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Comments on T -Dualities of Ramond-Ramond Potentials
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The type IIA/IIB effective actions compactified on T d are known to be invariant under
the T -duality group SO(d, d;Z), although the invariance of the R-R sector cannot be seen
so directly. Inspired by a work of Brace, Morariu and Zumino, we introduce new potentials,
which are mixtures of R-R potentials and the NS-NS 2-form, in order to make the invariant
structure of R-R sector more transparent. We give a simple proof that if these new potentials
transform as a Majorana-Weyl spinor of SO(d, d;Z), the effective actions are indeed invariant
under the T -duality group. The argument is made in such a way that it can apply to Kaluza-
Klein forms of arbitrary degree. We also demonstrate that these new fields simplify all the
expressions, including the Chern-Simons term.

§1. Introduction

Recent developments in string theory have been based on various kinds of duality
symmetries. Among these, the T -duality was found first. 1), 2) This symmetry changes
the size of the compactified space into its inverse in string unit. Although this
symmetry was first recognized in the spectra of perturbative strings, it came to be
believed that it should hold as an exact symmetry, not simply as a perturbative
one. 3) Later, at the level of the low energy effective action, the T -duality invariance
of the type IIA/IIB theory was identified with part of an already known, much
larger, and hidden set of symmetries of type II supergravities. 4) - 7) It was actually
conjectured that the duality group of the full string theory can be extended to the
U -duality group Ed+1(d+1)(Z) when compactified on a d-dimensional torus. 8)

Being a subgroup of the U -duality group, the T -duality group SO(d, d;Z) has
a special property: It is the maximum subgroup that consists of the elements that
transform NS-NS and R-R fields into themselves. On the other hand, we sometimes
encounter situations where NS-NS and R-R fields are better treated in a separate
manner. This is often the case when classical black-hole solutions of string theory
are considered. Another example may be given by study of classical configurations
based on the Born-Infeld action. Thus, it would be useful if one can know in a simple
manner how NS-NS and R-R fields transform under the T -duality group, without
resorting to embedding the whole structure once into the vast U -duality group.
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426 M. Fukuma, T. Oota and H. Tanaka

The T -duality invariance can actually be seen very easily for the NS-NS sector of
the supergravity action. 9) There, the kinetic term of the Kaluza-Klein (KK) scalars
(Gij , Bij) (i, j = 1, · · · , d) can be written as∗)

LNS =
1
8
e−2φ tr

(
∂µM

−1∂µM
)
, (1.1)

with the 2d× 2d matrix

M = (Mrs) =
(

G−1 −G−1B
BG−1 G−BG−1B

)
, (1.2)

and the (10−d)-dimensional dilaton φ. Thus the kinetic term is manifestly invariant
under T -duality transformations Λ ∈ O(d, d;Z) if the dilaton does not change and
M = (Mrs) (r, s = 1, · · · , 2d) transforms as

M =
(
Λ−1

)T ·M · Λ−1. (1.3)

The KK 1-forms (Gµi, Bµi) give a vector representation of O(d, d;Z) and also have
an invariant kinetic term. 9) These facts will be reviewed later in more detail.

On the other hand, the invariance of the sector including R-R potentials under
the T -duality group SO(d, d;Z)∗∗) is not so manifest as that for the NS-NS sector is.
There have actually been many works in which T -duality was studied as a subgroup
of the U -duality group Ed+1(d+1)(Z). 10) However, in order to write down the action
in a manifestly U -invariant form, one needs to make a non-trivial mapping from the
original fields to some other fields, which usually makes the T -duality symmetry for
the original fields indirect. As for the works based on the T -duality itself, results
have been obtained 11) only for Nahm transformations which generate a subgroup of
O(d, d;Z).

By decomposing representations of Ed+1(d+1)(Z) with respect to SO(d, d;Z),
it has also been shown that Majorana-Weyl representations of SO(d, d;Z) should
appear in the R-R sector (see, for example, Ref. 12)). However, as was discussed in
detail for type IIA with d = 3 in Refs. 13) and 14), the R-R potentials themselves do
not give Majorana-Weyl spinors directly. Instead, one needs to combine them with
the NS-NS 2-form to get new fields that have such simple transformation properties
under SO(d, d;Z). Although a prescription for arranging these fields is known for
each d, by starting from 11-dimensional supergravity, 15) it is rather complicated due
to the field redefinitions which depend strongly on the dimensionality. The main
aim of this article is to present the prescription of constructing the new fields and to
demonstrate the T -duality invariance of the R-R sector with the Chern-Simons term
in a simple form. We proceed by investigating solely the structure of the effective
action of type IIA/IIB strings with all fermionic fields set to zero. Inclusion of

∗) This Bij will be denoted B
(0)
ij in the following sections to indicate that this is a scalar for

the noncompact (10− d)-dimensional space-time with coordinates xµ (µ = 0, 1, · · · , 9−d). We also

take the string unit so that α′ = 1.
∗∗) Each of type IIA and type IIB is only invariant under the subgroup SO(d, d;Z) of O(d, d;Z),

as we see below.
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Comments on T -Dualities of Ramond-Ramond Potentials 427

fermions with analysis of supersymmetry will be discussed elsewhere. This work was
inspired by analysis made by Brace, Morariu and Zumino. 13), 14)

The main result can be summarized as follows. First, we introduce new poten-
tials Dp+1 = (1/(p+1)!)Dµ̂1···µ̂p+1dx

µ̂1 ∧· · ·∧dxµ̂p+1 (µ̂1, · · · , µ̂p+1=0, 1, · · · , 9), which
are mixtures of R-R potentials and the NS-NS 2-form as

D0 ≡ C0, D1 ≡ C1,

D2 ≡ C2 + B̂2 ∧ C0, D3 ≡ C3 + B̂2 ∧ C1,

D4 ≡ C4 + 1
2B̂2 ∧ C2 + 1

2B̂2 ∧ B̂2 ∧ C0, (1.4)

where Cp+1 is the original (p + 1)-form R-R potential, and B̂2 is the NS-NS 2-
form in 10 dimensions. We further introduce potentials of higher degree, Dp+1

(p+1 = 5, · · · , 8), as their electromagnetic duals. More precisely, we introduce the
sum of field strengths

F ≡ e−B̂2 ∧
8∑

p+1=0

dDp+1 =
9∑

p+2=1

Fp+2, (1.5)

and require the following relations in their equations of motion:

∗F1 = F9, ∗F2 = −F8,
∗F3 = −F7, ∗F4 = F6,
∗F5 = F5, ∗F6 = −F4,
∗F7 = −F3, ∗F8 = F2,
∗F9 = F1. (1.6)

Note that ∗2 Fn = (−1)n+1Fn in 10-dimensional Minkowski space. The existence of
the fields D5, · · · , D8 is allowed by the equations of motion for D0, · · · , D4.

Our first claim is that, as far as the equations of motion are concerned, the R-R
action with the Chern-Simons term can be rewritten into the simple form

S
(IIA)
R+CS ≡ 1

8κ2
10

∫
d10x

√−ĝ
∑

p+2=2,4,6,8

Fp+2 ∧ ∗Fp+2,

S
(IIB)
R+CS ≡ 1

8κ2
10

∫
d10x

√−ĝ
∑

p+2=1,3,5,7,9

Fp+2 ∧ ∗Fp+2, (1.7)

with all the D0, · · · , D8 being regarded as independent variables and with (1.6) being
the constraints imposed after the equations of motion are derived.

Second, for d-dimensional toroidal compactification, we assemble the set of KK
scalars into the form (Dα) with 2d−1 entries:

d = 1 : (Dα) = (D1)
IIA : d = 2 : (Dα) = (D1, D2)

d = 3 : (Dα) = (D1, D2, D3, D123)
d = 4 : (Dα) = (D1, D2, D3, D4, D123, D124, D134, D234)
...

... (1.8)
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428 M. Fukuma, T. Oota and H. Tanaka

d = 1 : (Dα) = (D)
IIB : d = 2 : (Dα) = (D,D12)

d = 3 : (Dα) = (D,D12, D13, D23)
d = 4 : (Dα) = (D,D12, D13, D14, D23, D24, D34, D1234)
...

... (1.9)

Here Dα=Di1··· ip+1 is the component of Dp+1 in the compact directions yi1 , · · · , yip+1

(1≤ i1 < · · ·<ip+1 ≤ d). Similarly, we also assemble the set of KK 1-forms Dµ i1···ip
(µ = 0, 1, · · · , 9−d):

d = 1 : (Dµ α) = (Dµ)
IIA : d = 2 : (Dµ α) = (Dµ, Dµ 12)

d = 3 : (Dµ α) = (Dµ, Dµ 12, Dµ 13, Dµ 23)
d = 4 : (Dµ α) = (Dµ, Dµ 12, Dµ 13, Dµ 14, Dµ 23, Dµ 24, Dµ 34, Dµ 1234)
...

... (1.10)

d = 1 : (Dµα) = (Dµ 1)
IIB : d = 2 : (Dµα) = (Dµ 1, Dµ 2)

d = 3 : (Dµα) = (Dµ 1, Dµ 2, Dµ 3, Dµ 123)
d = 4 : (Dµα) = (Dµ 1, Dµ 2, Dµ 3, Dµ 4, Dµ 123, Dµ 124, Dµ 134, Dµ 234)
...

... (1.11)

This assembling may continue to KK forms of higher degree when d is sufficiently
small.

Our second claim is that the dimensionally-reduced action of the R-R sector
with the Chern-Simons term can be rewritten for type IIA and IIB, respectively,
as∗)

LR+CS =
1
4
∂µDα S

∓
αβ(M) ∂

µDβ,+
1
16

∂[µDν] αS
±
αβ(M) ∂

[µDν]
β + · · · , (1.12)

where S±
αβ(M) (α, β = 1, · · · , 2d−1) is a representation matrix ofM in the Majorana-

Weyl representation of SO(d, d;R) with chirality ±. The invariance of the ac-
tion thus now becomes apparent by assuming that both Dα and Dµ α transform
as Majorana-Weyl spinors:

Dα = S∓
αβ(Λ)Dβ,

Dµ α = S±
αβ(Λ)Dµ β. (1.13)

We will prove the identity (1.12) for arbitrary d, including KK forms of arbitrary de-
gree. We simplify the argument with the use of the fermionic oscillator construction
of the Majorana representation given in Refs. 13) and 14).

This paper is organized as follows. In §2, in order to fix our convention, we
first give a brief review of the invariance of the NS-NS sector and then introduce

∗) The precise form is given by (4.25)–(4.27).
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Comments on T -Dualities of Ramond-Ramond Potentials 429

new potentials Dp+1. In §3, we explicitly construct the spinor representations of
O(d, d;Z), closely following Refs. 13) and 14), and then we rewrite the R-R action
plus the Chern-Simons term into a manifestly T -duality invariant form in §4. Section
5 is devoted to discussion. The existence of the fields D5, · · · , D8 is proved in the
Appendix, with a demonstration that our new fields Dp+1 greatly simplify all the
expressions including the Chern-Simons term.

§2. Type IIA/IIB effective actions

The action of 10-dimensional type IIA/IIB supergravity in the string metric can
be split into three parts: 16)

S = SNS + SR + SCS. (2.1)

The first term is the action for the NS-NS sector,

SNS =
1
2κ2

10

∫
d10x

√−ĝ e−2φ̂
(
R̂ + 4 |dφ̂|2

ĝ
− 1
2
|Ĥ3|2ĝ

)
, (2.2)

where the xµ̂ (µ̂ = 0, 1, · · · , 9) are 10-dimensional coordinates, and ĝµ̂ν̂ , B̂µ̂ν̂ and
φ̂ denote the 10-dimensional metric, NS-NS 2-form and dilaton, respectively. The
NS-NS field strength is written as Ĥ3 = dB̂2 with B̂2 = (1/2)B̂µ̂ν̂dx

µ̂ ∧ dxν̂ . We
adopt the rule that the subscript of a form indicates its degree when it has a definite
meaning in 10-dimensions. We also often consider a sum of forms of various degrees,
like Ω =

∑
K ΩK =

∑
K(1/K!)Ωµ̂1···µ̂K

dxµ̂1 ∧ · · · ∧ dxµ̂K , and for this we introduce
the invariant norm as

|Ω |2ĝ ≡
∑
K

1
K!

ĝµ̂1ν̂1 · · · ĝµ̂K ν̂K Ωµ̂1···µ̂K
Ων̂1···ν̂K

. (2.3)

The action for the R-R sector, SR, can be written for IIA and IIB, respectively, as

S
(IIA)
R = − 1

4κ2
10

∫
d10x

√−ĝ
(
|F2|2ĝ + |F4|2ĝ

)
,

S
(IIB)
R = − 1

4κ2
10

∫
d10x

√−ĝ
(
|F1|2ĝ + |F3|2ĝ +

1
2
|F5|2ĝ

)
, (2.4)

where the R-R field strengths Fp+2 are defined from the (p+1)-form R-R potentials
Cp+1 = (1/(p+1)!)Cµ̂1···µ̂p+1dx

µ̂1∧· · ·∧dxµ̂p+1 as

F1 = dC0, F2 = dC1,

F3 = dC2 + Ĥ3 ∧ C0, F4 = dC3 + Ĥ3 ∧ C1,

F5 = dC4 + 1
2Ĥ3 ∧ C2 − 1

2 B̂2 ∧ dC2. (2.5)

The Chern-Simons term SCS is given by

S
(IIA)
CS =

1
4κ2

10

∫
B̂2 ∧ dC3 ∧ dC3,

S
(IIB)
CS =

1
4κ2

10

∫
B̂2 ∧ dC4 ∧ dC2. (2.6)
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430 M. Fukuma, T. Oota and H. Tanaka

We use the convention that an NS-NS field wears a hat (̂) in 10-dimensions,
while R-R fields do not. This is because NS-NS fields generally need to be redefined
after toroidal compactification in order to behave nicely as fields existing in the
noncompact (10 − d)-dimensional space-time [see, for example, (2.7), (2.16), (2.17)
and (2.20)].

After toroidal compactification on T d, there will appear various KK forms both
from the NS-NS and the R-R sectors. We first review the NS-NS case, closely
following Ref. 9).

NS-NS sector:

We parametrize the 10-dimensional metric as

dŝ2 ≡ ĝµ̂ν̂dx
µ̂dxν̂

= gµνdx
µdxν +Gij(dyi +Ai

µdx
µ)(dyj +Aj

νdx
ν). (2.7)

Here, the 10-dimensional coordinates are decomposed as (xµ̂) = (xµ, yi) (µ = 0, 1, · · · ,
9 − d ; i = 1, 2, · · · , d), and we assume that all the fields depend only on the non-
compact coordinates xµ. With this parametrization, the kinetic term for potentials
will take a complicated form, since the KK 1-form

A(1) i ≡ Ai
µdx

µ (2.8)

will appear when contracting the indices in the compact directions. To simplify this,
we follow the prescription of Ref. 9), which we found can be restated as follows.
First, given a sum of forms Ω =

∑
K ΩK , we decompose it as

Ω =
∑
q

∑
n

1
n!

Ω
(q)
i1···in dy

i1 ∧ · · · ∧ dyin , (2.9)

where the superscript (q) indicates that Ω(q)
i1···in is a q-form for noncompact indices:

Ω
(q)
i1···in =

1
q!
Ωµ1···µq i1···indx

µ1 ∧ · · · ∧ dxµq . (2.10)

Second, we introduce a new form Ω′ by replacing dyi in Ω with dyi−A(1) i and
reorganize it as in (2.9):

Ω′ ≡ Ω |dyi→ dyi−A(1) i

=
∑
q

∑
n

1
n!

Ω
′ (q)
i1···in dy

i1 ∧ · · · ∧ dyin . (2.11)

Then the kinetic term can be expressed in such a way that all the indices are con-
tracted only with gµν and Gij :

|Ω |2ĝ =
∣∣Ω′ ∣∣2

g,G ≡
∑
q

∑
n

∣∣∣Ω′ (q)
n

∣∣∣2
g,G

, (2.12)
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where we have defined∣∣∣Ω′ (q)
n

∣∣∣2
g,G

≡ 1
n!

Gi1j1 · · ·Ginjn
1
q!
gµ1ν1 · · · gµqνq Ω′

µ1···µq i1···inΩ
′
ν1···νq j1···jn

.

(2.13)

For example, the NS-NS field strength Ĥ3 is rewritten as

Ĥ
′ (1)
ij = dB

(0)
ij ,

Ĥ
′ (2)
i = dB

(1)
i −B

(0)
ij dA(1) j ,

Ĥ ′ (3) = dB(2) − 1
2

(
B

(1)
i dA(1) i + dB

(1)
i A(1) i

)
, (2.14)

where we have introduced

B
(0)
ij ≡ B̂

(0)
ij ,

B
(1)
i ≡ B̂

(1)
i + B̂

(0)
ij A(1) j ,

B(2) ≡ B̂(2) − 1
2
B̂

(1)
i A(1) i. (2.15)

Conversely, we have

B̂
(0)
ij ≡ B

(0)
ij ,

B̂
(1)
i ≡ B

(1)
i −B

(0)
ij A(1) j ,

B̂(2) ≡ B(2) +
1
2
B

(1)
i A(1) i +

1
2
B

(0)
ij A(1) iA(1) j , (2.16)

which give the original B̂2 as

B̂2 =
1
2
B̂

(0)
ij dyi ∧ dyj + B̂

(1)
i dyi + B̂(2)

=
1
2
B

(0)
ij

(
dyi +A(1) i

) (
dyj +A(1) j

)
+B

(1)
i

(
dyi +A(1) i

)
+B(2) − 1

2
B

(1)
i A(1) i.

(2.17)

Then the NS-NS part of the action can be rewritten 9) as

SNS =
1

2κ2
10−d

∫
d10−dx

√−gLNS, (2.18)

where
1

2κ2
10−d

=
1
2κ2

10

∫
ddy. (2.19)

By introducing the (10− d)-dimensional dilaton φ as

e−2φ ≡ e−2φ̂
√
G, (2.20)
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432 M. Fukuma, T. Oota and H. Tanaka

the factor LNS = L1 + L2 + L3 + L4 is given by

L1 = e−2φ [R+ 4 gµν∂µφ∂νφ] ,

L2 =
1
8
e−2φ gµν tr

(
∂µM

−1∂νM
)
,

L3 = − 1
4
e−2φ gµ1ν1gµ2ν2F r

µ1µ2
Mrs F

s
ν1ν2

,

L4 = − 1
12

e−2φ gµ1ν1gµ2ν2gµ3ν3Ĥ ′
µ1µ2µ3

Ĥ ′
ν1ν2ν3

, (2.21)

where

M = (Mrs) ≡
(

G−1 −G−1B(0)

B(0)G−1 G−B(0)G−1B(0)

)
,

(
B(0) ≡

(
B

(0)
ij

))
1
2
F r

µν dx
µ ∧ dxν ≡

(
dB

(1)
i

dA(1) i

)
. (r, s = 1, · · · , 2d; i, j = 1, · · · , d) (2.22)

This form of the action makes manifest its invariance under the T -duality group
O(d, d;Z), provided that the fields transform as

M =
(
Λ−1

)T ·M · Λ−1 ,

(
B

(1)
i

A
(1) i

)
= Λ

(
B

(1)
i

A(1) i

)
, B

(2) = B(2), (2.23)

for Λ =
(

a b

c d

)
∈ O(d, d,Z) satisfying ΛT J Λ = J with J =

(
0 1d

1d 0

)
. The first

transformation rule is equivalent to E = (aE+ b)(cE+ d)−1 for Eij = Gij +B
(0)
ij .

3)

R-R sector with the Chern-Simons term:

The R-R potentials Cp+1 = (1/(p+1)!)Cµ̂1···µ̂p+1 dx
µ̂1 ∧· · ·∧dxµ̂p+1 also produce KK

forms of various degrees after toroidal compactification. To simplify all the expres-
sions, we first combine the R-R potentials with the NS-NS 2-form in 10 dimensions
as follows:∗)

D0 ≡ C0, D1 ≡ C1,

D2 ≡ C2 + B̂2 ∧ C0, D3 ≡ C3 + B̂2 ∧ C1,

D4 ≡ C4 + 1
2B̂2 ∧ C2 + 1

2B̂2 ∧ B̂2 ∧ C0. (2.24)

The R-R field strengths are then expressed with these Dp+1 as

F1 = dD0, F2 = dD1,

F3 = dD2 − B̂2 ∧ dD0, F4 = dD3 − B̂2 ∧ dD1,

F5 = dD4 − B̂2 ∧ dD2 + 1
2B̂2 ∧ B̂2 ∧ dD0. (2.25)

These can be written in the simple form

∗) For the type IIA, the potentials D1 and D3 can be found in Ref. 14).

Downloaded from https://academic.oup.com/ptp/article-abstract/103/2/425/1839069
by Kyoto Daigaku Bungakubu Toshokan user
on 13 March 2018



Comments on T -Dualities of Ramond-Ramond Potentials 433

F = e−B̂2 ∧ dD (2.26)

if we introduce

D ≡
4∑

p+1=0

Dp+1, F ≡
5∑

p+2=1

Fp+2. (2.27)

The equations of motion for D0, · · · , D4 turn out to allow introduction of extra
R-R potentials of higher degree, Dp+1 (p + 1 = 5, · · · , 8), that preserve the relation
(2.26) with

D ≡
8∑

p+1=0

Dp+1, F ≡
9∑

p+2=1

Fp+2, (2.28)

if we introduce the following identifications for the field strengths of higher degree:

∗F1 = F9, ∗F2 = −F8,
∗F3 = −F7, ∗F4 = F6,
∗F5 = F5, ∗F6 = −F4,
∗F7 = −F3, ∗F8 = F2,
∗F9 = F1 (2.29)

(see the Appendix). Interestingly, as far as the equations of motion are concerned,
we can in turn regard all the R-R potentials, D0, · · · , D8, as independent variables
and choose

S
(IIA)
R+CS ≡ − 1

8κ2
10

∫
d10x

√−ĝ
∑

p+2=2,4,6,8

|Fp+2|2ĝ ,

S
(IIB)
R+CS ≡ − 1

8κ2
10

∫
d10x

√−ĝ
∑

p+2=1,3,5,7,9

|Fp+2|2ĝ , (2.30)

as their action functional, with the understanding that the constraints (2.29) are
imposed after (and only after) the equations of motion are derived. In fact, one can
prove that this system gives the same equations of motion as those obtained from
the sum of R-R and Chern-Simons terms SR + SCS, (2.4)–(2.6). We give a proof of
this statement in the Appendix.

For d-dimensional toroidal compactification, we introduce the primed field for
F as

F ′ ≡ F |dyi→ dyi−A(1) i . (2.31)

Then the action for the R-R and Chern-Simons sector can be expressed as

SR+CS =
1

2κ2
10−d

∫
d10−dx

√−gLR+CS, (2.32)

with

LR+CS = −1
4

√
G
∣∣F ′ ∣∣2

g,G . (2.33)
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To show that LR+CS is invariant under O(d, d;Z) when the set of KK fields
coming from D transforms as a Majorana spinor of O(d, d;Z), in the next section
we explicitly construct the spinor representation of O(d, d;R) by using fermionic
operators. We mostly follow the convention of Refs. 13) and 14).

Before concluding this section, we would like to make a comment on the poten-
tials D1 and D3 in the type IIA case. It is well known that type IIA supergravity
can be obtained from 11-dimensional supergravity 5) by dimensional reduction. The
coordinate transformation along the 11-th direction x10 → x10 + ξ becomes a U(1)
symmetry in 10 dimensions:

δB̂2 = 0, δC1 = dξ, δC3 = −B̂2 ∧ dξ. (2.34)

Thus, these D fields diagonalize the U(1) symmetry: D1 → D1 + dξ, D3 → D3.
These are 10-dimensional analogues of the A′ fields of Ref. 6).

§3. Spinor representation of O(d,d;R)

We first recall that the group O(d, d;R) consists of 2d×2d matrices Λ satisfying

ΛT J Λ = J, J =
(
0 1d

1d 0

)
. (3.1)

The group O(d, d;Z) is defined as a subgroup that consists of matrices with integer-
valued elements. It is known that both are generated by the following three types
of matrices: 17)

ΛB =
(
1 −B
0 1

)
, BT = −B, (3.2)

ΛR =
(
R−1 0
0 RT

)
, R ∈ GL(d;R) or GL(d;Z), (3.3)

Λi = −
(
1− ei −ei

−ei 1− ei

)
, (ei)jk = δijδik. (i = 1, · · · , d) (3.4)

Note that detΛB = detΛR = +1 and detΛi = −1. Thus one can construct a
subgroup SO(d, d;R) or SO(d, d;Z) that is generated by ΛB , ΛR and ΛiΛj .

The Dirac matrices Γr = (Γr αβ) with 2d × 2d components are introduced as

{Γr, Γs} = 2Jrs, (r, s = 1, · · · , 2d) (3.5)

and the spinor representation S(Λ) = (Sαβ(Λ)) is characterized by the property

S(Λ) · Γs · S(Λ)−1 =
∑
r

Γr Λ
r
s. (3.6)

To construct this representation, we introduce fermionic operators ψi† and ψi with
the anti-commutation relations

{ψi,ψ
j†} = δi

j 1, {ψi,ψj} = 0 = {ψi†,ψj†}. (i, j = 1, · · · , d) (3.7)
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We define hermitian conjugation as

(ψi)† = ψi† (3.8)

and introduce the vacuum | 0 〉 such that ψi | 0 〉 = 0 (i = 1, · · · , d) and 〈 0 | 0 〉 = 1.
Then the 2d-dimensional fermion Fock space is spanned by the vectors

|α 〉 = ψi1† · · ·ψin† | 0 〉 , (n = 0, · · · , d) (3.9)

where α is a multi-index α = (i1, · · · , in) (i1<· · ·<in), and the Dirac matrices can be
introduced with respect to this as

ψi† |β 〉 =
∑
α

|α 〉 1√
2
(Γi)αβ ,

ψi |β 〉 =
∑
α

|α 〉 1√
2
(Γd+i)αβ . (3.10)

Thus, if we can always introduce an operator Λ to any element

Λ =
(
(ai

j) (bij)
(cij) (di

j)

)
∈ O(d, d;R) (3.11)

such that

(Λψj†Λ−1, ΛψjΛ
−1 ) = (ψi†ai

j +ψic
ij, ψi†bij +ψid

i
j )

= (ψi†, ψi )
(
a b
c d

)
, (3.12)

then, introducing the matrix Sαβ(Λ) with Λ | β 〉 =∑α |α 〉Sαβ(Λ), we can establish
the relation (3.6). For this, it is enough to construct the operators that correspond
to the elements given in (3.2)–(3.4), and it is easy to show that the following are
solutions: 13), 14)

ΛB = e−B ≡ exp
(
−1
2
Bijψ

i†ψj†
)
,

ΛR = (detR)1/2 exp
(
−ψi†Ai

jψj

)
,

(
R =

(
Ri

j
)
= exp

(
Ai

j
))

Λi = ψi +ψi†. (i = 1, · · · , d) (3.13)

Note that all of these operators give real-valued matrix elements, so that the resulting
representation is automatically Majorana. Note also that theΛi do not give a faithful
representation, so that there are always ambiguities in their orderings.

In order to construct Weyl representations, we define the matrix

Γ2d+1 ≡ 1
2d

d∏
i=1

(Γi + Γd+i)(Γi − Γd+i), (3.14)

which satisfies {Γ2d+1, Γr} = 0 (r = 1, · · · , 2d). By looking at the correspondence
(3.10), one can easily see that Γ2d+1 corresponds to (−1)NF with NF =

∑
iψ

i†ψi.
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Thus, the projection to the subspace with (−1)NF = 1 leads to a Majorana-Weyl
representation (2 d−1)s and that to the subspace with (−1)NF = −1 leads to (2 d−1)c.
Note that Λi is a linear function of fermions and thus changes the chirality. There-
fore, in order for an operator to preserve the chirality it must correspond to an
element in SO(d, d;R).

We further introduce an operator J that corresponds to J = (Jrs) as

J = id(d−1)/2 Λ1 · · ·Λd, (3.15)

where the phase factor is chosen such that J2 = 1. One can actually prove that

J ψi† J = ψi, J ψi J = ψi†. (3.16)

It is easy to check that for all the Λ in (3.13) [and thus for all elements in O(d, d;R)],
their transposes ΛT = J · Λ−1 · J are mapped to Λ†:

Λ† = JΛ−1J . (3.17)

In particular, we have

Λ†
B = e−B

†
= exp

(
1
2
Bij ψiψj

)
, ΛT

B =
(
1 0
B 1

)
. (3.18)

Note also that the normalization of the operators (3.13) is correctly chosen such that
they satisfy the condition (3.17).

We finally make the comment that this operator J is essentially the charge
conjugation operator. In fact, the operators defined by

C± ≡ Λ±
1 · · ·Λ±

d (3.19)

with

Λ±
i ≡ ψi† ±ψi (3.20)

can be easily seen to satisfy

C± (C±)† = 1, (
C±) 2 = (−1)d(d∓1)/2 1,

C±ψi† (C±)−1 = ∓ (−1)dψi, C±ψi
(
C±)−1 = ∓ (−1)dψi†. (3.21)

This implies that the matrices C± = (C±
αβ) defined by C

± |β 〉 = |α 〉 C±
αβ satisfy

the condition for the charge conjugation of SO(d, d): 18)

C± (C±)† = 1, (
C±)T = (−1)d(d∓1)/2 C±,

C± Γr
(
C±)−1 = ∓ (−1)d (Γr)

T . (3.22)
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§4. R-R potentials and T -duality

In this section, we show that the R-R action plus the Chern-Simons term after
toroidal compactification on T d, (2.32)–(2.33), is actually invariant under SO(d, d;Z)
if a set of our R-R fields transform as a Majorana-Weyl spinor.

We first introduce a one-to-one correspondence between the set of forms and the
space of creation operators by replacing the differential in the compact direction dyi

with the fermion creation operator ψi †. In this way, from∗)

Ω =
∑
n

1
n!

Ωi1···indy
i1 ∧ · · · ∧ dyin =

∑
q

∑
n

1
n!

Ω
(q)
i1···indy

i1 ∧ · · · ∧ dyin ,

(4.1)

we obtain

Ω ≡
∑
n

1
n!

Ωi1···inψ
i1† · · ·ψin† =

∑
q

∑
n

1
n!

Ω
(q)
i1···inψ

i1† · · ·ψin†. (4.2)

This actually gives an algebra-isomorphism. We also extend our rule such thatΩ(q)
i1···in

has NF = q, and thus it will anticommute with all the fermionic operators when q
is odd. We define a state corresponding to Ω as

|Ω 〉 ≡ Ω | 0 〉 . (4.3)

Note that the following holds for any two forms Ω and Ξ:

Ω |Ξ 〉 = |Ω ∧ Ξ 〉 . (4.4)

Now that we have the above isomorphism, we can introduce the operator corre-
sponding to F in (2.26):

F = e−B̂2 dD. (4.5)

Since the Fp+2 are even (odd) forms for type IIA (IIB), we have (−1)NF |F 〉 = + |F 〉
for type IIA and = − |F 〉 for type IIB. This implies that each state has a definite
chirality and thus forms a Majorana-Weyl representation of SO(d, d;Z). Noting that
the replacement dyi → dyi−A(1) i as in (2.31) is equivalent to the operation

ψi† → eψiA
(1) i
ψi†e−ψiA

(1) i
= ψi†−A(1) i, (4.6)

we can simply express the operator corresponding to F ′ as

F ′ = eψiA
(1) i
F e−ψiA

(1) i
, (4.7)

and thus the corresponding state can be written as∣∣F ′ 〉 = F ′ | 0 〉 = eψiA
(1) i
F | 0 〉

= eψiA
(1) i

e−B̂2 | dD 〉 = eψiA
(1) i

e−B̂2e−ψiA
(1) i · eψiA

(1) i | dD 〉 . (4.8)
∗) Recall that the superscript (q) indicates that Ω

(q)
i1···in

is a q-form for noncompact indices [see

(2.10)].
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Here one can use (2.17) to show that

eψiA
(1) i
B̂2e

−ψiA
(1) i

=
1
2
B

(0)
ij ψ

i†ψj† +B
(1)
i ψi† +B(2) − 1

2
B

(1)
i A(1) i. (4.9)

Therefore we have∣∣F ′ 〉 = e−B
(0)
e−B(2)

e(1/2)B
(1)
i A(1) i

eψ
i†B(1)

i eψiA
(1) i | dD 〉

= e−B
(0)
e−B(2)

eV | dD 〉 , (4.10)

where

B(0) ≡ 1
2
B

(0)
ij ψ

i†ψj†,

V ≡ ψi†B(1)
i +ψiA

(1) i. (4.11)

Since (B(1)
i , A(1) i)T transforms as a vector of O(d, d;Z), one can see that V trans-

forms as

V = Λ V Λ−1 (4.12)

for Λ ∈ SO(d, d;Z). In fact,

V = (ψ†,ψ)
(

B
(1)

A
(1)

)
= (ψ†,ψ) Λ

(
B(1)

A(1)

)

= Λ (ψ†,ψ) Λ−1

(
B(1)

A(1)

)
= Λ V Λ−1. (4.13)

On the other hand, if we make a block-wise Gauss decomposition of M as

M =
(
1d 0
B(0) 1d

)
·
(
G−1 0
0 G

)
·
(
1d −B(0)

0 1d

)
= ΛT

B(0) · ΛG · ΛB(0) , (4.14)

then the corresponding operatorM can be written as

M = e−B
(0)†

ΛG e−B
(0)
, (4.15)

with

ΛG ≡
√
Ge−ψ

i†hi
jψj .

(
(Gij) = e(hi

j)
)

(4.16)

This operator ΛG has a special property. In fact, suppose that for a given state

|Ω 〉 =
∑
q

∑
n

1
n!

Ω
(q)
i1···in ψ

i1† · · ·ψin† | 0 〉 , (4.17)

we introduce its hermitian conjugate as

〈Ω | =
∑
q

∑
n

1
n!

〈 0 |ψin · · ·ψi1 ∗10−d Ω
(q)
i1···in , (4.18)

Downloaded from https://academic.oup.com/ptp/article-abstract/103/2/425/1839069
by Kyoto Daigaku Bungakubu Toshokan user
on 13 March 2018



Comments on T -Dualities of Ramond-Ramond Potentials 439

where ∗10−d is the Hodge-star in the noncompact (10 − d) dimensions. Then the
following identity holds:

d10−dx
√−g

√
G |Ω |2g,G = −〈Ω |ΛG |Ω 〉 . (4.19)

In fact, using

ΛG |Ω 〉 =
∑
q

∑
n

√
G

n!

(
e−h

) j1

i1
· · ·
(
e−h

) jn

in
Ω

(q)
j1···jn

ψi1† · · ·ψin† | 0 〉

=
∑
q

∑
n

√
G

n!
Gi1j1 · · ·GinjnΩ

(q)
j1···jn

ψi1† · · ·ψin† | 0 〉 , (4.20)

we can show

〈Ω |ΛG |Ω 〉 =
∑
q

∑
n

√
G

n!

(
∗10−dΩ

(q)
i1···in ∧Ω

(q)
j1···jn

)
Gi1j1 · · ·Ginjn

= − d10−dx
√−g

√
G |Ω |2g,G . (4.21)

Setting Ω = F ′ in (4.19), we have

d10−dx
√−g

√
G
∣∣F ′ ∣∣2

g,G = − 〈F ′ ∣∣ΛG

∣∣F ′ 〉 . (4.22)

Since this F ′ has the form given by (4.10), the R-R action with the Chern-Simons
term can be expressed as

SR+CS = − 1
8κ2

10−d

∫
d10−dx

√−g
√
G
∣∣F ′ ∣∣2

g,G

=
1

8κ2
10−d

∫
10−d

〈
F ′ ∣∣ΛG

∣∣F ′ 〉
=

1
8κ2

10−d

∫
10−d

〈K |M |K 〉 , (4.23)

with

|K 〉 = exp
(
−B(2)

)
exp (V ) | dD 〉 . (4.24)

This can also be written as

SR+CS =
1

8κ2
10−d

∫
10−d

Sαβ(M)Kα ∧ ∗10−dKβ , (4.25)

where Kα is a sum of forms in noncompact directions:

Kα = e−B(2) ∧
(
e(1/

√
2) ΓrV r

)
αβ

∧ dDβ, (4.26)

with

B(2) =
1
2
Bµν dx

µ ∧ dxν , (see (2·15))

V r =

(
Bµ i dx

µ

Ai
µ dx

µ

)
,

Dα =
∑
q

1
q!
dxµ1 ∧ · · · ∧ dxµq Dµ1···µq α . (4.27)
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SinceM , V and B(2) transform as

M =
(
Λ−1

)†
M Λ−1, V = Λ V Λ−1, B

(2) = B(2), (4.28)

we see that the action is invariant under the whole T -duality group SO(d, d;Z) if
D = (Dα) transforms as a Majorana-Weyl spinor:∣∣∣D 〉 = Λ |D 〉 . (4.29)

Furthermore, if we expand D with respect to noncompact indices as

D =
∑
q

1
q!
dxµ1 ∧· · ·∧ dxµq Dµ1···µq , (4.30)

with

Dµ1···µq ≡
∑
n

1
n!

Dµ1···µq i1···in dy
i1 ∧· · · ∧ dyin , (4.31)

then each coefficient Dµ1···µq will also transform as a Majorana spinor:∗)∣∣∣Dµ1···µq

〉
= Λ

∣∣Dµ1···µq

〉
, (4.32)

or equivalently,

Dµ1···µq α =
∑
β

Sαβ(Λ)Dµ1···µq β , (4.33)

with multi-indices α = (i1, · · · , in) (i1 < · · ·< in; n = 0, · · · , d). Since Dµ1···µq i1···in
vanishes if q + n = even (odd) for type IIA (IIB), it has a definite chirality. This
implies that Dµ1···µq = (Dµ1···µq α) transforms as a Majorana-Weyl spinor for each
set of noncompact indices (µ1, · · · , µq).

§5. Discussion

In this article, we have given a simple proof that if the R-R potentials Cp+1 are
combined with the NS-NS 2-form as in (2.24), then their KK forms transform as
Majorana-Weyl spinors under the T -duality group SO(d, d;Z) in order to make the
action invariant.

There should be various applications once transformation rules are obtained
explicitly for the whole T -duality group. One application will be to establish relations
among various classical solutions of type IIA/IIB supergravities by using the full T -
duality group together with the S-duality of type IIB. Work in this direction is in
progress and will be reported elsewhere. 19)

We finally make a comment on the dilaton dependence in R-R potentials, as-
suming the case B̂2 = 0, in which there is no distinction between the original R-R

∗) To be more precise, the following discussion holds only when q + d ≤ 10.
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potential Cp+1 and our potentialDp+1. Usually we expect that another field strength
defined by F̃p+2 = eφ̂ dCp+1 corresponds to an R-R vertex operator of NSR strings
in a flat background. To see this in our formulation, we first recall that we have
introduced the (10−d)-dimensional dilaton φ as a singlet of O(d, d;Z). This implies
that the 10-dimensional dilaton φ̂ should transform as eφ̂ ∝ G1/4. On the other
hand, we could have further decomposed the operator ΛG as ΛG = Λ†

EΛE , where
E = (Eia) (i, a = 1, · · · , d) is a vielbein for G, G = E ET . Then one might say that
the state ΛE | dC 〉 corresponds to an R-R vertex in a flat background. Thus, noting
that the operator ΛE will carry the factor G1/4, we expect that eφ̂ dC will transform
as in the flat case.
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Appendix A
“Self-Dual” Formulation of Type II Effective Actions

In this appendix, we prove that the original R-R action plus the Chern-Simon
term [(2.4)–(2.6)]

S
(IIA)
R + S

(IIA)
CS = − 1

4κ2
10

∫
d10x

√−ĝ
(
|F2|2ĝ + |F4|2ĝ

)
+

1
4κ2

10

∫
B̂2 ∧ dC3 ∧ dC3,

S
(IIB)
R + S

(IIB)
CS = − 1

4κ2
10

∫
d10x

√−ĝ
(
|F1|2ĝ + |F3|2ĝ +

1
2
|F5|2ĝ

)
+

1
4κ2

10

∫
B̂2 ∧ dC4 ∧ dC2, (A.1)

with C1, C3 (or D1, D3) and C0, C2, C4 (or D0, D2, D4) being independent variables,
respectively, is equivalent to the new action, (2.30),

S
(IIA)
R+CS ≡ 1

8κ2
10

∫ ∑
p+2=2,4,6,8

Fp+2 ∧ ∗Fp+2 = − 1
8κ2

10

∫ ∑
p+2=2,4,6,8

|Fp+2 |2ĝ ,

S
(IIB)
R+CS ≡ 1

8κ2
10

∫ ∑
p+2=1,3,5,7,9

Fp+2 ∧ ∗Fp+2 = − 1
8κ2

10

∫ ∑
p+2=1,3,5,7,9

|Fp+2 |2ĝ ,

(A.2)
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with D1, D3, D5, D7 andD0, D2, D4, D6, D8 being independent variables, in the sense
that both give the same equations of motion when the constraints (2.29),

∗F1 = F9, ∗F2 = −F8,
∗F3 = −F7, ∗F4 = F6,
∗F5 = F5, ∗F6 = −F4,
∗F7 = −F3, ∗F8 = F2,
∗F9 = F1, (A.3)

are imposed on the extra variables D5, · · · , D8, after the equations of motion are
derived from (A.2). Here their field strengths are defined by

F ≡
9∑

p+2=1

Fp+2 ≡ e−B̂2 ∧ dD, (A.4)

with

D ≡
8∑

p+1=0

Dp+1, (A.5)

and the 10-dimensional Hodge-star ∗ is defined by
∗
(
dxµ̂1 ∧ · · · ∧ dxµ̂n

)
≡ 1
(10− n)!

1√−ĝ ε
µ̂1···µ̂nν̂1···ν̂10−n ĝν̂1λ̂1

· · · ĝν̂10−nλ̂10−n
dxλ̂1 ∧ · · · ∧ dxλ̂10−n ,

(A.6)

with ε01···9 = +1. Note that the K-forms satisfy ∗2 ΩK = (−1)K+1 ΩK and

d10x
√−ĝ |ΩK |2ĝ ≡ d10x

√−ĝ 1
K!

ĝµ̂1ν̂1 · · · ĝµ̂K ν̂K Ωµ̂1···µ̂K
Ων̂1···ν̂K

= −ΩK ∧ ∗ΩK (A.7)

in 10-dimensional Minkowski space.
First, we note that the original action (A.1) can be written as

S
(IIA)
R + S

(IIA)
CS =

1
4κ2

10

∫ (
F2 ∧ ∗F2 + F4 ∧ ∗F4 + B̂2 F

2
4 + B̂2

2 F4 F2 +
1
3
B̂3

2 F
2
2

)
,

S
(IIB)
R + S

(IIB)
CS =

1
4κ2

10

∫ (
F1 ∧ ∗F1 + F3 ∧ ∗F3 +

1
2
F5 ∧ ∗F5

+ B̂2 F5 F3 +
1
2
B̂2

2 F5 F1 +
1
6
B̂3

2 F3 F1

)
. (A.8)

Combined with the NS-NS action SNS, (2.2), the equations of motion are thus

IIA

0 = d

(
∗F4 + B̂2 F4 +

1
2
B̂2

2 F2

)
,
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0 = d

(
− ∗ F2 + B̂2 ∗ F4 +

1
2
B̂2

2 F4 +
1
6
B̂3

2 F2

)
,

0 = d

(
e−2φ̂ ∗ B̂2

)
+ F2 ∗ F4 − 1

2
F 2

4 , (A.9)

IIB

0 = d

(
∗F5 + B̂2 F3 +

1
2
B̂2

2 F1

)
,

0 = d

(
− ∗ F3 + B̂2 ∗ F5 +

1
2
B̂2

2 F3 +
1
6
B̂3

2 F1

)
,

0 = d

(
∗F1 − B̂2 ∗ F3 +

1
4
B̂2

2 (F5 + ∗F5) +
1
6
B̂3

2 F3 +
1
24

B̂4
2 F1

)
,

0 = d

(
e−2φ̂ ∗ B̂2

)
+ F1 ∗ F3 +

1
2
F3 F5 +

1
2
F3 ∗ F5. (A.10)

Also, the Einstein equation has an energy-momentum tensor of the R-R fields given
by

T
(R)
µ̂ν̂ =

 Eµ̂ν̂(F2) + Eµ̂ν̂(F4), (IIA)

Eµ̂ν̂(F1) + Eµ̂ν̂(F3) +
1
2
Eµ̂ν̂(F5), (IIB)

(A.11)

where Eµ̂ν̂(Fn) is defined for the n-form Fn = (1/n!)Fµ̂1···µ̂ndx
µ̂1∧· · ·∧dxµ̂n as

Eµ̂ν̂(Fn) ≡ 1
(n− 1)! Fµ̂ µ̂1···µ̂n−1 F

µ̂1···µ̂n−1

ν̂ − 1
2
ĝµ̂ν̂ |Fn |2ĝ . (A.12)

Equations (A.9) and (A.10) imply that F1, · · · , F5 can be expressed in the following
form with integration “constants” Dp+1 (p+ 1 ≥ 5):
IIA

∗F2 = −
(
e−B̂2 ∧ dD

)
8
≡ −F8,

∗F4 =
(
e−B̂2 ∧ dD

)
6
≡ F6, (A.13)

IIB

∗F1 =
(
e−B̂2 ∧ dD

)
9
≡ F9,

∗F3 = −
(
e−B̂2 ∧ dD

)
7
≡ −F7,

∗F5 =
(
e−B̂2 ∧ dD

)
5
≡ F5. (A.14)

For example, the first equation of (A.9) is solved as

∗F4 + B̂2 F4 +
1
2
B̂2

2 F2 = dD5, (A.15)
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with some 5-form D5. Then ∗F4 can be written as

∗F4 = dD5 − B̂2F4 − 1
2
B̂2

2 F2

= dD5 − B̂2(dD3 − B̂2dD1)− 1
2
B̂2

2 dD1

= dD5 − B̂2dD3 +
1
2
B̂2

2 dD1

=
(
e−B̂2 ∧ dD

)
6

≡ F6. (A.16)

Next, we treat all the fields Dp+1 (p+1 = 0, · · · , 8) as independent variables
with field strengths (A.4), and adopt (A.2) plus SNS as their action functional. The
variation of the action with respect to these fields can be easily found to be

IIA

0 = d (∗F8) ,

0 = d
(
− ∗ F6 + B̂2 ∗ F8

)
,

0 = d

(
∗F4 − B̂2 ∗ F6 +

1
2
B̂2

2 ∗ F8

)
,

0 = d

(
− ∗ F2 + B̂2 ∗ F4 − 1

2
B̂2

2 ∗ F6 +
1
6
B̂3

2 ∗ F8

)
, (A.17)

IIB

0 = d (∗F9) ,

0 = d
(
− ∗ F7 + B̂2 ∗ F9

)
,

0 = d

(
∗F5 − B̂2 ∗ F7 +

1
2
B̂2

2 ∗ F9

)
,

0 = d

(
− ∗ F3 + B̂2 ∗ F5 − 1

2
B̂2

2 ∗ F7 +
1
6
B̂3

2 ∗ F9

)
,

0 = d

(
∗F1 − B̂2 ∗ F3 +

1
2
B̂2

2 ∗ F5 − 1
6
B̂3

2 ∗ F7 +
1
24

B̂4
2 ∗ F9

)
. (A.18)

These are identical to the set of Bianchi identities and the equations of motion for
the original fields D0, · · · , D4 if we identify ∗Fp+2 = ±F8−p as in (A.3). Furthermore,
the variation with respect to B̂2 gives

IIA

0 = d

(
e−2φ̂ ∗ B̂2

)
+
1
2
F2 ∗ F4 +

1
2
F4 ∗ F6 +

1
2
F6 ∗ F8, (A.19)

IIB

0 = d

(
e−2φ̂ ∗ B̂2

)
+
1
2
F1 ∗ F3 +

1
2
F3 ∗ F5 +

1
2
F5 ∗ F7 +

1
2
F7 ∗ F9,

(A.20)
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which are the same as the last equations of (A.9) and (A.10), respectively, after the
identification (A.3) is made.

The Einstein equation will be accompanied by the new energy-momentum tensor
for the R-R fields,

T
(R)
µ̂ν̂ =


1
2

∑
n=2,4,6,8

Eµ̂ν̂(Fn), (IIA)

1
2

∑
n=1,3,5,7,9

Eµ̂ν̂(Fn). (IIB)
(A.21)

This agrees with the previous form (A.11), since the following identity holds for the
dual field F̃10−n ≡ ∗Fn:

Eµ̂ν̂(F̃10−n) = Eµ̂ν̂(Fn). (A.22)

This identity can be easily proved by using

1
(9− n)!

F̃µ̂ λ̂1···λ̂9−n
F̃

λ̂1···λ̂9−n

ν̂ =
1

(n− 1)! Fµ̂ λ̂1···λ̂n−1
F

λ̂1···λ̂n−1

ν̂ − ĝµ̂ν̂ |Fn |2ĝ ,∣∣∣ F̃10−n

∣∣∣2
ĝ
= − |Fn |2ĝ . (A.23)

Since the equivalence for the variation with respect to the dilaton φ̂ is obvious, we
have completed the proof of the equivalence of the two actions (A.1) and (A.2).
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Note added: After the first version of the present paper was put on the bulletin board, some

related works appeared, 20), 21) which also investigate the T -duality transformation of R-R fields

from a different point of view.
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