consider a vanishing initial
velocity in the wave equation and an initial condition of the form

u(0, x) = adn−1(x) + bdn(x). (8)

Here dn denotes the signed distance function to the present interface γn, dn−1

is the signed distance function to the interface at previous time step γn−1, and
both a and b denote real numbers (see Fig. 1 below).
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Fig. 1 The ξ-coordinate system.

In order to find a precise expansion of the signed distance function dn−1,
it is necessary to calculate the change in the direction of the outer normal to
the interface. Let us denote the corresponding point on the previous interface
γn−1 by ωn−1 and the curvature at that point by κn−1. Analogous notation is
also used for the next interface γn. We should start from n = 1 but we consider
general n ∈ N since the coefficients a and b will turn out to be independent of
n. According to (6), the solution of the wave equation (4) with initial condition
dn−1 in the ξ-coordinate system of Fig. 1 reads

un−1(t, ξ) = ξ2 +
κn−1

2
(c2t2 + ξ21) +

(κn−1)x1ξ1
6

(3c2t2 + ξ21)

−
κ2

n−1ξ2

2
(c2t2 + ξ21) − v0(0)t− v0x1

(0)tξ1 +
∑
|α|=3

eα(t, ξ)(t, ξ)α.

We want to compute the unit outer normal νn to the level set of un−1 at the
point ωn = (0, δ) (with δ = δn−1) in the ξ-coordinate system. Hence,

νn =
∇un−1(τ, 0, δ)
|∇un−1(τ, 0, δ)|

,

where

∇un−1(τ, ξ) =

(
κn−1ξ1 + (κn−1)x1

2 (c2τ2 + ξ21) − κ2
n−1ξ1ξ2 − v0x1

(0)t

1 − κ2
n−1
2 (c2τ2 + ξ21)

)
+∇ξ

∑
|α|=3

eα(t, ξ)(t, ξ)α.

This yields

∇un−1(τ, 0, δ) =

(
(κn−1)x1

2 c2τ2 − v0x1
(0)τ

1 − κ2
n−1
2 c2τ2

)
+
(∑

|α|=2 eα(τ, δ)(τ, δ)α∑
|α|=2 eα(τ, δ)(τ, δ)α

)
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and

νn =
1√

1 + (ν1
n)2

(
ν1

n

1

)
, where ν1

n = −v0x1
(0)τ +

∑
|α|=2

eα(τ, δ)(τ, δ)α. (9)

From here we can calculate the deviation angle of the normal in one time step,

cos θ =
(

0
1

)
· νn = 1 +O(τ2),

since δ = O(τ). Hence, we conclude that θ = O(τ).
The x-coordinate and ξ-coordinate are rotated by the vector νn and thus,

ξ1 =
1√

1 + (ν1
n)2

(x1 + ν1
nx2)

ξ2 =
1√

1 + (ν1
n)2

(−ν1
nx1 + x2) + δn−1.

We can now write the signed distance dn−1 in terms of x, as follows (for
simplicity we write ν, instead of ν1

n):

dn−1(x) = ξ2 +
1
2
κn−1ξ

2
1 +

1
6
(κn−1)x1ξ

3
1 − 1

2
κ2

n−1ξ
2
1ξ2 +

∑
|α|=4

eα(ξ)ξα

= −νx1+x2√
1+ν2 + δn−1 + κn−1

2(1+ν2) (x1 + νx2)2 + (κn−1)x1

6
√

1+ν23 (x1 + νx2)3

−κ2
n−1(x1+νx2)

2

2(1+ν2) (−νx1+x2√
1+ν2 + δn−1) +

∑
|α|=4

eα(x, δn−1)(x, δn−1)α

= x2 + δn−1 +
1
2
κn−1x

2
1 +

1
6
(κn−1)x1x

3
1 −

1
2
κ2

n−1x
2
1x2 − νx1 − ν2

2 x2

+κn−1
2 (−ν2x2

1 + 2νx1x2 + ν2x2
2) + (κn−1)x1

6 (3νx2
1x2 + 3ν2x1x

2
2)

− (κn−1)x1
4 ν2x3

1 −
κ2

n−1
2 (−νx3

1 − 2ν2x2
1x2 + 2νx1x

2
2 + ν2x3

2)

+3κ2
n−1
4 ν2x2

1x2 −
κ2

n−1
2(1+ν2) (x1 + νx2)2δn−1

+
∑
|α|=4

eα(x, δn−1)(x, δn−1)α +
∑
i≥3

ei(x)νi.

Because of (9), the last error term can be written as
∑
|α|=3

eα(τ, δn−1, x)(τ, δn−1)α.
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Computing the solution of the wave equation with initial condition dn−1

and zero initial velocity, we obtain

un−1(t, x) = x2 + δn−1 +
κn−1

2
(c2t2 + x2

1) +
(κn−1)x1x1

6
(3c2t2 + x2

1)

−
κ2

n−1x2

2
(c2t2 + x2

1) − νx1 − ν2

2 x2 + κn−1
2 [−ν2(c2t2 + x2

1)

+2νx1x2 + ν2(c2t2 + x2
2)] +

(κn−1)x1
6 [3νx2(c2t2 + x2

1)

+3ν2x1(c2t2 + x2
2)] −

(κn−1)x1
4 ν2x1(3c2t2 + x2

1)

+κ2
n−1
2 [νx1(c2t2 + x2

1 − 2x2
2) + 1

2ν
2x2(c2t2 + 7x2

1 − x2
2)]

−κ2
n−1δn−1

2(1+ν2) [c2t2 + x2
1 + 2νx1x2 + ν2(c2t2 + x2

2)]

+
∑
|α|=4

eα(t, x)(t, x)α +
∑
|α|=3

eα(τ, δn−1, t, x)(τ, δn−1)α,

where we have used the calculations of the integrals from Poisson formula in
Section 2.1. The solution for for the initial condition adn−1 + bdn evaluated at
the point (t, x) = (τ, 0, δn) thus reads

un(τ, 0, δn) =

(a+ b)δn + aδn−1 +
aκn−1 + bκn

2
c2τ2 −

aκ2
n−1 + bκ2

n

2
δnc

2τ2

+a
{
− ν2

2 δn + κn−1
2 ν2δ2n + (κn−1)x1

2 νδnc
2τ2

−κ2
n−1
2 [− 1

2ν
2δnc

2τ2 + ν2δ3n] − κ2
n−1

2(1+ν2)δn−1[c2τ2(1 + ν2) + ν2δ2n]
}

+
∑
|α|=4

eα(τ, δn)(τ, δn)α +
∑
|α|=3

eα(τ, δn−1, δn)(τ, δn−1)α.

The distance δn traveled by the interface in the normal direction then
satisfies un(t, 0, δn) = 0, which can be written as

0 = −δ3naν2 κ2
n−1
2 + δ2naν

2 κ2
n−1
2 (1 − δn−1

1+ν2 )

+δn(a+ b− aκ2
n−1+bκ2

n

2 c2τ2 − a
2ν

2 + a
2νc

2τ2((κn−1)x1 + 1
2νκ

2
n−1))

+aδn−1 + aκn−1+bκn

2 c2τ2 − κ2
n−1
2 aδn−1c

2τ2 + error terms,

where the error terms are of order O(τ3 + δ3n−1 + δ4n). Moreover, the quantities
δn−1 and ν are of order O(τ), at worst. Since the lowest order approximation
of the above equation is

δn(a+ b) + aδn−1 + aκn−1+bκn

2 c2τ2 = 0,

we see that δn must be of order O(δn−1 + τ2), which is at most O(τ). Hence
the δ2n and δ3n terms (including their coefficients) are of order O(τ4) or higher
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and can be neglected. In this way we obtain the solution δn to the equation as

δn = −
aδn−1 + aκn−1+bκn

2 c2τ2 +O(τ3 + δ3n−1)

a+ b− aκ2
n−1+bκ2

n

2 c2τ2 − a
2ν

2

= −a
a+bδn−1 − aκn−1+bκn

2(a+b) c2τ2 +O(τ3).

It is natural to choose a, b so that − a
a+b = 1 and a+ b = 1, i.e., a = −1, b = 2.

Moreover, setting c2 = 2 yields

δn = δn−1 − (2κn − κn−1) τ2 +O(τ3), (10)

which is the desired relation between δn and δn−1.
By (9), the direction of the outer normal changes with order τ , and so

one can see that the above is a correct approximation by considering the one-
dimensional point-mass motion with initial velocity v0 and acceleration −κ(t)
(thus solving x′′(t) = −κ(t), x(0) = 0, x′(0) = v0). The solution is

x(t) = v0t−
∫ t

0

∫ s

0

κ(u) du ds. (11)

Our algorithm (10), including the initial step from the previous subsection,
gives the approximation

δ0 = v0τ −
1
2
κ0τ

2 +O(τ3),

δ1 = v0τ +
1
2
κ0τ

2 − 2κ1τ
2 +O(2τ3),

...

δk = v0τ −
1
2
κ0τ

2 − τ2
k∑

i=1

κi + (κ0 − κk)τ2 +O((k − 1)τ3).

The corresponding total distance is

x̃(kτ) =
k−1∑
j=0

δj = kv0τ − k
1
2
κ0τ

2 − τ2
k−1∑
j=0

k−j∑
i=1

κj +O(τ), (12)

which converges as τ → 0 to the function (11) by the trapezoidal rule. The
above analysis also shows that the accumulation of errors through time does
not spoil the approximation of the interface, at least until the development of
singularities.
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3 Numerical Tests and Properties

Thresholding dynamical algorithms have the computational advantage that
there is no need to calculate curvatures, and singularities are implicitly han-
dled by the partial differential equation. Moreover, they are extremely simple
to implement (here, we need only solve the wave equation). Thus, one can
construct the corresponding numerical method in a number of ways–we will
make use of standard finite differences, as well as minimizing movements for
use in investigating volume preserving motions.

Since we are considering an interfacial motion embedded in the solution
to a hyperbolic equation, care needs to be taken when detecting the inter-
face and constructing the signed distance functions. In particular, the precise
location of the interface is needed. Without this information, errors arising
from its approximation will propagate via the evolution of the signed distance
functions.

In the same vein, care must be taken in the numerical implementation of
the initial conditions, as the piecewise linear interpolation can introduce initial
interfaces that are not smooth. One approach to alleviating issues caused by
this is to use one step of the original (parabolic) MBO algorithm to smooth
the initial interface.

We will first perform a convergence test for an idealized version of our
algorithm. This test assumes that no errors are introduced under spacial dis-
cretization. Our second test introduces the spacial discretization, but computes
signed distance functions utilizing an idealized representation of the interface.
The final test removes this idealization and examines our algorithm’s order of
convergence using standard finite differences.

3.1 Idealized numerical convergence

This section investigates the convergence rate of our algorithm for a simple
test problem, under a slight idealization. For a circle evolving by (1) with
initial normal velocity v0 (we assume v0 ≤ 0 for simplicity), one can compute
the evolution of the circle’s radius r(t) analytically by solving

r′′(t) = − 1
r(t)

, r(0) = r0, r′(0) = v0. (13)

Multiplying the equation by r′(t) and integrating we obtain

r′(t) = −
√
−2 log r + C1,

where C1 = 2 log r0 + v2
0 is determined by the initial conditions. Integrating,

eC1/2
√

π
2 erf

(√
C1
2 − log r(t)

)
= t+ C2, where C2 = r0

√
π
2 e

v2
0
2 erf

( v0√
2

)
.

In particular, C2 = 0 for zero intial velocity.
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The solution can thus be expressed as

r(t) = exp

(
C1

2
−
[
erf−1

(√
2
π e

−C1/2(t+ C2)
)]2)

,

which yields a more simple form for zero initial velocity:

r(t) = r0e
−

h

erf−1
“√

2
π

t
r0

”i2

.

Since the function erf−1(x) tends to infinity when x→ 1−, the radius van-
ishes in a finite time, which can be computed from the relation

√
2/πe−C1/2(te+

C2) = 1. After substituting values of integration constants, this gives

te = r0

√
π
2 e

v2
0/2
(
1 + erf

( v0√
2

))
. (14)

We remark that the extinction time for zero initial velocity is te = r0
√
π/2

(see Fig. 2).

t

r(
t)

Fig. 2 Graph of the solution for r0 = 1, v0 = 0.

Let us now calculate the numerical approximation due to our scheme. That
is, we consider two circles of radii r0 > r1, centered at the origin, which describe
the initial conditions. We then compute the radius of the circle given by the
0-level set of the solution (after time t) to the problem

utt = c2∆u, u(0, x) = 2d1(x) − d0(x), ut(0, x) = 0.

Here, c2 = 2 and di is the signed distance function to the circle of radius ri,
which can be written as di(x) = ri − |x|. Hence, denoting r = 2r1 − r0, the
initial condition is given by u(0, x) = r − |x| and the solution of the above
initial value problem (sufficiently far away from the origin) is

u(t, x) =
1

2cπt

∫
B(x,ct)

r − |y| − y
|y| · (y − x)√

c2t2 − |y − x|2
dy

=
1
2π

∫
B(0,1)

r − 2|x+ ctz| + |x|2+ctx·z
|x+ctz|√

1 − |z|2
dz.
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Since the initial condition is radially symmetric and there is no interaction
with a boundary, we can restrict the values of x to points on the x-axis of the
form x = (ξ, 0), where ξ > 0. Then the above simplifies to

u(t, ξ, 0) = r − 1
2π

∫ 1

0

∫ 2π

0

ξ2 + 3ctρξ cos θ + 2c2t2ρ2√
1 − ρ2

√
ξ2 + 2ctρξ cos θ + c2t2ρ2

ρ dθ dρ.

The exact form of the solution to the above equation is difficult to find, since it
involves elliptic integrals. Therefore, let us instead assume that t = τ is small
and expand the integrand as a Taylor series in time. To this end, let us denote

G(t) =
ξ2 + 3ctρ cos θ + 2c2t2ρ2√
ξ2 + 2ctρξ cos θ + c2t2ρ2

,

and calculate the first and second derivatives of G at t = 0:

G(0) = ξ, G′(0) = 2cρ cos θ, G′′(0) =
3c2

ξ
ρ2 sin2 θ.

We can thus approximate the solution at points (ξ, 0) as

u(τ, ξ, 0)

= r − 1
2π

∫ 1

0

∫ 2π

0

ρ√
1 − ρ2

(
ξ + 2cτρ cos θ + 3c2

2ξ τ
2ρ2 sin2 θ +O(τ3)

)
dθ dρ

= r − ξ − c2

2ξ
τ2 +O(τ3).

To determine the position ξ of the interface after time τ , we need to solve

r − ξ − c2

2ξ
τ2 = O(τ3).

The corresponding quadratic equation ξ2 − (r+O(τ3))ξ + 1
2c

2τ2 = 0 has two
roots but since for vanishing times we want to recover the value ξ = r, we take
the corresponding root

ξ =
1
2

(
r +

√
r2 − 2c2τ2

)
+O(τ3) = r − 1

r
τ2 +O(τ3).

Combining this result with our considerations regarding the first HMBO
step, we obtain the following HMBO algorithm for the special case of a circle.

1. Prescribe initial radius r0, initial velocity v0 and time step τ = te/N , where
te is the extinction time (14) and N is a positive integer.

2. Set

r1 = r0 −
τ2

2r0
.

3. Repeat the following for n = 2, . . . , N :

rn = 2rn−1 − rn−2 −
τ2

2rn−1 − rn−2
. (15)
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We test the resulting scheme for r0 = 1 and v0 = 0. The results are shown
in the Table 1, where the error is taken at the half time to extinction, i.e.,

error = |rbN/2c − r(te/2)| = |rbN/2c − exp(−[erf−1( 1
2 )]2)|.

We observe exactly linear convergence with respect to the time step τ as
predicted by (12), which shows that the proposed HMBO algorithm gives
correct (i.e., convergent) result when the initial curve is a circle.

division number N error at time te/2 convergence order

10 0.073199 -
10 · 41 0.019332 0.960
10 · 42 0.004884 0.992
10 · 43 0.001224 0.998
10 · 44 0.000306 1.000
10 · 45 0.000076 1.000
10 · 46 0.000019 1.000
10 · 47 0.000004 1.000

Table 1 Results of the HMBO algorithm (15) with temporal discretization only.

3.2 Convergence analysis under spacial discretization

Our next tests concern the algorithm’s convergence under finite differencing. A
circle of radius 0.35 is centered at (x, y) = (1/2, 1/2) with zero initial velocity,
and the initial condition for our algorithm is therefore the signed distance func-
tion (taking positive values inside the circle) to this interface. The calculations
are performed in the unit square Ω under zero Neumann boundary conditions
and we use grid points on a square lattice with spacing ∆x = ∆y = 1/(Np−1),
where Np is the number of grid points on the x and y axes. A Delaunay tri-
angulation of these points is performed, and we assume a linear interpolation
of the grid values within each element. This allows us to define and determine
the precise location of the interface. In particular, the location of the interface
at each time step is given as a collection of line segments, each of which corre-
sponds to the zero level set of the signed distance function across the elements.
We remark that the geometry of the interface depends on the triangulation
and that, as the interface shrinks, the relative resolution of the grid is a source
of error. On coarse grids, we observe that this leads to interfacial motions
which vanish faster than the exact solution. Since any mesh dependence also
leads to a deformation from the exact solution, these changes in shape move
the centre of the interface. For this reason we use the centre of the numerical
solution in the error computations.

We take the HMBO time step as τ = te/29 (te ≈ 0.4387) and the time step
for the finite difference approximation of the solution to the wave equation is
h = τ/(26). We then compute as follows:
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1. Construct the signed distance function d0(x, y) to the initial circle.
2. Set d1(x, y) = d0(x, y) (zero initial velocity), and repeat steps (3 − 5), for
n = 1, . . . , te/τ .

3. Compute the finite difference solution to the following problem:


utt = 2∆u in (0, τ ] ×Ω
∂u
∂ν = 0 on (0, τ ] × ∂Ω

u(t = 0, x) = 2dn − dn−1, ut(t = 0, x) = 0 in Ω.
(16)

4. Compute r̄n+1, the average distance of the data points from their center
of gravity. These points describe the zero level set of the solution to (16).

5. Set dn+1(x, y) =
√

(1/2 − x)2 + (1/2 − y)2 − r̄n+1.

The errors are shown in Table 2. Here, L2-error designates to the square
root of the value below,

τ

Ne∑
n=1

(r((n− 1)t) − r̄n)2 ,

where r(t) denotes the solution to (13), Ne is the largest positive integer sat-
isfying Neτ ≤ te, and the value of r̄n is zero for any iteration after which the
approximate solution’s radius becomes zero.

Grid Resolution Np L2-error convergence order

16 0.1038 -
32 0.0999 0.054
64 0.0929 0.105
128 0.0785 0.243
256 0.0545 0.527
512 0.0283 0.946
1024 0.0088 1.685

Table 2 HMBO errors with space discretization by FDM (using ideal distance functions).

As our final error analysis, we replace steps 4 and 5 of the previous al-
gorithm with the construction of the signed distance function according to
the exact configuration of the piecewise linear approximation of the interface.
We again perform the numerical computations on various grid resolutions and
investigate the corresponding convergence orders.

The results are show in Table 3, where we use the conventions of the
previous test, and parameter values are the same. We note that explicit com-
putation of the distance functions does not significantly change the order of
convergence.
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Grid Resolution Np L2-error convergence order

16 0.1033 -
32 0.0983 0.072
64 0.0900 0.126
128 0.0739 0.286
256 0.0325 1.185
512 0.0069 2.235
1024 0.0029 1.251

Table 3 HMBO errors with space discretization by FDM.

3.3 Numerical investigations

The purpose of this section is to computationally investigate properties of the
HMCF, including volume preserving and multiphase motions. Our computa-
tions make use of the method of minimizing movements, which we employ for
the purpose of inquiring into the volume preserving motions.

Since the solution to the wave equation depends only on local informa-
tion, one can formulate a multiphase algorithm which is akin to the original
multiphase MBO algorithm in [13]. In particular, thresholding a collection
of independently evolving wave equations can formally be shown to compute
multiphase interfacial motions with normal acceleration equal to curvature.
Nevertheless, since we would also like to investigate multiphase volume pre-
serving motions, we introduce a reformulation of this idea. In particular, by
choosing a small time step τ , we find a function u : Ω → RK−1 solving the
following vector valued wave equation:

utt = ∆u in (0, τ ] ×Ω,
∂u
∂ν = 0 on (0, τ ] × ∂Ω,

ut(0, x) = 0 in Ω,
u(t = 0, x) = 2zε

0 − zε
−τ in Ω,

(17)

where K denotes the number of phases, Ω is a smooth bounded domain in
Rd, and the initial condition is defined using the following signed-distance
interpolated vector field (see [5] and [14])

zε
t(x) =

K∑
i=1

(
piχ{dt

i(x)≥ε/2} +
1
ε

( ε
2

+ dt
i(x)

)
piχ{−ε/2<dt

i(x)<ε/2}

)
. (18)

Here, χE is the characteristic function of a set E, ε > 0 is the interpolation
parameter, the vector pi is the ith coordinate vector of a regular simplex in
RK−1 for i = 1, ...,K, and dt

i(x) denotes the signed distance function to the
boundary of phase i at time t:

dt
i(x) =

{
infy∈∂P t

i
||x− y|| if x ∈ P t

i ,

− infy∈∂P t
i
||x− y|| otherwise.

(19)
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At time zero, zε
−τ (x) is constructed by using (18) on an interface which is

created by using the initial velocity to evolve the initial interface backwards
in time. We remark that, when K = 2, equation (17) is scalar.

At time τ , in a process called thresholding , each phase region P τ
i is evolved

as follows:

P τ
i = {x ∈ Ω : u(τ, x) · pi ≥ u(τ, x) · pk, for all k ∈ {1, ...,K}}. (20)

The vector field zε
0 is then reconstructed using the boundaries of the sets (20)

and the initial condition for the wave equation is updated. The procedure is
then repeated.

The defining characteristic of the vector field (18) is that, upon choosing
a location x positioned within a distance ε/2 of an interface and away from a
junction, say corresponding to an interior point of phase i near phase j, the
vector field satisfies the property:

〈zε
t(x),pi〉 =

Kdt
i(x)

ε(K − 1)
+

K − 2
2(K − 1)

, (21)

where the brackets denote the standard Euclidean inner product. From this
it follows that the profile in the direction normal to the interface is given
by a signed distance function. This fact allows one to obtain the curvature
of the interface by computing the Laplacian of (21). Moreover, as shown in
[16], this setting introduces a multiple well potential which allows one to treat
multiphase volume constrained motions.

Our approximation method for computing multiphase interfacial dynamics
thus repeats the PDE step (17) and the thresholding step (20).

3.4 Minimizing movement approach

As in the parabolic case [16], the method of minimizing movements can be used
to inspect volume constrained interfacial motions. In particular, the minimiza-
tion formulation of our algorithm enables one to formally include constraints,
via penalization. Denoting the prescribed volume of the ith phase region by Ai,
wave-type minimizing movements can be used under the following functional
minimization (see [4]):

Fn(u) =
∫

Ω

(
|u − 2un−1 + un−2|2

2h2
+

|∇u|2

2

)
dx+

1
ρ

K∑
i=1

|Ai −meas(Pu
i )|2.

(22)
Here un denotes the minimizer of Fn (where u0 and u−1 are created from the
wave equation’s initial conditions), h > 0 is the time step, ρ > 0 is a small
penalty parameter and the areas corresponding to phase regions within u are
obtained from the sets:

Pu
i = {x ∈ Ω; u(x) · pi ≥ u(x) · pj ∀j}.



20 Elliott Ginder, Karel Svadlenka

Functional values are approximated by means of the finite element method
with Lagrange P1 elements, where Delaunay triangulations are used to gen-
erate the mesh.

3.4.1 Unconstrained interfacial motions

Using the method of minimizing movements to approximate the solution of
(17), Fig. 4 shows the result for the evolution of a two phase HMCF, with
zero initial velocity. Using a square lattice with node spacing ∆x = ∆y =
1/99, parameters were taken as follows: h = ∆x/80, τ = 30h. In contrast to
parabolic mean curvature flow, we observe oscillations in the interfacial motion
and the phase eventually splits apart into two disjoint regions. We note that
such topological changes are natural in the hyperbolic setting since one can
prescribe the initial configuration, as well as the initial velocity of the interface.
To illustrate a multiphase motion, Fig. 5 shows the evolution of a junction

x

y

x

y

x

y

Fig. 3 Initial conditions used in the computations.

obtained by our approximation method (also without the penalty term). We
again observe oscillation in each of the interfaces, as well as in the motion of the
junction. In this computation, a square lattice of nodes with ∆x = ∆y = 1/99
was used to partition the unit square. We took h = 10−4, τ = 40h, and the
interpolation parameter was ε = 0.07.

3.4.2 Volume-constrained interfacial motions

Fig. 6 shows the two phase volume-preserving motion corresponding to the
computations in Fig. 4. In contrast to the standard (parabolic) volume-preserving
mean curvature flow, whose evolution approaches a circle, the interfacial dy-
namics considered here oscillate. Using the same grid as in the previous com-
putations, the parameters were taken as follows: h = ∆x/80, τ = 30h, and
ρ = 10−4.

Using the multiphase formulation of our algorithm, Fig. 7 shows a four
phase oscillatory motion. Computations were performed within the unit square
using the same triangulation as was used to produce Fig. 5. The other parame-
ters were h = 10−4, τ = 40h, ε = 0.07 and we again use a penalty parameter of
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t

x

y

Fig. 4 Evolution by u′ = −κn (the initial condition is shown at the left of Fig. 3).

x

y

t

Fig. 5 Motion of a junction under HMCF (the initial condition is shown at the center of
Fig. 3).

ρ = 10−4. In both computations, volumes were preserved to within an absolute
error of order 10−3.
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t

x

y

Fig. 6 Volume preserving HMCF (initial condition is shown at the left of Fig. 3).

t
x

y

Fig. 7 Multiphase volume preserving HMCF (initial condition is shown at the right of
Fig.3).

4 Conclusion

We introduced and formally justified a method for approximating interfacial
motion governed by curvature dependent acceleration. Our method is a thresh-
olding algorithm of the MBO-type which, instead of utilizing a diffusion pro-
cess, thresholds an evolution by the wave equation. By means of a combination
of signed distance functions in the initial condition for the wave equation, we
obtained the desired interfacial dynamics without having to explicitly calculate
the interfacial velocity.

We believe that our report opens several interesting directions of research
regarding oscillatory interfacial motions. Especially, we would like to investi-
gate numerical methods capable of analyzing the development and propagation
of singularities particular to hyperbolic problems. Moreover, the precise formu-
lation, analysis, and numerical solution of the hyperbolic multiphase problem
including junctions is a new challenging topic which we want to address in the
near future.
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