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Classical higher-derivative gravity is investigated in the context of the holographic renor-
malization group (RG). We parametrize the Euclidean time such that one step of time evo-
lution in (d + 1)-dimensional bulk gravity can be directly interpreted as that of block spin
transformation of the d-dimensional boundary field theory. This parametrization simplifies
the analysis of the holographic RG structure in gravity systems, and conformal fixed points
are always described by AdS geometry. We find that higher-derivative gravity generically
induces extra degrees of freedom, which acquire huge masses around stable fixed points and
thus are coupled to highly irrelevant operators at the boundary. In the particular case of pure
R2-gravity, we show that some region of values of the coefficients of the curvature-squared
terms allows us to have two fixed points (one is multicritical), which are connected by a
kink solution. We further extend our analysis to Lorentzian metric to investigate a model
of expanding universe described by the action with curvature-squared terms and a positive
cosmological constant. We show that, in any dimensionality but four, there is a classical
solution that describes the time evolution from one de Sitter geometry to another de Sitter
geometry, along which the Hubble parameter changes significantly.

§1. Introduction

The AdS/CFT correspondence asserts, in its simplest form, that (d + 1)-
dimensional (super)gravity in an AdS background describes a d-dimensional CFT
at the boundary.1)−3) (For a review, see Ref. 4).) One of the most important aspects
of this correspondence is that it gives us a scheme to investigate the renormaliza-
tion group (RG) structure of the d-dimensional field theory.5)–14) In this scheme, the
holographic RG, the radial coordinate of the (d+1)-dimensional manifold is identified
with the RG parameter of the corresponding boundary field theory, and a classical
trajectory of bulk fields is interpreted as an RG flow of the corresponding coupling
constants in the d-dimensional field theory. As an example, the Weyl anomaly of a
four-dimensional field theory can be calculated using the holographic RG scheme and
exactly reproduces the large N limit of the Weyl anomaly of the four dimensional
N = 4 SU(N) super Yang-Mills theory when the supergravity comes from type IIB
supergravity on AdS5 × S5.15) For a field theory in any dimensionality, there is a
systematic formulation of the holographic RG using the Hamilton-Jacobi equation
of gravity systems16)−18) (see also Refs. 19) − 22)).

Classical Einstein gravity discussed above is actually the low energy limit of
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1086 M. Fukuma and S. Matsuura

a string theory, and an important issue is whether this correspondence can be ex-
tended to the level of strings.23)–28) In Ref. 28), it was discussed that the AdS/CFT
correspondence does hold even when α′ corrections are taken into account, where
α′ is the square of the string length. The gravity system considered in Ref. 28) is
R2-gravity whose Lagrangian density contains curvature squared terms that appear
after integrating over massive string excitation modes. (Such higher-derivative inter-
actions also appear for matter fields.) In general, a higher-derivative system∗) with
the Lagrangian L(q, q̇, q̈) can be treated in the Hamilton formalism by introducing
a new independent variable Q which equals q̇ classically. (We call this new variable
the higher-derivative mode.) Thus the Hamiltonian for this system is a function of
(q,Q) and their conjugate momenta, (p, P ). It was pointed out28) that the AdS/CFT
correspondence in higher-dimensional gravity can be established if we use the mixed
boundary conditions that set the Dirichlet boundary conditions for the light mode q
and the Neumann boundary conditions for the higher-derivative mode Q (i.e., P = 0
at the boundary). As a check of this proposal, the Weyl anomaly was calculated for
the R2-gravity system which is AdS/CFT dual to the N = 2 superconformal field
theory in four dimensions,∗∗) and the obtained result is the same as those of Refs. 25)
and 26), which are consistent with the field theoretical calculation.31) A brief review
of classical mechanics in higher-derivative systems is given in Appendix A. (For a
review of higher-derivative gravity, see, e.g., Ref. 34).)

The main aim of the present paper is to further clarify the holographic RG
structure in higher-derivative gravity, by investigating its classical solutions with the
following steps. We first give a parametrization of the Euclidean time such that
its evolution can be directly interpreted as the change of the unit length of the d-
dimensional equal-time slice. We call this parametrization the block spin gauge. With
the use of this gauge, we then investigate (1) a higher-derivative pure gravity system
and (2) a system consisting of a scalar field with a higher-derivative interaction in
Einstein gravity. For both systems, some regions of values of the coefficients of
the higher-derivative terms allow us to have a stable AdS solution, around which
the higher-derivative mode acquires a huge mass and thus is coupled to a highly
irrelevant operator at the boundary. In the other regions of coefficient values, we
show that any AdS solution becomes unstable, and the higher-derivative mode in
the AdS background becomes tachyonic with a mass squared far below the unitarity
bound, so that the holographic RG interpretation is not applicable. We also show, in
the pure gravity case, that there are two AdS solutions in a certain region of values
of the coefficients and there is also a solution that interpolates between these two
AdS solutions. In the context of the holographic RG, this means that there are two
fixed points in the phase diagram of the d-dimensional field theory, and that the
solution that connects them corresponds to an RG flow from a multicritical point to
another fixed point.

The organization of this paper is as follows. In §2 we introduce the block spin

∗) See Ref. 29) which also investigates higher-derivative systems in the context of string theory.
∗∗) The gravity system is given by IIB supergravity on AdS5 ×S5/Z2.

30) The action contains an

R2-term, reflecting open-string excitations.
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Holographic Renormalization Group Structure 1087

gauge. In §3 we investigate a higher-derivative pure gravity system, and in §4 we
investigate a system consisting of a scalar field with a higher-derivative interaction
in Einstein gravity. In §5, we extend our analysis to higher-derivative gravity with
Lorentzian metric and investigate a model of expanding universe with a positive
cosmological constant. There, we show that there is a solution for which one de
Sitter space-time flows to another de Sitter space-time, along which the Hubble
parameter changes greatly. Section 6 contains a conclusion and discussion about the
meaning of the mixed boundary conditions proposed in Ref. 28).

§2. Block spin gauge

In this section we introduce a gauge in which (Euclidean) time evolution in a
(d + 1)-dimensional manifold is directly regarded as the change of the unit length
in the d-dimensional equal-time slice. Although this gauge restricts the class of the
geometry one can consider, it is actually sufficient for investigating the holographic
RG structure in higher-derivative gravity.

We start by recalling the ADM decomposition that parametrizes a (d + 1)-
dimensional metric with Euclidean signature,

ds2 = ĝµν dX
µdXν

= N(x, τ)2dτ2 + gij(x, τ)(dxi + λidτ)(dxj + λjdτ), (2.1)

where Xµ = (xi, τ) with i = 1, · · · d, and N and λi are the lapse and the shift function,
respectively. In what follows, we exclusively consider the metric with d-dimensional
Poincaré invariance by setting gij = e−2q(τ)δij , N = N(τ) and λi = 0:

ds2 = N(τ)2dτ2 + e−2q(τ)δijdx
idxj . (2.2)

For this metric, the unit length in the d-dimensional equal-time slice at τ is given
by eq(τ).

We consider two kinds of gauge fixings (or parametrizations of time). One is the
temporal gauge which is obtained by setting N(τ) = 1:

ds2 = dτ2 + e−2q(τ)δijdx
idxj . (2.3)

The other is a gauge fixing that can be made only when the condition

dq(τ)
dτ

> 0 (−∞ < τ < ∞) (2.4)

is satisfied. Then q can be regarded as a new time coordinate. We call this
parametrization the block spin gauge.∗) By writing q(τ) as t, the metric in this
gauge is expressed as∗∗)

ds2 = Q(t)−2dt2 + e−2tδijdx
idxj . (2.5)

∗) In this gauge, the unit length in the d-dimensional equal-time slice at t is given by a(t) = a0e
t

with a positive constant a0. If we consider the time evolution t → t + δt, the unit length changes

as a → eδta. In other words, one step of time evolution directly describes that of block spin

transformation of the d-dimensional field theory.
∗∗) This form of metric sometimes appears in literature (see, e.g., Ref. 35)).
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1088 M. Fukuma and S. Matsuura

Since two parametrizations of time (temporal and block spin) are related as

t = q(τ), (2.6)

together with the condition (2.4), the coefficient Q(t) is given by

Q(t) =
dq(τ)
dτ

∣∣∣∣
τ=q−1(t)

(> 0). (2.7)

Note that constant Q (≡ 1/l) gives the AdS metric of radius l,

ds2 = dτ2 + e−2τ/l dx2
i (temporal gauge)

= l2dt2 + e−2t dx2
i , (block spin gauge) (2.8)

with the boundary at τ = −∞ (or t = −∞).
Here we show that the condition (2.4) sets a restriction on the possible geometry,

by solving the Einstein equation both in the temporal and block spin gauge. In the
temporal gauge, the Einstein-Hilbert action

SE =
∫

Md+1

dd+1X
√
ĝ
[
2Λ− R̂

]
(2.9)

becomes

SE = −d(d− 1)Vd

∫
dτe−dq(τ)

(
q̇(τ)2 +

1
l2

)
, (2.10)

up to total derivative. Here we have parametrized the cosmological constant as
Λ = −d(d − 1)/2l2, and Vd is the volume of the d-dimensional space. The general
classical solutions for this action are

dq

dτ
=

1
l

1 − Cedτ/l

1 + Cedτ/l
. (C ≥ 0) (2.11)

This shows that geometry with nonvanishing, finite C (C 
= 0 or ∞) cannot be
described in the block spin gauge, since q̇ vanishes at τ = − l

d lnC, violating the
condition (2.5). In fact, in the block spin gauge (2.5), the action (2.9) becomes

SE = −d(d− 1)Vd

∫
dte−dt

(
1
l2Q

+ Q

)
, (2.12)

which readily gives the classical solution as

Q(t) = ±1
l
. (2.13)

This actually reproduces only the AdS solution in the temporal gauge with C = 0
or ∞.
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§3. Higher-derivative pure gravity in the block spin gauge

In this section we investigate classical R2-gravity in the block spin gauge and
give a holographic RG interpretation to higher-derivative modes. A brief review of
classical mechanics in higher-derivative systems is given in Appendix A.

The action of pure R2-gravity in a (d + 1)-dimensional manifold Md+1 with a
boundary Σd is generally given by

S =
∫

Md+1

dd+1X
√
ĝ
(
2Λ− R̂− aR̂2 − bR̂2

µν − cR̂2
µνρσ

)
+
∫

Σd

ddx
√
g
(
2K + x1 RK + x2 RijK

ij + x3 K
3 + x4 KK2

ij + x5 K
3
ij

)
, (3.1)

with some given constants a, b and c. Here, Kij is the extrinsic curvature of Σd given
by

Kij =
1

2N
(ġij −∇iλj −∇jλi) ,

(
· ≡ d

dt

)
(3.2)

and K = gijKij . Here, ∇i and Rijkl are, respectively, the covariant derivative and
the Riemann tensor defined by gij in the ADM decomposition (2.1). The first terms
in the boundary terms in (3.1) are those for Einstein gravity given in Ref. 36), and
the remaining terms are the most general ones which are invariant under the (d+1)-
dimensional diffeomorphism that does not change the position of the boundary. (For
details, see Ref. 28). Other studies of boundary terms in higher-derivative gravity
can be found in Refs. 37) and 38).)

Substituting the block spin gauge metric (2.5) into the action (3.1), we obtain

S[Q(t)] = Vd

∫ ∞

t0

dt L(Q, Q̇), (3.3)

where

L(Q, Q̇)=e−dt

(
2Λ
Q

− d(d− 1)Q− A

2
QQ̇2 + BQ3

)
+
[
4d
3
(
d(d + 1)a + db + 2c

)
+ d
(
d2x3 + dx4 + x5

)] d

dt

(
e−dtQ3

)
,

(3.4)

with

A = 2d
(
4da + (d + 1)b + 4c

)
, B =

d(d− 3)
3

(
d(d + 1)a + db + 2c

)
. (3.5)

We have set t to run from t0 to ∞. The Lagrangian (3.4) gives the Euler-Lagrange
equation for Q as

QQ̈ +
1
2
Q̇2 − dQQ̇ =

1
A

(
2Λ
Q2

+ d(d− 1) − 3BQ2

)
. (3.6)
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1090 M. Fukuma and S. Matsuura

The classical action S is obtained by substituting into S the classical solution Q(t)
with the boundary condition Q(t0) = Q0 and the regularity of Q(t) in the limit
t → ∞. It is a function of the boundary value, S[Q(t)] ≡ S(Q0, t0).

In the holographic RG, this classical action would be interpreted as the bare
action of a d-dimensional field theory with the bare coupling Q0 at the UV cutoff
Λ = exp(−t0).2),3),5) Thus, the strategy of our analysis is as follows. We first find
the solutions that converge to Q=const as t → ∞ in order to have a finite classical
action. We then examine the stability of the solution to read off the form of the
general classical solutions. Since the solution Q = const gives an AdS geometry,
the fluctuation of Q around the solution is regarded as describing the motion of the
higher-derivative mode in the AdS background, which leads to a holographic RG
interpretation of the higher-derivative mode.

Following the above strategy, we first look for AdS solutions (i.e., Q(t) = const).
By parametrizing the cosmological constant as

Λ = −d(d− 1)
2l2

+
3B
2l4

, (3.7)

the equation of motion (3.6) gives two AdS solutions,

Q2 =


1
l2

≡ 1
l21

,

d(d− 1)
3B

− 1
l2

≡ 1
l22

,

(3.8)

where the solution Q = 1/l2 exists only when B > 0.∗) They have radii li (i = 1, 2),
respectively, and we call them AdS(i) (i = 1, 2). We assume that we can take the
limit a, b, c → 0 smoothly, in which the system reduces to Einstein gravity on AdS
of radius l. We also assume that this AdS gravity comes from the low-energy limit
of a string theory, so that its radius l1 = l should be sufficiently larger than the
string length. On the other hand, the AdS(2) solution, if it exists, appears only
when the higher-derivative terms are taken into account. As the coefficients of the
higher-derivative terms are thought to stem from string excitations, their coefficients
a, b and c (and hence A and B) are O(α′). Thus the radius of the AdS(2) is of the
order of the string length, as can be seen from the solution (3.8).

Next, we examine the perturbation of classical solutions around (3.8), writing

Q(t) =
1
li

+ Xi(t). (3.9)

The equation of motion (3.6) is then linearized as

Ẍi − dẊi − l2im
2
iXi = 0, (3.10)

with

m2
i ≡ − 2

A

(
2Λl2i +

3B
l2i

)
. (3.11)

∗) We consider only the case Q > 0 because of the condition (2.4).
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Equation (3.10) is nothing but the equation of motion for a scalar field with mass
squared m2

i in the background of the AdSd+1 geometry, ds2 = l2i dt
2 + e−2t

∑
k dx

2
k

(block spin gauge), and the general solution is given by a linear combination of the
functions

f±
i (t) ≡ exp

[(
d

2
±
√

d2

4
+ l2im

2
i

)
t

]
. (3.12)

Here l2im
2
i can be easily calculated from (3.8) and (3.11) as

l21m
2
1 =

2
A

(
d(d− 1)l2 − 6B

)
,

l22m
2
2 = − 6B

A
· d(d− 1)l2 − 6B
d(d− 1)l2 − 3B

.

(3.13)

In the following, we investigate these solutions for i = 1 and 2, to understand the
behavior of general classical solutions.
perturbation around AdS(1)

From (3.12) and (3.13), we see that the behavior of f±
1 (t) depends on the signature of

A. For A > 0, recalling that A is O(α′), f+
1 (t) grows and f−

1 (t) damps very rapidly.
On the other hand, for A < 0, the value in the square root in (3.12) becomes negative,
and thus both f±

1 (t) grow as edt/2 being oscillating rapidly.
perturbation around AdS(2)

We assume B > 0 because, as mentioned above, AdS(2) exists only in this region.
For A > 0, both of f±

2 (t) grow exponentially, because l22m
2
2 < 0. On the other hand,

for A < 0, f+
2 (t) grows and f−

2 (t) damps exponentially.
Besides, as we explained before, the solution that is of interest to us is a solution

that converges to either AdS(1) or AdS(2) as t → ∞, satisfying the condition that
Q(t) be positive for the entire region of t [see (2.7)]. After all, we can see that the
classical solutions behave as in Figs. 1 and 2. The numerical calculation with the
proper boundary condition at t = +∞ actually exhibits these figures and shows that
the branch f−

i (t) is selected around Q = 1/li. The result of the numerical calculation
for A > 0 and B > 0 is shown in Fig. 3.

8- -

8

t t

Q Q

1

1

1

l1 l1

l2

B>0 B<0

Fig. 1. Classical solutions Q(t) for A > 0.
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8- -

8

t t

Q Q

1

1

1

l1 l1

l2

B>0 B<0

There is no solution
 which coverges to 
   AdS geometry.

Fig. 2. Classical solutions Q(t) for A < 0.

1

2

3

4

5

6

Q

4 5 6 7 8 9 10

t

Fig. 3. Result of the numerical calculation of classical solutions Q(t) for the values d = 4, A = 0.1,

B = 0.1 and l = 1 (1/l1 = 1 and 1/l2 = 6.24).

Now we give a holographic RG interpretation to the above results. We first
consider the AdS(1) solution. Equation (3.10) is the equation of motion of a scalar
field in the AdS background of radius l, with mass squared given by

m2
1 = − 2

A

(
2Λl2 +

3B
l2

)
=

2
A

(
d(d− 1) − 6B

l2

)
. (3.14)

Thus for A > 0, the higher-derivative mode Q is interpreted as a very massive scalar
mode, and thus it is coupled to a highly irrelevant operator around the fixed point,
since its scaling dimension is given by2),3)

∆ =
d

2
+

√
d4

4
+ l2m2

1 � d. (3.15)
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This can also be understood from Fig. 1 which depicts a rapid convergence of the
RG flow to the fixed point Q(t) = 1/l. On the other hand, for A < 0, the mass
squared of the higher-derivative mode is far below the unitary bound −d2/4l2 for a
scalar mode in the AdS(1) geometry,3) and the scaling dimension becomes complex.
Thus, in this case, the higher-derivative mode makes the AdS(1) geometry unstable,
and a holographic RG interpretation cannot be given to such a solution.

We next consider the AdS(2). For A > 0 and B > 0 in Fig. 1, it can be seen that
classical trajectories begin from AdS(2) to AdS(1). In the context of the holographic
RG, this means that the AdS(2) solution Q(t) = 1/l2 corresponds to a multicritical
point in the phase diagram of the boundary field theory. From (3.8) and (3.11), the
mass squared of the mode Q around the AdS(2) can be calculated as

m2
2 = − 2

A

(
d(d− 1) − 6B

l2

)
, (3.16)

and if this mass squared is above the unitarity bound,

l22m
2
2 = −6B

A

d(d− 1)l2 − 6B
d(d− 1)l2 − 3B

> −d2

4
, (3.17)

the scaling dimension of the corresponding operator is given by

∆ =
d

2
+

√
d2

4
+ l22m

2
2

∼= d

2
+

√
d2

4
− 6B

A
. (3.18)

For example, we consider the case in which d = 4, a = b = 0 and c > 0.∗) In this
case, A = 32c > 0 and B = 8c/3 > 0, and thus the scaling dimension of Q around
the AdS(2) is ∆ ∼= 2 +

√
7/2. It would be interesting to investigate which conformal

field theory describes this fixed point.
We conclude this section with a comment on the c-theorem. In the block spin

gauge, the function Q1−d(t) can be regarded as the c-function of the d-dimensional
field theory.8) Figure 1 shows that it increases when A > 0, but this does not con-
tradict the assertion of the c-theorem, because in this case, the kinetic term of Q(t)
in the bulk action has a negative sign [see (3.4)].

§4. Scalar field with higher-derivative interaction in Einstein gravity

In this section, we consider a scalar field with a higher-derivative interaction in
Einstein gravity.

To simplify the discussion below, we consider the action

S =
∫

Md+1

dd+1X
√
ĝ

[
V (φ) − R̂ +

1
2
ĝµν∂µφ∂νφ +

c

2

(
∇̂2φ

)2
]

+ 2
∫

Σd

ddxK,

(4.1)
∗) This includes IIB supergravity on AdS5 × S5/Z2 which is AdS/CFT dual to N = 2 USp(N)

SYM4.
30),26)
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1094 M. Fukuma and S. Matsuura

where ∇̂ is the covariant derivative defined by ĝµν , and c is a given small constant of
the order of α′. Substituting the block spin gauge metric (2.5) into (4.1), S becomes

S = Vd

∫
t0

dtL(φ, φ̇, φ̈;Q)

= Vd

∫
t0

dte−dt

{
1
Q
V (φ) − d(d− 1)Q +

Q

2
φ̇2 +

c

2
e2dtQ

[(
e−dtQφ̇

)· ]2}
. (4.2)

As the Lagrangian contains φ̈, it is convenient to treat this system in the Hamilton
formalism.28) Following the procedure given in Appendix A, we introduce a Lagrange
multiplier π and rewrite the action in the following equivalent form

S = Vd

∫
t0

dt

[
π

(
φ̇− edt Φ

Q

)
+ e−dt

(
1
Q
V (φ) − d(d− 1)Q +

Q

2
φ̇2

)
+

c

2
edtQΦ̇2

]
.

(4.3)

Then, making the Legendre transformation from Φ̇ to the conjugate momentum

Π = c edtQΦ̇, (4.4)

we further rewrite the action into the first order form:

S = Vd

∫
t0

dt
[
πφ̇ + ΠΦ̇−H(φ, Φ, π,Π;Q)

]
, (4.5)

where

H(φ, Φ, π,Π;Q) = d(d− 1)e−dtQ +
1
Q

[
e−dt

2c
Π2 + edtπΦ− e−dtV (φ) − edt

2
Φ2

]
.

(4.6)

In (4.5), Q appears without a time derivative, and thus it can be easily solved. We
obtain

Q2(φ, Φ, π,Π) =
1

d(d− 1)

[
1
2c
Π2 − V (φ) + e2dt

(
πΦ− 1

2
Φ2

)]
, (4.7)

and substituting this into the Hamiltonian (4.6), we obtain the final form of the
Hamiltonian:

H(φ, Φ, π,Π) = 2d(d− 1)e−dtQ(φ, Φ, π,Π). (4.8)

Hamilton’s equations are given by

Qφ̇ = edtΦ, QΦ̇ =
e−dt

c
Π, Qπ̇ = e−dtV ′(φ), QΠ̇ = edt (Φ− π) . (4.9)

As in the pure gravity case, we first look for the AdS solution, which is given by
Q = const. If we set

V (φ) ≡ −d(d− 1)
l2

+
µ2

2
φ2, (4.10)
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the AdS solution that satisfies (4.7) and (4.9) is given by

Q =
1
l
, φ = Φ = π = Π = 0. (4.11)

We then expand Hamilton’s equations (4.9) around the AdS solution (4.11) up to
first order in the variables:

1
l
φ̇ = edtΦ,

1
l
Φ̇ =

e−dt

c
Π,

1
l
π̇ = e−dtµ2φ,

1
l
Π̇ = edt (Φ− π) . (4.12)

These can be easily solved by performing the canonical transformation28)
φ
Φ
π
Π

 = a1


1 0 0 edt/M
0 e−dtM 1 0
0 e−dtcm2M cM2 0

cm2 0 0 edtcM



φ̃

Φ̃
π̃

Π̃

 , (4.13)

with

a2
1 ≡ 1√

1 − 4cµ2
, M2 ≡ 1

2c

(
1 +
√

1 − 4cµ2
)
, m2 ≡ 1

2c

(
1 −
√

1 − 4cµ2
)
.

(4.14)

Then, the linearized Hamilton’s equations (4.12) are decomposed into two sets of
independent equations,{ ˙̃

φ = ledtπ̃,
˙̃π = −lm2e−dtφ̃,

{ ˙̃
Φ = ledtΠ̃,
˙̃
Π = −lM2e−dtΦ̃,

(4.15)

which are equivalent to

¨̃
φ− d

˙̃
φ− l2m2φ̃ = 0, (4.16)

¨̃
Φ− d

˙̃
Φ− l2M2Φ̃ = 0, (4.17)

respectively.∗) These are the equations of motion of two scalar fields with mass
squared m2 and M2, respectively, in the AdS background Q = 1/l. In particular,
Φ̃ acquires a large mass when c > 0, since its mass squared M2 becomes ∼ 1/c ∼
1/α′ � m2. Thus, the bulk scalar field Φ̃ is coupled to a highly irrelevant operator
at the boundary. If we assume that φ̃ is a relevant coupling, i.e. −d2/4l2 < m2 <
0, then the RG flow near the fixed point, φ = Φ = 0, converges rapidly to the
renormalized trajectory given by φ̃ = 0 [see Fig. 4]. On the other hand, when c < 0,
the mass squared of the scalar mode Φ̃ is far below the unitarity bound, and thus
the AdS geometry becomes unstable. In this case, as in the pure gravity case with
A < 0, B < 0, the holographic RG interpretation of the higher-derivative system is
not possible.

∗) When we add the higher-derivative term
�b∇2φ

�2
to the action, the scalar mode is not φ but

eφ, thus the mass of the observable field is not µ but m.
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Φ

φ

Φ

φ

~

~

renormalized
  trajectory

Fig. 4. The RG flow of the coupling constants (φ, Φ) near the fixed point φ = 0, Φ = 0.

§5. Application to a model of universe
with positive cosmological constant

In this section, we apply our analysis of higher-derivative pure gravity to sys-
tems of Lorentzian gravity with positive cosmological constant. There, as classical
solutions, one can have de Sitter solutions instead of AdS solutions. We shall see
that, in a certain region of values of coefficients of the higher-derivative terms, there
are two de Sitter solutions as well as a kink solution which interpolates between these
two de Sitter geometries.

We consider the following action of higher-derivative pure gravity in a (d + 1)-
dimensional Lorentzian manifold:

S =
∫

dd+1X
√

−ĝ
(
−2Λ + R̂− aR̂2 − bR̂2

µν − cR̂2
µνρσ

)
. (5.1)

Our analysis is completely parallel to that given in §3. We use the block spin gauge
metric

ds2 = − 1
Q2

dt2 + e2tδijdx
idxj, (5.2)

where we have flipped the sign of the exponent to describe the expanding universe.
If Q = 1/l =const, (5.2) represents a de Sitter space-time of radius l. With the
metric (5.2), the action (5.1) becomes

S = Vd

∫
dtedt

[
−2Λ

Q
− d(d− 1)Q− A

2
QQ̇2 + BQ3

]
, (5.3)
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where A and B are again given by (3.5). This action gives the equation of motion
for Q

QQ̈ +
1
2
Q̇2 + dQQ̇ = − 1

A

(
2Λ
Q2

− d(d− 1) + 3BQ2

)
, (5.4)

which is identical to (3.6) if we make the change Λ → −Λ and t → −t. By parametriz-
ing the cosmological constant as

Λ =
d(d− 1)

2l2
− 3B

l4
, (5.5)

the de Sitter solutions are obtained from (5.4) as

Q2 =


1
l2

≡ 1
l21

,

d(d− 1)
3B

− 1
l2

≡ 1
l22

,

(5.6)

where the solution Q = 1/l2 exists only when B > 0. We call the solution Q = 1/li
the dS(i) (i = 1, 2) solution.

As we did in §3, we next examine the perturbation of solutions around these de
Sitter solutions.∗) By writing Q(t) as

Q(t) =
1
li

+ Xi(t), (5.7)

the equation of motion (5.4) is linearized as

Ẍi + dẊi − λiXi = 0, (5.8)

where 
λ1 =

2
A

(
d(d− 1)l2 − 6B

)
,

λ2 = − 6B
A

· d(d− 1)l2 − 6B
d(d− 1)l2 − 3B

.

(5.9)

This equation is actually the time reversal of the linearized equation in the AdS
case [see (3.10) and (3.13)], and thus we readily find from Figs. 1 and 2 that the
general classical solutions behave as in Figs. 5 and 6.∗∗) Note that we now can have
a meaningful solution when A < 0, B < 0, since we no longer need to restrict our
consideration to systems with finite classical action.

The interesting case is that of B > 0. Then there is a solution that describes
the time evolution of space-time from one de Sitter geometry to another de Sitter

∗) Discussion on the stability around de Sitter solutions in higher-derivative gravity was first

given in Ref. 32). (See also Ref. 33).)
∗∗) Actually, there exist solutions that converge to the unstable de Sitter geometry. However, we

ignored them in Figs. 5 and 6 because such solutions form a measure-zero subspace in the space of

classical solutions.
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8- -

8

t t

Q Q

1

1

1

l1 l1

l2

B>0 B<0

Fig. 5. Classical solutions Q(t) for A > 0. The dS(1) solution is unstable, and the space-time

converges to the dS(2) geometry, if it exists.

8- -

8

t t

Q Q

1

1

1

l1 l1

l2

B>0 B<0

Fig. 6. Classical solutions Q(t) for A < 0. The dS(1) solution is stable in this case, and thus the

space-time converges to the dS(1) geometry. If the solution dS(2) exists, there are solutions that

describe the time evolution from dS(2) to dS(1).

geometry. Since the Hubble parameter is defined by H(τ) = Ṙ(τ)/R(τ) for the
metric ds2

d+1 = −dτ2 +R2(τ)ds2
d, we understand that the higher-derivative mode Q

is the Hubble parameter:

H(τ) = Q(t(τ )). (5.10)

Thus, the solutions for B > 0 in Figs. 5 and 6 describe a universe in which the
Hubble parameter changes rapidly from one constant to another constant. Since
we are assuming that the coefficients of the curvature squared terms are of the
string scale, the difference between the two Hubble constants is extremely large.
Such solutions always exist in all dimensionalities but four (d = 3), because B 
= 0
when d 
= 3. The absence of such solutions in four-dimensional space-time might be
remedied by coupling an extra matter field to gravity.

§6. Conclusion

In this paper, we have investigated higher-derivative gravity systems. We intro-
duced the block spin gauge (2.5) in which time evolution can be regarded directly
as the change of the unit length in the d-dimensional time slice. We considered (1)
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higher-derivative pure gravity and (2) a scalar field with a higher-derivative inter-
action in Einstein gravity. We examined classical solutions in the block spin gauge
and gave a holographic RG interpretation to the higher-derivative modes.

We showed the existence of AdS solutions for both systems (1) and (2), and
discussed their stability. Under the condition that the bulk fields be regular in
the region far from the boundary, we found that the stability of the AdS solutions
depends on the values of the coefficients of higher-derivative terms. In the region of
stable AdS, the higher-derivative mode can be interpreted as a very massive scalar
field in the AdS background. Thus, in the context of the holographic RG, this mode
is coupled to a highly irrelevant operator at the boundary. On the other hand, in the
region of unstable AdS, the higher-derivative mode acquires a large negative mass
squared that is far below the unitarity bound in AdS gravity. In this case, it is
difficult to give a holographic RG interpretation.

For higher-derivative pure gravity, in particular, there is a region in which one
can have two AdS solutions. In that region, one can also have a kink solution that
describes a flow from one AdS geometry to another AdS geometry. (This is the case
of B > 0 in Figs. 1 and 2.) In particular, for A > 0 and B > 0, the flow starts from
the AdS geometry of much smaller radius (of the string scale). This describes an RG
flow from a non-trivial multicritical point to another fixed point, the latter of which
governs the universality class described by pure Einstein gravity. The appearance
of such multicritical point is characteristic of the holographic RG for an R2-gravity
system.

As an application of our analysis, we investigated (d+1)-dimensional Lorentzian
higher-derivative gravity with a positive cosmological constant. We found that there
is a solution that describes the time evolution from one de Sitter geometry to another
de Sitter geometry in a certain region of values of the coefficients of the curvature
squared terms. Along this solution, the value of the Hubble parameter changes
greatly.

Finally, we comment on the meaning of the mixed boundary conditions that
were used in Ref. 28) (see also Appendix A below). As mentioned above, the higher-
derivative mode near the stable AdS solution is coupled to a highly irrelevant oper-
ator at the boundary, and thus the RG flow around the corresponding fixed point
converges rapidly to the renormalized trajectory on which the higher-derivative mode
does not flow. We see below that one can actually pick up the renormalized trajectory
by adopting the mixed boundary conditions.

In the case of pure gravity, the fixed point is given by the solution∗)

Q =
1
l
. (6.1)

On the other hand, from the Lagrangian (3.4), the conjugate momentum for Q is
calculated as

P = −Ae−dtQ̇ +
[
4d
(
d(d + 1)a + db + 2c

)
+ 3d

(
d2x3 + dx4 + x5

)]
Q2. (6.2)

∗) We consider only the case in which the AdS(1) is stable. In the presence of a scalar field that

describes a relevant coupling, this solution corresponds to the renormalized trajectory.
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Thus, the fixed point (6.1) can be picked up from the equation P = 0 if we set the
coefficients as in Ref. 28):

d2x3 + dx4 + x5 = −4
3
(
d(d + 1)a + db + 2c

)
. (6.3)

In other words, using of the freedom to add total derivative terms to the action, the
coefficients can be chosen such that the equation P = 0 directly gives the fixed point.
Note that the total derivative terms can be interpreted as the generating function of
a canonical transformation that shifts the value of the conjugate momentum.

The situation does not change for a scalar field coupled to Einstein gravity with
a higher-derivative interaction. When φ̃ is a relevant coupling, the renormalized
trajectory is given by Φ̃ = 0, which is equivalent to Π̃ = 0. On the other hand, from
the canonical transformation (4.13), Π̃ is expressed as

Π̃ =
√

1 − 4cµ2

(
Π − cm2φ

)
. (6.4)

Thus, if we add the term

d

dt
F (φ, Φ) ≡ d

dt

(
cm2φΦ

)
(6.5)

to the Lagrangian (4.2) (or equivalently cm2∇̂µ(φ∂µφ) to the Lagrangian density),
we can shift the conjugate momenta as

π → π + cm2Φ, Π → Π + cm2φ, (6.6)

so that we have π̃ ∝ π and Π̃ ∝ Π. This enables us to pick up the renormalized
trajectory with the mixed boundary conditions (Π = 0).
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Appendix A
General Theory of Higher-Derivative Systems

In this appendix, we give a brief review of classical mechanics in higher-derivative
systems with the action

S[q] =
∫ t1

t0

dt L(q, q̇, q̈). (A.1)

The variational principle gives the Euler-Lagrange equation

0 =
d2

dt2

(
∂L

∂q̈

)
− d

dt

(
∂L

∂q̇

)
+

∂L

∂q
. (A.2)
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This system can also be investigated in the Hamilton formalism. We first intro-
duce a Lagrange multiplier p to treat q̇ as a new canonical variable Q:

L (q, q̇, q̈) → p (q̇ −Q) + L
(
q,Q, Q̇

)
. (A.3)

We call Q the higher-derivative mode. Then, by making the Legendre transformation
from Q̇ to the conjugate momentum P ≡ ∂L/∂Q̇, this action can be rewritten into
the first-order form

S[q,Q, p, P ] =
∫ t1

t0

dt
[
p q̇ + PQ̇−H(q,Q; p, P )

]
, (A.4)

with the Hamiltonian

H(q,Q; q, P ) ≡ pQ + P · f(q,Q, P ) − L(q,Q, f(q,Q, P )). (A.5)

Here f(q,Q, P ) in (A.5) is obtained by solving P = ∂L(q,Q, f)/∂f = P (q,Q, f) in
f . Again by the variational principle, we obtain Hamilton’s equations

q̇ =
∂H

∂p
, Q̇ =

∂H

∂P
, ṗ = −∂H

∂q
, Ṗ = −∂H

∂Q
, (A.6)

together with the boundary conditions

p δq + PδQ = 0. (t = t0, t1) (A.7)

One can easily check that Hamilton’s equations in (A.6) are equivalent to the Euler-
Lagrange equation (A.2).

The boundary condition (A.7) is satisfied by the Dirichlet boundary conditions

δq = 0 , δQ = 0 (t = t0, t1) (A.8)

or the Neumann boundary conditions

p = 0 , P = 0, (t = t0, t1) (A.9)

for each variable q and Q. A choice of interest for us is the mixed boundary condi-
tions, in which we set the Dirichlet conditions for q (q(t0) = q0 and q(t1) = q1) and
the Neumann conditions for Q (P (t0) = P (t1) = 0). Then, if we substitute such clas-
sical solution into the bulk action S, the resulting classical action is a function only
of the boundary values of the light mode q; S[q(t), Q(t), p(t), P (t)] ≡ S(q0, t0; q1, t1).

In Ref. 28), the mixed boundary conditions were adopted to establish the holo-
graphic principle in higher-derivative gravity systems. In fact, if we set the mixed
boundary conditions for a bulk field φ(x, t) as φ(x, t = ta) = φa(x) and Π(x, t =
ta) = 0 (a = 0, 1),∗) and carefully choose φ1(x) such that the classical action is
finite in the limit t1 → +∞, then the classical action becomes a functional only of
φ0(x) and t0, S[φ0(x), t0]. This may be interpreted as the fixed-point action with
the bare coupling φ0 at the UV cutoff Λ = exp(−t0), in the presence of an irrelevant
operator corresponding to the higher-derivative mode of φ. In other words, the clas-
sical solution under the mixed boundary conditions may describe the RG flow of the
coupling constant along the renormalized trajectory. The main text of the present
paper supports this idea.

∗) Π is the conjugate momentum of the higher-derivative mode Φ (∼ φ̇).
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Appendix B
Higher-Derivative Pure Gravity without Gauge Fixing

In this appendix, we verify that Q(t) in the block spin gauge metric is actually
the higher-derivative mode in the sense given in Appendix A. We give a discussion
by explicitly solving the equation of motion of (3.1) without assuming any particular
form for the variables appearing in the metric (2.2).

Substituting (2.2) into (3.1), we obtain the Lagrangian of this system,∗)

L

(
q,

q̇

N
,

(
q̇

N

)·
;N
)

= Ne−dq(τ)

2Λ− d(d− 1)
(
q̇(τ)
N

)2

− A

2N2

[(
q̇(τ)
N

)· ]2

+ B

(
q̇(τ)
N

)4
 ,

(B.1)

where · ≡ d/dτ . Following the approach of Appendix A, we introduce a Lagrange
multiplier p to set

Q̃(τ) =
q̇(τ)
N

. (B.2)

The Lagrangian then becomes

L = p
(
q̇ −NQ̃

)
− A

2N
e−dq ˙̃

Q
2

+ Ne−dq
(
2Λ− d(d− 1)Q̃2 + BQ̃4

)
. (B.3)

Since N is not dynamical, its classical value is easily found to be

N =

√√√√√ A
˙̃
Q

2

2pQ̃edq − 2
(
2Λ− d(d− 1)Q̃2 + BQ̃4

) . (B.4)

Substituting this into the Lagrangian, we obtain the action for this system:

S =
∫

τ0

dτ

{
pq̇ + 2

√
A

2
e−dq ˙̃

Q
2 [

pQ̃− e−dq
(
2Λ− d(d− 1)Q̃2 + BQ̃4

)]}
.

(B.5)

Now we impose the condition (2.4) on q(τ), which allows us to change the integration
variable from τ to q, giving

S =
∫

q0

dq

{
p + 2

√
A

2
e−dqQ̇2

[
pQ− e−dq (2Λ− d(d− 1)Q2 + BQ4)

]}
,

(B.6)
∗) Here we ignore the boundary terms, because they do not affect the equation of motion.
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where

Q(q) ≡ Q̃(τ(q)), (B.7)

and · is now understood to represent d/dq. The action (B.6) can be further simplified
by substituting the classical value of p, and we finally obtain the action

S =
∫

q0

dq e−dq

(
−A

2
QQ̇2 +

2Λ
Q

− d(d− 1)Q + BQ3

)
. (B.8)

This is identical to the action (3.4) in the block spin gauge if we rewrite q as t. Thus
we can conclude that Q(t) in the block spin gauge metric (2.5) corresponds to the
higher-derivative mode introduced in Appendix A, and it is related to the variable
q in the temporal gauge (N = 1) by

Q(t) =
dq(τ)
dτ

∣∣∣∣
τ=q−1(t)

. (B.9)

Using the same procedure, we can also derive (4.8) from the temporal gauge metric
(2.3) under the condition (2.4).
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