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A universal description is proposed for generic viscoelastic systems with a single relaxation time. Foliation
preserving diffeomorphisms are introduced as an underlying symmetry which naturally interpolates
between the two extreme limits of elasticity and fluidity. The symmetry is found to be powerful enough
to determine the dynamics in the first order of strains.
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1. Introduction

Viscoelasticity is a notion that unifies solids and fluids (see [1]
for example), and is applied to a wide range of materials as in
rheology [2]. Viscoelastic materials behave as solids during short
intervals of time, while they do as ordinary viscous fluids at long
time scales [3,4].

In order to get a concrete image for viscoelastic materials, let
us imagine something like a chewing gum. We can see many par-
ticles bonding in it to each other (see Fig. 1). When the material
is stressed, the bonds produce an elastic force and try to make
the particles back to the original configuration. That is, the system
exhibits elasticity during short intervals of time. However, if we
keep the deformation for a long time, then the bonding structure
changes to reduce the free energy as in Fig. 1, and the shear stress
vanishes. We further assume that the material is elastic for com-
pressions even for long time scales, so that the bulk stress does
not undergo such relaxation (see Fig. 2). Thus the system exhibits
fluidity at long intervals of time.

In this Letter, we propose a framework in which the charac-
teristics of elasticity and fluidity can be both dealt with on equal
footings. We introduce two key ingredients. One is a new variable
(to be called the intrinsic metric) which represents the bonding
structures. The other is the gauge symmetry of foliation preserving
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diffeomorphisms (FPDs),1 which we find to interpolate between
the two extreme limits of elasticity and fluidity in a natural man-
ner. We show that requiring the invariance under FPDs uniquely
determines the dynamics of viscoelastic systems in the first order
of strains.

2. Geometrical setup

For an elastic material, a sufficiently small region around any
point can always be regarded as being deformed from the config-
uration with no strains. We call the shape before the deformation
the natural shape (see Fig. 3). This is a straightforward general-
ization of the notion of the “natural length” for a spring or a
rubber string. For a viscoelastic material, we assume that it ex-
hibits the elasticity during short time intervals, so that we can
define the natural shape around a given point at each moment.
Since the natural shape is constant in time for elastic materials,
its time dependence represents the plasticity (i.e. non-elasticity) of
the material. In order to describe the natural shape quantitatively,
we introduce a new dynamical variable to be called the intrinsic
metric, and discuss its properties in this section.

At each time t , we introduce coordinates ξ = (ξa) (a = 1,2,3)

arbitrarily on the material.2 We then define the intrinsic metric of
the material (denoted by gab(ξ, t)) such that the distance between

1 An interesting application to quantum gravity was recently found by Hořava [5].
For mathematical details of FPDs, see also [6].

2 Here we assume that the coordinates ξ move smoothly on the material as the
time t varies.
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Fig. 1. Shear deformation of viscoelastic material. If we keep the deformation for a long time, the bonds are reconnected and then the stress due to the deformation vanishes.

Fig. 2. Compression of viscoelastic material. The material we consider here is elastic for compressions even for long time scales, and thus the bulk stress does not undergo
relaxation.

Fig. 3. A sufficiently small region around any point can always be regarded as being
deformed from the natural shape.

two points at ξ and ξ + dξ at fixed time t is given by the distance
in the natural shape (see Fig. 4):

ds2 = gab(ξ, t)dξa dξb ≡ (length in the natural shape)2. (2.1)

We let Xi(ξ, t) be the spatial Cartesian coordinates of the point
with ξ at t . We emphasize that the intrinsic metric gab(ξ, t) is
independent of Xi(ξ, t), and can differ from the induced metric,3

hab(ξ, t) ≡ ∂a Xi(ξ, t)∂b Xi(ξ, t), (2.2)

which measures the distance in the real three-dimensional space
(see Fig. 4). Note that their discrepancies

εab(ξ, t) ≡ 1

2

(
hab(ξ, t) − gab(ξ, t)

)
(2.3)

represent the strain tensor of the system. In order to see this, let
us consider an elastic material. We take the coordinates ξ such
that they move with the atoms and coincide with their Cartesian
coordinates in the mechanical equilibrium. When the material is
deformed slightly, the atom labeled with ξ has the coordinates
Xa(ξ, t) = ξa + ua(ξ, t), where ua(ξ, t) is the displacement vector,
and we have

hab = δab + ∂aub + ∂bua + O
(
u2). (2.4)

Since the intrinsic metric keeps taking the values in the mechan-
ical equilibrium, gab = δab , we have that εab = (1/2)(hab − gab) �
(1/2)(∂aub + ∂bua). This shows that εab is certainly the strain ten-
sor for elastic systems. In the following discussions, we make the
linear approximation with respect to εab . This implies that for the
quantities of O(εab) one can raise or lower vector indices by either
of gab or hab .

3 For a function F (ξ, t) we write Ḟ = ∂ F/∂t and ∂a F = ∂ F/∂ξa .

We denote by ρ0 the mass density in the absence of strains.
In this Letter, we assume that ρ0 is a constant independent of
ξ and t . Then the mass contained in a volume element d3ξ =
dξ1 dξ2 dξ3 is given by ρ0

√
g(ξ, t)d3ξ , and the mass density in

the real three-dimensional space is given by

ρ(ξ, t) = ρ0
√

g(ξ, t)d3ξ√
h(ξ, t)d3ξ

=
√

g(ξ, t)√
h(ξ, t)

ρ0. (2.5)

As an example, let us consider a squeeze deformation of a two-
dimensional viscoelastic material formed by bonding particles as
in Fig. 5. The wavy lines stand for the bonds. The left figure rep-
resents the material before the deformation. Here we take ξ to
be Cartesian coordinates, and then both of the induced and in-
trinsic metrics have the same form: hab = gab = δab . Therefore
the mass density ρ is equal to ρ0. We assume that ξ are at-
tached to the particles, so that they comove with the material
under the deformation. The middle figure represents the mate-
rial just after the deformation. The induced metric and the mass
density change according to the deformation, while the intrin-
sic metric does not. The induced metric is evaluated as ds2 =
(dξ1)2 + (dξ2)2 − 2 dξ1 dξ2 cos(π/2 + θ) by using the cosine for-
mula. The right figure represents the material after a sufficiently
long time. In the process of relaxation, the induced metric and the
mass density are preserved, while the intrinsic metric gab becomes
proportional to hab , gab = f (ξ, t)hab , as will be discussed around
(4.7). The factor f (ξ, t) can be determined from ρ through (2.5).

3. Foliation preserving diffeomorphisms

Since we have introduced a different coordinate system ξ at
each time, in order to describe the actual motion of a material
one needs to specify how the fluid particles move relatively to the
coordinate system ξ . This can be realized by introducing a vector
field Na(ξ, t), with which the fluid particle located at ξ at time t
is supposed to move to the position ξa + Na(ξ, t)δt after the time
interval δt (see Fig. 6).

In fact, by using Na , the time derivative along the path of a
fluid particle (the material derivative) of a scalar quantity ϕ(ξ, t)
can be expressed as

Dϕ

Dt
= ϕ̇ + Na∂aϕ. (3.1)

For example, when measured in the real space, the velocity vi(ξ, t)
and the acceleration ai(ξ, t) of the fluid particle located at ξ are
given by

vi = D Xi

Dt
= Ẋ i + Na∂a Xi, (3.2)
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Fig. 4. The intrinsic metric is defined at each time t as the distance in the natural shape, ds2 = gab(ξ, t)dξa dξb . The real distance is measured with the induced metric,
ds2

(h)
= hab(ξ, t)dξa dξb .

Fig. 5. Squeeze with the angle θ . This can be obtained by combining a shear deformation and a compression (plus a rotation).

Fig. 6. Definition of Na .

ai = D vi

Dt
= v̇ i + Na∂a vi . (3.3)

Then we consider the foliation preserving diffeomorphism
(FPD):

t′ = t, ξ ′a = ξ ′a(ξ, t). (3.4)

We say that a quantity T a···
b···(ξ, t) is a covariant tensor, if it trans-

forms as a three-dimensional tensor at each time:

T ′a···
b···(ξ ′, t) = ∂ξ ′a

∂ξ c
· · · ∂ξd

∂ξ ′b
· · · T c···

d···(ξ, t), (3.5)

where the transition functions ∂ξ ′a/∂ξ c and ∂ξd/∂ξ ′b should be
evaluated at time t . For example, Xi , vi and ai are covariant
scalars, and gab , hab and εab are rank two covariant tensors.

On the other hand, Na is not a covariant vector but transforms
with an inhomogeneous term4:

N ′a(ξ ′, t) = ∂ξ ′a(ξ, t)

∂ξb
Nb(ξ, t) + ∂ξ ′a(ξ, t)

∂t
. (3.6)

To see this, let us consider a fluid particle in two different co-
ordinate systems, and assume that it has the coordinates ξa and
ξ ′a , respectively, at time t . Then, by definition, at time t + δt , they
become ξa + N(ξ, t)δt and ξ ′a + N ′a(ξ ′, t)δt , respectively. Because
these are related by the transformation (3.4) at t + δt , we have

ξ ′a + N ′a(ξ ′, t
)
δt = ξ ′a(ξ + N(ξ, t)δt, t + δt

)

= ξ ′a + ∂ξ ′a(ξ, t)

∂ξb
Nb(ξ, t)δt + ∂ξ ′a(ξ, t)

∂t
δt,

(3.7)

and thus we obtain (3.6).

4 This is naturally understood, if one recognizes that Na can be regarded as a
gauge field that appears when the three-dimensional diffeomorphism is gauged in
the time direction.
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Note that the time derivative of a covariant tensor T a···
b··· is

no longer covariant. We, however, can make a covariant tensor by
considering the derivative along fluid particles as in (3.2) and (3.3):

D

Dt
T a···

b··· = Ṫ a···
b··· + L N T a···

b···, (3.8)

where L N is the Lie derivative with respect to the vector field
N = Na∂a:

L N T a···
b··· = Nc∂c T a···

b··· − ∂c Na T c···
b··· − · · ·

+ ∂b Nc T a···
c··· + · · · . (3.9)

For example, from gab , we can make a covariant tensor Kab to be
called the extrinsic curvature,

Kab = 1

2

Dgab

Dt
= 1

2

(
ġab + ∂a Nc gcb + ∂b Nc gac + Nc∂c gab

)
. (3.10)

Similarly, we can define the extrinsic curvature K (h)

ab which corre-
sponds to hab ,

K (h)

ab = 1

2

Dhab

Dt
= 1

2

(
ḣab + ∂a Nchcb + ∂b Nchac + Nc∂chab

)
. (3.11)

Note that

K (h)

ab − Kab = Dεab

Dt
. (3.12)

We then introduce the dreibeins ei
a(ξ, t) and their inverses

ea
i (ξ, t):

ei
a(ξ, t) = ∂a Xi(ξ, t), ea

i ei
b = δa

b . (3.13)

From (3.2) and (3.13), we obtain

hab = ei
aei

b, ∂aei
b = ∂bei

a,

ėi
a = ∂a vi − (

∂a Nb)ei
b − Nb∂aei

b, (3.14)

and thus

Dei
a

Dt
= ∂a vi . (3.15)

By using the dreibeins, the scalars vi(ξ, t) and ai(ξ, t) can be trans-
formed into vector fields as

va ≡ ea
i vi, va ≡ ei

a vi, aa ≡ ea
i ai, aa ≡ ei

aai . (3.16)

We can calculate the acceleration aa by using the Leibniz rule for
D/Dt and (3.15) as

aa = ei
a

D vi

Dt
= D(ei

a vi)

Dt
− vi Dei

a

Dt
= D va

Dt
− ∂a

(
1

2

(
vi)2

)

= v̇a + (
∂a Nb)vb + Nb∂b va − ∂a

(
1

2
vb vb

)
. (3.17)

Furthermore, by using the first of (3.14) and (3.15), we can show

K (h)

ab = 1

2

((
∂a vi)ei

b + (
∂b vi)ei

a

) = 1

2

(∇(h)
a vb + ∇(h)

b va
)
. (3.18)

The set of FPDs forms a gauge symmetry group of the system,
which can be gauge-fixed arbitrarily according to convenience in
describing the dynamics of a given system. Two of the useful gauge
fixings are the following:

(A) Comoving frame:
We set Na(ξ, t) = 0. In this frame, Xi(ξ, t) describes the motion

of the fluid particle attached to the coordinate ξ , and we have

vi(ξ, t) = Ẋ i(ξ, t),

ai(ξ, t) = Ẍ i(ξ, t) (in the comoving frame). (3.19)

This frame is useful for describing the dynamics of elastic materi-
als. Note that the acceleration field (3.17) is expressed as

aa = v̇a − ∂a

(
1

2
vb vb

)
(in the comoving frame). (3.20)

The last term gives the inertial force.

(B) Laboratory frame:
We set Xa(ξ, t) ≡ ξa . In this frame, we have Ẋ i(ξ, t) = 0, ea

i = δa
i

and hab = δab . Then, from (3.2) and (3.16) we obtain

va(ξ, t) = Na(ξ, t) (in the laboratory frame). (3.21)

This frame is useful for describing the dynamics of fluid. Note that
the acceleration field (3.17) represents the material derivative of
the velocity field

aa = v̇a + vb∂b va (in the laboratory frame). (3.22)

4. Fundamental equations

We are now in a position to write down a set of equa-
tions which determine the time evolution of Xi(ξ, t), gab(ξ, t) and
Na(ξ, t) up to FPDs. The covariance under FPDs is found to be pow-
erful enough to uniquely determine the dynamics in the first order
of εab .

4.1. gab(ξ, t)

We first consider the limiting case of elasticity. Due to our
definition of the intrinsic metric, gab(ξ, t) should be constant in
time for elastic materials in the comoving frame (Na = 0). The
FPD-covariant expression for this statement is that the extrinsic
curvature Kab of (3.10) vanishes:

Kab = 0 (elastic limit). (4.1)

This implies that the non-vanishing Kab represents the genuinely
plastic deformations.

In order to make further discussions, we need to separate the
trace part from Kab because it vanishes for any materials due to
the mass conservation of the system:

K (ξ, t) ≡ gab(ξ, t)Kab(ξ, t) = 0. (4.2)

In fact, contracting (3.10) with gab , we obtain

K = 1

2
gab(ġab + ∂a Nc gcb + ∂b Nc gac + Nc∂c gab

)

= 1√
g

(
(
√

g )· + ∂a
(√

gNa))

= 1

ρint

(
ρ̇int + ∂a

(
ρintNa)), (4.3)

where ρint(ξ, t) = ρ0
√

g(ξ, t) is the mass density with respect to
the intrinsic metric. This indicates that the vanishing of K is equiv-
alent to the mass conservation, which can be easily seen in the
comoving frame where Na = 0 and ρ̇int = 0.

The traceless part of Kab on the other hand describes the rate of
the shear deformation of the intrinsic metric, and thus is expected
to be proportional to the traceless part of the strain tensor

K̃ab(ξ, t) = 1

τ
ε̃ab(ξ, t), (4.4)

where τ is the relaxation time, and
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K̃ab ≡ Kab − 1

3
K gab, (4.5)

ε̃ab ≡ εab − 1

3

(
gcdεcd

)
gab. (4.6)

We call (4.4) the rheology equation hereafter. After a time interval
much longer than τ , ε̃ab(ξ, t) vanishes and thus gab(ξ, t) becomes
proportional to hab(ξ, t):

gab(ξ, t) = f (ξ, t)hab(ξ, t)
(

f (ξ, t): a scalar function
)
, (4.7)

where f (ξ, t) is determined by the mass conservation as in the
example in Section 2.

Eq. (4.4) is the simplest and is expected to be universal. It
is consistent with (4.1) because the elastic limit corresponds to
τ = ∞. The fluid limit is also realized correctly by taking τ = 0,
in which we have ε̃ab = 0. This implies that gab is proportional to
hab as in (4.7). The only remaining degree of freedom of gab be-
comes the density of the material, which means that the system
corresponds to an isotropic fluid.

Note that (4.2) and (4.4) indicate that all the components of
Kab are of the order ε. Then from (3.12) we find that so are those
of K (h)

ab , and we have

K̃ (h)

ab − K̃ab = Dε̃
(h)

ab

Dt
+ O

(
ε2), (4.8)

K (h) − K = Dε(h)

Dt
+ O

(
ε2). (4.9)

4.2. X(ξ, t)

The dynamics of Xi(ξ, t) should be expressed as Euler’s equa-
tion which is written with the stress tensor Tab as

ρaa = −∇(h)b Tba, (4.10)

where ∇(h) is the covariant derivative with respect to hab . We
show that the leading form of the stress tensor in the derivative
expansion can be determined by the following requirements:

• Tab is symmetric and covariant under FPDs.
• Tab is linear in the strain εab and the spatial derivative of the

velocity, ∇(h)
a vb .

The above requirements imply that Tab is a linear combination
of the irreducible components of εab and K (h)

ab = (1/2)(∇(h)
a vb +

∇(h)

b va) (see (3.18)):

Tab = −2με̃
(h)

ab − 1

κ
ε(h)hab − 2γ K̃ (h)

ab − ζ K (h)hab, (4.11)

where

ε(h) ≡ habεab, (4.12)

ε̃
(h)

ab ≡ εab − 1

3
ε(h)hab, (4.13)

K (h) ≡ hab K (h)

ab , (4.14)

K̃ (h)

ab ≡ K (h)

ab − 1

3
K (h)hab. (4.15)

From the discussions around (4.8), we find that all the terms in
(4.11) are of the order of ε.

In order to see the meaning of the coefficients in (4.11), we
consider two extreme limits of elasticity and fluidity. We first con-
sider the elastic limit. Since Kab = 0 in the elastic limit (see (4.1)),
the formulas (4.8) and (4.9) lead to

K̃ (h)

ab = Dε̃
(h)

ab

Dt

(
1 + O(ε)

)
, (4.16)

K = Dε(h)

Dt

(
1 + O(ε)

)
, (4.17)

and thus we have

Tab � −2με̃
(h)

ab − 1

κ
ε(h)hab

− 2γ
Dε̃

(h)

ab

Dt
− ζ

Dε(h)

Dt
hab (elastic limit). (4.18)

This indicates that the parameters μ and 1/κ are the shear and
bulk moduli, respectively. The last two terms express frictions.

On the other hand, the fluid limit is realized by considering the
case where the time scale T of the variation of the shear strain
ε̃ab ,

D

Dt
ε̃ab ∼ 1

T
ε̃ab, (4.19)

is much longer than the relaxation time τ , T 
 τ . We then can
show that

K̃ab = K̃ (h)

ab

(
1 + O

(
τ

T

))
, (4.20)

because the following holds due to (4.8):

K̃ (h)

ab − K̃ab = Dε̃
(h)

ab

Dt

(
1 + O(ε)

) = Dε̃ab

Dt

(
1 + O(ε)

) ∼ 1

T
ε̃ab

= τ

T
K̃ab. (4.21)

Since ε̃
(h)

ab = ε̃ab(1 + O(ε)) = τ K̃ab(1 + O(ε)), we can rewrite the
stress tensor (4.11) into

Tab � −2ηK̃ (h)

ab − ζ K (h)hab − 1

κ
ε(h)hab (fluid limit), (4.22)

where

η ≡ γ + μτ. (4.23)

By using (3.18), each term in (4.22) can be interpreted in terms
of fluid mechanics if we take the laboratory frame (Xa(ξ, t) = ξa ,
va = Na):

hab = δab, (4.24)

K̃ (h)

ab = 1

2
(∂a vb + ∂b va) − 1

3
∂c vcδab, (4.25)

K (h) = hab K (h)

ab = ∂c vc, (4.26)

which indicates that η and ζ represent the shear and bulk vis-
cosities of the fluid, respectively.5 The third term in (4.22) can be
interpreted as the pressure:

p = − 1

κ
ε(h). (4.27)

To see this, we notice that ε(h) (�(
√

h − √
g )/

√
g ) measures the

deviation of the real volume element from that of the natural

5 Eq. (4.23) shows that the shear viscosity consists of two contributions. The first
term γ reflects the friction which the material already has in the elastic limit, while
the second term μτ represents the stress caused by the strain as the material un-
dergoes plastic deformations [4].
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shape,6 and that the pressure vanishes in the natural shape. There-
fore p must be proportional to −ε(h) . We then find that κ agrees
with the coefficient of compression because κ = ρ dρ−1/dp|ρ=ρ0

(ρ = ρ0
√

g � ρ0(1 − ε(h)) and p = −κ−1ε(h)).
The set of Eqs. (4.2), (4.4), (4.10), (4.11) and (4.23) are the

fundamental equations which govern the dynamics of a given vis-
coelastic material. We can see that macroscopic properties of such
materials are characterized only by six parameters (ρ0, τ ,η, ζ,

κ,γ ) from which another parameter μ is obtained via (4.23).

5. Conclusion and discussion

We have proposed a set of fundamental equations to describe
generic viscoelastic systems in a unified way. It is expressed as
a world volume theory with the target space coordinates Xi(ξ, t)
and the intrinsic metric gab(ξ, t). FPDs play an important role in
interpolating the two extreme limits of elasticity and fluidity. We
have shown that the covariance under FPDs uniquely determines
the form of the equations in the first order of strains. We thus
conclude that the set of equations gives a universal description of
viscoelastic systems.

Here we have considered viscoelastic systems with a single re-
laxation time. It would be interesting to consider a generalization
to the case with more than one relaxation time in order to de-
scribe more realistic materials realized in laboratories.

6 Note that in the linear order of ε
(h)

ab we have

√
h − √

g√
g

=
√

det(gab + 2ε
(h)

ab ) − √
g

√
g

� ε(h).
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