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Abstract–Crystalline anionic salts with copper octafluoro- and hexadecafluorophthalocyanines, 

(Bu4N+)2[CuII(F8Pc)4−]2−∙2C6H4Cl2 (1) and (PPN+)3[CuF16Pc]33−∙2C6H5CN (2), where PPN+ is 

bis(triphenylphosphoranylidene)ammonium and Pc is phthalocyanine, have been obtained. The 

absence of noticeable absorption in the NIR range, and DFT calculations for 1, indicate that both 

negative charges are mainly localized on the Pc ligand, and that the [CuII(F8Pc)4−]2− dianions are 

formed without reduction of CuII. The magnetic moment of 1.60 µB corresponds to the 

contribution of one S = 1/2 spin per dianion. The spin is localized on the CuII atom, which shows 

an EPR signal characteristic of CuII. Dianions are isolated in 1, providing only weak magnetic 

coupling of spins with a Weiss temperature of −4 K. Salt 2 contains closely packed π-π stacks 

built of [CuF16Pc]− anions of types I and II, and the interplanar distances are 3.187 and 3.275 Å. 

According to the DFT calculations, the [CuF16Pc]− anions of types I and II can have different 
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charge distributions, with localization of an extra electron on the copper atoms to form 

diamagnetic [CuI(F16Pc)2−]− monoanions or delocalization of an extra electron on the F16Pc 

ligand to form [CuII(F16Pc)•3−]•− having an S = 1/2 (CuII) + 1/2 (F16Pc•3−) spin state. In fact, at 

300 K, the magnetic moment of 2 of 3.25 µB per formula unit is rather close to the contribution 

from two [CuII(F16Pc)•3−]•− (calculated µeff is 3.46 µB). The Weiss temperature of −21.5 K 

indicates antiferromagnetic coupling of spins, which can be modeled by stronger intermolecular 

coupling between (F16Pc)•3− with J1/kB = −23.5 K and weaker intramolecular coupling between 

CuII and (F16Pc)•3− with J2/kB = −8.1 K. This interaction is realized in the {[CuII(F16Pc)•3−]•−}2 

dimers separated by diamagnetic [CuI(F16Pc)2−]− species. In spite of the stacking arrangement of 

phthalocyanine macrocycles in 2, the inhomogeneous charge distribution and non-uniform 

distances between the macrocycles should suppress electrical conductivity.  

KEYWORDS: copper (II) octafluoro- and hexadecafluorophthalocyanine, dianions, charge 

disproportionation, crystal structures, optical and magnetic properties 

*Correspondence to: Dmitri V. Konarev, email: konarev@icp.ac.ru, FAX: +7 49652-21852.  

Introduction 

Metal phthalocyanines can possess promising conducting and magnetic properties in oxidized 

and reduced forms.1–9 For example, electrochemical or chemical oxidation of metal 

phthalocyanines1–2 or the [MIII(CN)2Pc]− anions (M = Co, Fe, Pc is phthalocyanine)3–5 yields 

compounds with a stacking arrangement of the Pc macrocycles and partial charge transfer. Some 

of these compounds show metallic conductivity down to liquid helium temperatures. Compounds 

with promising magnetic properties were obtained with manganese phthalocyanine or substituted 

phthalocyanine and tetracyanoethylene.6–7 

Theoretical calculations show that reduced metal phthalocyanines can also manifest 

promising conducting properties, such as metallic conductivity or superconductivity.8 A 

compound with ferrimagnetic ordering of spins was obtained through the reaction of iron (II) 

phthalocyanine with decamethylchromocene.9 Several methods for the preparation of negatively 
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charged metal phthalocyanines as single crystals have been developed. For example, metal 

phthalocyanines are reduced by alkali metals in coordinating solvents,10–11 Cp*Li (Cp*: 

pentamethylcyclopentadienyl),12 or sodium fluorenone ketyl in the presence of organic 

cations.13–19 Analysis of the crystal structures of these compounds shows that most of the metal 

phthalocyanine radical anions are packed in the crystals separately without noticeable π-π 

stacking.10–18 The anions of iron (I) hexadecachlorophthalocyanine, due to the large size of the 

[FeI(Cl16Pc)2−]− anions, form stacks with effective π-π interactions between the macrocycles.20–21 

The stacks can be isolated with a uniform or non-uniform arrangement of the Cl16Pc macrocycles. 

Weak π-π interactions between phthalocyanines from the neighboring stacks also results in the 

formation of two-dimensional phthalocyanine layers.21 The reduction of iron(II) 

hexadecachlorophthalocyanine is accompanied by the formation of iron (I) ions, retaining the Pc 

macrocycles in the dianionic state. As a result, relatively strong magnetic coupling between spins 

localized on the paramagnetic Fe(I) centers is observed.20–21 However, high conductivity is not 

possible in these salts due to the fact that the (Cl16Pc)2− macrocycles are still in the dianionic 

state and are diamagnetic. 

In this study, we chose copper (II) octafluoro- and hexadecafluorophthalocyanines (CuF8Pc 

and CuF16Pc), whose reduction, in contrast to iron(II) hexadecachlorophthalocyanine, is centered 

on the Pc macrocycles. We obtained two salts: (TBA+)2[CuII(F8Pc)4−]2−∙2C6H4Cl2 (1) and 

(PPN+)3[Cu(F16Pc)]33−∙2C6H5CN (2). Salt 1 contains isolated [CuII(F8Pc)4−]2− dianions. Closely 

packed π-π stacks of the [Cu(F16Pc)]− monoanions are formed in 2, among which unusual 

variation in charge distribution is most probably realized. There is an internal degree of freedom 

in that one extra electron is accommodated on the copper atom forming the diamagnetic 

[CuI(F16Pc)2−]− anion or on the F16Pc ligand, forming a paramagnetic [CuII(F16Pc)•3−]•− radical 

anion. We present and discuss for the first time the molecular structure, and the optical and 

magnetic properties of the compounds with the anions of fluorinated copper phthalocyanines.  
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EXPERIMENTAL 

Materials  

Sublimed grade copper (II) octafluorophthalocyanine [CuII(F8Pc)] and copper (II) 

hexadecafluorophthalocyanine [CuII(F16Pc)] (>98% purity) were purchased from TCI. 

Tetrabutylammonium bromide ((Bu4N)Br, 99%) and bis(triphenylphosphoranylidene)ammonium 

((PPN)Cl, 97%) were purchased from Aldrich. The reductant, sodium fluorenone ketyl, was 

obtained as described.22 Solvents were purified under an argon atmosphere. The o-

dichlorobenzene (C6H4Cl2) was distilled over CaH2 under reduced pressure, benzonitrile 

(C6H5CN) was distilled over sodium under reduced pressure and n-hexane was distilled over 

Na/benzophenone. Salts 1 and 2 were synthesized and stored in an MBraun 150B-G glove box 

with a controlled atmosphere containing less than 1 ppm of water and oxygen. Solvents were 

degassed and stored in the glove box. The KBr pellets used for IR and UV-visible-NIR analyses 

were prepared in the glove box. EPR and SQUID measurements were performed on 

polycrystalline samples of 1 and 2 sealed in 2 mm quartz tubes under 10-5 torr pressure.   

General 

UV-visible-NIR spectra were measured using KBr pellets on a Perkin Elmer Lambda 1050 

spectrometer in the 250–2,500 nm range. FT-IR spectra were obtained using KBr pellets with a 

Perkin-Elmer Spectrum 400 spectrometer (400–7,800 cm–1). A Quantum Design MPMS-XL 

SQUID magnetometer was used to measure the static magnetic susceptibility of 1 and 2 under a 

magnetic field of 100 mT, under cooling and heating conditions in the 300−1.9 K range. The 

sample-holder contribution and core temperature independent diamagnetic susceptibility (χd) 

were subtracted from the experimental values. The χd values were estimated from the 

extrapolation of the data in the high-temperature range, by fitting the data with the following 

expression: χM = C/(T − Θ) + χd, where C is the Curie constant and Θ is the Weiss temperature. 

Effective magnetic moments (µeff) were calculated with the formula: µeff = (8χMT)1/2.  
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Synthesis  

Crystals of 1 and 2 were grown by a diffusion technique. The reaction mixture was filtered into a 

50 mL glass tube 1.8 cm in diameter with a ground glass plug and then 30 mL of n-hexane was 

layered over the solution. Slow mixing of the solutions over 1–2 months resulted in precipitation 

of crystals. The solvent was then decanted from the crystals, and they were washed with n-

hexane. The compositions of the obtained compounds were determined by X-ray diffraction 

analysis of a single crystal. Several crystals from one synthesis were found to consist of a single 

crystalline phase. Due to the high air sensitivity of 1 and 2, elemental analysis could not be used 

to prove the composition. 

(Bu4N)2[CuII(F8Pc)]∙2C6H4Cl2 (1) was obtained via the reduction of CuII(F8Pc) (30 mg, 0.042 

mmol), using an excess of sodium fluorenone ketyl (14 mg, 0.069 mmol) in the presence of an 

excess of (Bu4N)Br (30 mg, 0.092 mmol) in 16 ml of a 1:1 mixed solvent of o-dichlorobenzene 

and benzonitrile. The reaction was performed for two hours at 100°C. The resulting deep blue-

violet solution was cooled down to room temperature and filtered into a tube for crystal growth. 

Black prisms were obtained in 68% yield.  

(PPN)3[CuII(F16Pc)]3∙2C6H5CN (2) was obtained via the reduction of CuIIF16Pc (36 mg, 0.042 

mmol), using an excess of sodium fluorenone ketyl (14 mg, 0.069 mmol) in the presence of one 

equivalent of (PPN)Cl (24 mg, 0.092 mmol) in 14 ml of benzonitrile. The reaction was 

performed for two hours at 100°C. The resulting deep blue-violet solution was cooled down to 

room temperature and filtered into a tube for crystal growth. Very thin black needles were 

obtained in 72% yield. 

X-ray crystal structure determination 

X-ray diffraction data for a crystal of 1 were collected on a Bruker Smart Apex II CCD 

diffractometer with graphite monochromated MoKα radiation, using a Japan Thermal 

Engineering Co. cooling system DX-CS190LD. Raw data reduction to F2 was carried out using 

Bruker SAINT.23 The structures were solved by the direct method and refined by the full-matrix 
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least-squares method against F2 using SHELX 2013.24 Non-hydrogen atoms were refined in the 

anisotropic approximation. Positions of hydrogen were calculated geometrically. The structure 

contains disordered solvent C6H4Cl2 molecules. One molecule is disordered between two 

orientations with the 0.403(4)/0.097(4) occupancies and another molecule has 0.5 occupancy. 

Both molecules are positioned in the inversion centers.     

Table 1. X-ray diffraction data for salts 1 and 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) w = 1/[σ2(Fo
2) + (aP)2 + bP], P = [Max(Fo

2,0) + 2 Fc
2]/3 

X-ray diffraction data for a crystal of 2 were collected with a MAR225 CCD detector using 

synchrotron radiation at the BESSY storage ring, BL 14.2 (λ = 0.84344 Å), PSF of the Free 

University of Berlin, Germany. The structure was solved by the direct method and refined by the 

full-matrix least-squares method against F2 using SHELX 2014.24 Non-hydrogen atoms were 

Compound 1 2 
Structural formula (Bu4N)2[Cu(F8Pc)]∙ 

2C6H4Cl2 

(PPN)3[CuF16Pc]3∙ 
2C6H5CN 

Empirical formula C76H88Cl4CuF8N10 C218H100Cu3F48N29P6 
Mr [g mol-1] 1498.90 4413.70 

Crystal color and shape, 
Size, mm×mm×mm 

Black block 
0.323×0.092×0.074 

Black needle 
0.07×0.01×0.01 

Crystal system monoclinic monoclinic 
Space group P21/n P21/n 

a, Å 8.5731(7) 22.847(1) 
b, Å 25.247(2) 9.9281(3) 
c, Å 16.6358(11) 40.385(1) 
β,° 94.704(7) 97.718(5) 

V, Å3 3588.6(5) 9077.4(5) 
Z 2 2 

ρcalc [g/cm3] 1.387 1.615 
µ [mm-1] 0.525 0.520 
F(000) 1566 4440 

Absorption correction  none none 
T [K] 150.0(2) 100(2) 

Max. 2Θ,° 58.68 69.48 
Reflns measured 15088 120864 

Unique reflns 7999 21841 

Parameters, restraints 557, 288 1430, 0 

Reflns [Fo>2σ(Fo)] 3380 20160 
R1 [Fo>2σ(Fo)] 0.1157 0.0418 
WR2 (all data)a, 

a 
b 

0.1964 
0.0241 

12.3467 

0.1029 
0.0500 

11.0000 
G.O.F  1.042 1.009 

Restr. G.O.F. 1.029 1.009 
CCDC number 1481219 1422989 
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refined in the anisotropic approximation. Positions of hydrogen atoms were calculated 

geometrically. One of two independent PPN+ cations contains a phenyl group disordered 

between two orientations with the 0.52/0.48(3) occupancies. 

Computational details 

Density functional theory (DFT) calculations were carried out by unrestricted methods based on 

the M11 functional.25 For copper and the other atoms, cc-pVTZ-PP26 and cc-pVDZ27 basis sets 

were used, respectively. The calculations were performed using the “Int=SuperFineGrid” 

keyword. Full geometry optimization was done for D4h-symmetric [CuPc]0, [Cu(F8Pc)]0, and 

[Cu(F16Pc)]0. As for Ci-symmetric [Cu(F8Pc)]2−, only the coordinates of hydrogen atoms were 

geometry-optimized from the X-ray crystal structure data as the initial structure. As for the Ci-

symmetric [Cu(F16Pc)]33− trimer, where CuF16Pc molecules were stacked in a type II−type 

I−type II manner, the X-ray crystal structure data were used without geometry optimization. The 

stability of wave functions in the [Cu(F8Pc)]2− and [Cu(F16Pc)]33− trimers were checked by 

specifying the “Stable=Opt” keyword. The subsequent natural bond orbital (NBO) analysis was 

done by an NBO program.28 All computations were performed with the Gaussian 09 program 

package.29 

Results and Discussion  

a. Synthesis 

The preparation of single crystals of anionic salts of copper (II) octafluoro- and 

hexadecafluorophthalocyanines was possible only when high-purity starting compounds of 

sublimation grade (TCI, >98.0%) were used.  

The presence of electron-withdrawing fluoro-substituents in these phthalocyanines makes 

them stronger acceptors30 than [CuII(Pc)2−]0. The reduction of [CuII(F8Pc)2−]0 by an excess of 

sodium fluorenone ketyl in the presence of excess TBA+ cations was possible up to the dianionic 

state, whereas [CuII(Pc)2−]0 under the same conditions was reduced up to the monoanionic state 

only.18 The reduction was carried out in a 1:1 mixture of o-dichlorobenzene and benzonitrile, 
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since the salt is poorly soluble in pure o-dichlorobenzene. (TBA+)2[CuII(F8Pc)4−]2−∙2C6H4Cl2 (1) 

was formed as black blocks up to 0.4 × 0.4 × 0.6 mm3 in size. Salts of [CuII(F8Pc)4−]2− can also 

be obtained with the PPN+ and Ph3MeP+ cations, but the crystals of these salts have the shape of 

extremely thin needles and their structures cannot be solved. 

 [CuII(F16Pc)2−]0 was reduced selectively to the monoanionic state by a slight excess of 

fluorenone ketyl in the presence of a stoichiometric amount of the PPN+ cations. Тhе synthesis 

was carried out in pure benzonitrile, since reduced copper (II) hexadecafluorophthalocyanine is 

insoluble in o-dichlorobenzene. The crystals of (PPN+)3[Cu(F16Pc)]33−∙2C6H5CN (2) were 

formed as thin needles suitable for X-ray diffraction analysis using synchrotron radiation only. 

Similar salts can be obtained with the TBA+ and Ph3MeP+ cations. However, we did not succeed 

in solving the crystal structures of these crystals. [CuII(F16Pc)2−]0 can also be reduced to the 

dianionic state by an excess of the cations and reductant, but these salts are even less soluble in 

benzonitrile, and no crystals suitable for X-ray diffraction analysis could be obtained in this case. 

b. Optical properties.  

The starting [CuII(F8Pc)2−]0 and [CuII(F16Pc)2−]0 show similar spectra in the UV-visible-NIR 

range, manifesting Soret bands at 30 cm-1, 120 cm-1, and 29,500 cm-1 (332 nm and 339 nm), and 

split Q-bands at 16,233 cm-1, 14,900 cm-1, and 13,717 cm-1 (616 nm, 671 nm, and 729 nm) and 

16,077 cm-1, 14,100 cm-1, and 12,674 cm-1 (622, 709, and 789 nm), respectively (Fig. 1). Both 

phthalocyanines also show weak bands in the NIR range at 9,260 cm-1 (1,080 nm) and  8,800  

cm-1 (1137 nm), respectively. It is seen that all bands in the spectrum of [CuII(F16Pc)2−]0 are 

noticeably red-shifted in comparison with those in the spectrum of [CuII(F8Pc)2−]0. Previously, 

we showed that the reduction centered on the Pc ligand of CuIIPc is accompanied by the 

appearance of a new intense band in the NIR range at 10,480 cm-1 (954 nm), with a noticeable 

blue shift of both the Soret and Q-bands.18 The presence of two TBA+ cations per one CuIIF8Pc 

in 1 justifies its dianionic state. Salt 1 manifests absorption bands at 31,350 cm-1, 16,950 cm-1, 
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and 15,015 (shoulder) cm-1 (319, 590 nm and 666 nm) and a weak band at 9,870 cm-1 (1,013 nm) 

(Fig. 1a). Since the absorption band in the spectrum of 1 in the NIR range is weak, it can be 

concluded that two extra electrons in the dianion are accommodated on the F8Pc macrocycle to 

form closed-shell (F8Pc)4− tetraanions in [CuII(F8Pc)4−]2−. The presence of eight electron-

withdrawing fluoro-substituents in CuIIF8Pc can facilitate the accommodation of both electrons 

of the dianion on the Pc macrocycle. Additionally, the reduction of CuII is not supported by 

optical spectra, since the [CuI(F8Pc)•3−]•− species should have an intense absorption band in the 

NIR range similarly to [CuII(Pc)•3−]•−  18 but only one weak band at 9,870 cm-1 (1,013 nm) can be 

associated with these species. Both Soret and Q-bands are noticeably blue-shifted in the 

spectrum of 1 in comparison with the spectrum of neutral [CuII(F8Pc)2−]0 (Fig. 1a). The spectrum 

of 1 is similar to those of reduced metal phthalocyanines containing Pc4− tetraanions, such as 

[NbIVO(Pc)4−]2−, [GeIV(Pc)4−]0, [ZrIV(Pc)4−]0, and [SnII(Pc)4−].31–33  

The ratio of the PPN+ cations and CuII(F16Pc) in 2 is 1:1, indicating that the formal charge on 

CuII(F16Pc) is −1. This manifests intense absorption bands at 30,864 cm-1 and 17,513 cm-1 (324 

Figure 1. Spectra of: (a) starting [CuII(F8Pc)2−]0 and salt 1; (b) starting [CuII(F16Pc)2−]0  and salt 

2 in the UV-visible-NIR range measured in KBr pellets prepared in anaerobic conditions. Arrow 

marks charge transfer band (CTB). 

(a) (b) 
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and 571 nm), and a weaker band is manifested as a shoulder in the NIR range at 10,965 cm-1 

(912 nm) (Fig. 1b). The appearance of the latter band indicates the presence of [CuII(F16Pc)•3−]•− 

in 2. It is also seen that both Soret and Q-bands are manifested as single bands and are strongly 

blue-shifted in 2 relative to those in the spectrum of neutral [CuII(F16Pc)2−]0. Therefore, blue 

shifts of both Soret and Q-bands are characteristic of reduced fluorinated copper (II) 

phthalocyanines. Similar blue shifts of these bands were found previously for the 

(Bu4N+)2[CuII(Pc)•3−]•−(Br−) salt and other salts containing Pc•3−.18 Solution spectra of 

[CuII(F16Pc)2−]0 and monoreduced [CuII(F16Pc)•3−]•− are shown in Fig. 2. [CuII(F16Pc)2−]0 

manifests a triple Q-band at 14,723 (680 nm), 15,427 (648 nm), and 16,323 cm-1 (612 nm), and a 

Soret band at 28,464 cm-1 (351 nm). Upon reduction, these bands were broadened, with slight 

shifts to lower energies and the low-energy shoulder appeared at 12,950 cm-1 (772 nm) (Fig. 2). 

c. Crystal structures 

Figure 2. Spectra of starting [CuII(F16Pc)2−]0 and monoreduced [CuII(F16Pc)•3−]•− species in 

benzonitrile solution. Monoreduced species were obtained by the reduction of [CuII(F16Pc)2−]0 by 

sodium fluorenone ketyl in the presence of one equivalent of (PPN)Cl. 
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The crystal structure of 1 was solved, with a relatively high R1 value of 0.1134. The reason for 

this is the presence of strongly disordered solvent molecules. Nevertheless, the geometry of 

Cu(F8Pc) in 1 was solved with reasonable accuracy. The structure of 1 is shown in Fig. 3. The 

centrosymmetric [CuII(F8Pc)4−]2− dianions are completely isolated and alternate with the Bu4N+ 

cations along the a axis. The average Cu−N(pyrrole) bond length in 1 is 1.961(5) Å. There are 

two types of C−N bonds in the Pc macrocycle with imine and pyrrole nitrogen atoms. There are 

four shorter (1.283(8) Å) and four longer (1.374(8) Å) C-N (imine) bonds. They are located in 

such a way that they belong to two oppositely located isoindole units. The alternation of the C−N 

(imine) bonds can be explained by partial disruption of aromaticity of the Pc macrocycle due to 

the formation of an antiaromatic 20 π-electron system in the (F8Pc)4− tetraanion. Similar 

alternation of the C−N (imine) bonds was found in [CuII(Pc)•3−]•− and other salts containing 

Pc•3−.18 Alternation of the C−N (pyrrole) bonds is also observed in 1, with average values of 

1.364(8) and 1.456(8) Å for shorter and longer bonds. It should be noted that no alternation of 

these bonds was found in [CuII(Pc)2−]0 34 and [CuII(Pc)•3−]•− 18. The average C−F bond length in 1 

was 1.381(7) Å.    

Figure 3. Crystal structure of 1; the [CuII(F8Pc)4−]2− dianions alternating with the Bu4N+ cations 

along the a axis are shown. 
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There are two unique Cu(F16Pc)− anions in 2 on a center of inversion and in a general position 

(marked as I and II, respectively, in Fig. 4a). These anions form closely packed π-π stacks 

arranged along the b axis and isolated by the PPN+ cations (Fig. 4b). Interplanar distances 

between phthalocyanines are not uniform in the stacks, with shorter (3.187 Å) and longer (3.275 

Å) interplanar distances between the anions of type I and II and between the anions of type II, 

respectively. The appearance of two crystallographically independent [Cu(F16Pc)]− anions in 2 

with different interplanar distances can be explained by different charge distributions in the 

anions of type I and II (see theoretical part). The anions of type I and II have average lengths of 

Cu−N (pyrrole) and C−F bonds of 1.9495(15) and 1.344(2) Å (I) and 1.9542(15) and 1.345(2) Å 

(II). In both cases, no alternation of the C−N (imine) and C−N (pyrrole) bonds has been found, 

and these are close to 1.326–1.327(2) Å and 1.376–1.378(2) Å, respectively. The Cu atoms are 

located exactly in the 24-atom Pc plane in the anions of type I and deviate by 0.043 Å from the 

24-atom plane for the anions of type II. The anions of type II have essentially stronger deviation 

from planarity than the anions of type I. The C−F bonds are essentially longer by about 0.037–

0.038 Å in 1 than those in 2. This can be explained by the accommodation of an extra electron in 

Figure 4. Crystal structure of 2, view on (a) and along (b) the π-stacking columns from the 

CuF16Pc anions surrounded by the PPN+ cations. Solvent molecules are not shown for clarity.  

 

(a) (b) 
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the lowest unoccupied molecular orbital (LUMO), with the antibonding character of the C−F 

bond in [CuII(F8Pc)2−]0 and [CuII(F16Pc)2−]0. The increase in the occupation number of the 

LUMO shortens the C−F bonds. 

Overlap integrals between the [Cu(F16Pc)]− anions in the π-π stacks of 2 were calculated by 

an extended Hückel method,35 using single crystal X-ray diffraction data. Since there are two 

different interplanar distances of 3.187 and 3.275 Å, two overlap integrals, s1 and s2, 

respectively, were obtained (Fig. 5a), whereas the type of overlapping between phthalocyanines 

for integrals s1 and s2 is shown in Figs 5b and 5c. Integral s1 (between the anions of type I and 

II) has values of 0.0014 and 0.0052 for the LUMO-LUMO and HOMO-HOMO overlapping, 

respectively, whereas integral s2 between the anions of type II is 0.0040 and 0.0001 for the 

LUMO-LUMO and HOMO-HOMO overlapping, respectively. This is in agreement with a 

shorter interplanar distance between the anions of type I and II (Fig. 4a). The overlap integral s1 

in 2 is comparable with those (0.0049–0.0100) in the π-stacking compounds of [FeI(Cl16Pc)2−]− 

20–21 and conducting salts with the oxidized [MIII(CN)2(Pc)2−]− anions (M = Co, Fe). 4, 5, 36–38 

Figure 5. (a) The stacking column structure of salt 2 (a) and type of overlapping for s1 (b) and 

s2 (c). One of the two molecules in (b) and (c) is colored red and blue, respectively.  
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d. Theoretical analysis 

To examine the electronic structure of the [Cu(F8Pc)]2− dianion, theoretical analysis based on 

density functional theory (DFT) was performed. The total energy, the <S2> value, and the 

Mulliken and natural charges and spins are summarized along with the related materials in 

Tables S2 and S3. The energy diagram for the frontier Kohn-Sham orbitals in the 2Ag state of 

[Cu(F8Pc)]2− is shown in Fig. 6a. The highest occupied (HO) orbital stems from the doubly 

degenerate lowest unoccupied (LU) orbital in the 2B1g state of [CuII(F8Pc)2−]0 (Fig. S4). 

Therefore, the F8Pc ligand in [Cu(F8Pc)]2− can be formally regarded as a closed-shell F8Pc4− 

tetraanion. As shown in Figs S4 and S6, the electrostatic potential map for [CuF8Pc]2− is quite 

asymmetric as compared with that of [CuII(F8Pc)2−]0, where the isoindole moieties over which 

the HO orbital spreads are more negatively charged than the other ones. Comparing the charge 

distribution of [Cu(F8Pc)4−]2− with that of [CuII(F8Pc)2−]0 (Table S3), it should be concluded that 

Figure 6. Energy diagram for the frontier Kohn-Sham orbitals in (a) 2Ag state of [CuII(F8Pc)4−]2− 

and (b) 5Ag state of Ci-symmetric [Cu(F16Pc)]33− trimer. Selected α orbitals are shown and α spins 

in singly occupied orbitals are indicated by red arrows. 

 

a b 
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the charge on copper is nearly the same, but F8Pc in [Cu(F8Pc)4−]2− is more negatively charged by 

about two electrons compared with that in [CuII(F8Pc)2−]0. On the other hand, the spin 

distribution is nearly identical (Table S3 and Figs S4 and S6). The present theoretical analysis 

supports the scenario that two extra electrons are accommodated in the LU orbital of 

[CuII(F8Pc)2−]0 to afford the closed-shell F8Pc4− tetraanion on the formal charge basis.  

Then, the electronic structures on the quintet, triplet, and singlet states of the [Cu(F16Pc)]33− 

trimer, where the CuF16Pc molecules are stacked in a type II − type I− type II manner, were also 

analyzed at the same level of theory. The total energy, the <S2> value, and the Mulliken and 

natural charges and spins are summarized along with related materials in Tables S2 and S3. The 

quintet state is the most stable. The energy diagram for the frontier Kohn-Sham orbitals in the 

5Ag state of the [CuF16Pc]33− trimer is shown in Fig. 6b. Singly occupied orbitals spread over the 

type-II CuF16Pc molecule, where the α-HO and α-(HO−1) orbitals stem from the LUMO of 

[Cu(F16Pc)]0, and the α-(HO−20), and α-(HO−21) orbitals are composed of copper 3d orbitals. 

Figure 7. (a) Electrostatic potential map on 0.02 electrons/au3 of electron density surface, and 

(b) spin density distribution, in which the isosurface value is 0.0016 electrons/au3 and the 

isosurfaces in blue and green denote positive and negative spin density, in the 5Ag state of the Ci-

symmetric [Cu(F16Pc)]33− trimer calculated at the UM11/cc-pVTZ-PP/cc-pVDZ level of theory. 
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Therefore, the type-II CuF16Pc molecule is a two-spin system consisting of a central copper and 

a F16Pc π-radical anion. On the other hand, α-(LU+2) and α-(HO−2) orbitals, which spread over 

the central type-I CuF16Pc molecule, stem from the LU orbital of [Cu(F16Pc)2−]0 and are 

composed of copper 3d orbitals. Therefore, the type-I CuF16Pc molecule is not magnetic because 

the orbitals of both copper and F16Pc are closed-shell. As shown in Fig. 7a, the electrostatic 

potential map in the [Cu(F16Pc)]33− trimer is inhomogeneous, especially on the central copper 

atoms. Comparing the charge distribution of [CuII(F16Pc) 2−]0 (Table S3) with that of the type-II 

CuF16Pc molecule, it should be concluded that the charge on copper is nearly the same, but the 

F16Pc macrocycle is more negatively charged by about one electron. However, as for the type-I 

CuF16Pc molecule, the charge on copper is apparently smaller than those on [CuII(F16Pc)2−]0 and 

the type-II CuF16Pc molecules. Focusing on the natural electron configuration of the copper 3d 

orbital, only the type-I CuF16Pc molecule has 3d 9.80, whereas the type-II CuF16Pc molecule has 

3d 9.25 (Table S3), indicating that the electron configurations of copper in the type I and II 

CuF16Pc molecules are Cu+ (3d10) and Cu2+ (3d9), respectively. Therefore, the present theoretical 

analysis suggests that the charge distribution in the [Cu(F16Pc)]− anions within the stacks is of a 

[CuII(F16Pc)•3−]•−∙∙∙[CuI(F16Pc)2−]−∙∙∙[CuII(F16Pc)•3−]•−∙manner along the type II − type I − type II 

stack, although all the CuF16Pc molecules have the same molecular charge of −1. 

Previously, charge disproportionation was found within the π-stacks from the iron (I) 

hexadecachlorophthalocyanine anions. However, since the reduction of FeIICl16Pc is centered on 

the iron atoms, differently charged Fe atoms are formed within the stacks due to charge 

disproportionation.20 The phenomena of different charge distributions for one type of 

phthalocyanine anion was found for the first time. This may be attributable to an internal degree 

of freedom, where one extra electron is accommodated in the copper atoms or on the F16Pc 

ligand. The difference in the molecular shapes of the [Cu(F16Pc)]− anions of type I and II is 

induced by the effect of vibronic and/or electron-electron interactions. Since the overlap integrals 
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are relatively small in 2, such interactions are considered to be dominant. While the conducting 

path is formed by the F16Pc stacking column, the inhomogeneous charge distribution in the 

columns should suppress electrical conductivity. Calculations with larger clusters (e.g., 

[Cu(F16Pc)]66− hexamer) or with periodic boundary conditions are also planned, and the results 

will be published separately.   

e. Magnetic properties 

The magnetic properties of polycrystalline 1 and 2 were studied by EPR and SQUID techniques. 

Salt 1 shows an effective magnetic moment of 1.60 μB at 300 K (Fig. 8, left panel, curve a), 

which indicates a contribution of about one non-interacting S = 1/2 spin per formula unit (the 

temperature dependence of χMT is shown in Fig. S3a). Since the closed-shell diamagnetic F8Pc4− 

tetraanion is formed in accordance with optical spectra and theoretical calculations, the S = 1/2 

spin can localize on CuII. The Weiss temperature of -4 K estimated in the 30–300 K range (Fig. 8, 

right panel, line a) indicates weak antiferromagnetic coupling between spins. This may be due to 

the large spatial separation between the CuII atoms (the shortest Cu···Cu distance is 8.58 Å).  

The EPR spectrum of 1 supports the presence of S = 1/2 spins on the CuII atoms, since the salt 

manifests a strongly asymmetric signal (Fig. 9), which can be fitted by five components, with g1 

Figure 8. Temperature dependence of effective magnetic moment (left panel) and reciprocal 

molar magnetic susceptibility (right panel) for salts 1 (a) and 2 (b). 
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= 1.9634 and linewidth (∆H) = 6.62 mT; g2 = 2.0401 (∆H = 7.83 mT); g3 = 2.0892 (∆H = 9.848 

mT); g4 = 2.1717 (∆H = 16.93 mT); g5 = 2.3500 (∆H = 14.62 mT). The components with g2 and 

g4 have the highest integral intensity among the other components. All the observed components 

can be unambigously attributed to CuII, since the signal from the Pc•3− radical trianions is 

essentially narrower in the EPR spectrum of [CuII(Pc)•3−]•−.18 The main spectral feature can be 

explained as resulting from (1) the g-factor anisotropy with axially symmetric g|| and g⊥ 

components and (2) the 63Cu and 65Cu hyperfine splittings (I = 3/2), although the additional 

hyperfine splitting by 14N nuclei (I = 1) in the isoindole moiety was unfortunately not observed.39  

Salt 2 manifests an effective magnetic moment of 3.25 μB at 300 K per formula unit (Fig. 7, 

left panel, curve b; the temperature dependence of χMT is shown in Fig. S3b). This value is close 

to the contribution of four non-interacting S = 1/2 spins (calculated value is µeff = 3.46 µB). These 

Figure 9. EPR spectrum of polycrystalline 1 at room temperature (295 K). 
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spins can originate from the [CuII(F16Pc)•3−]•− radical anions of type II, which in accordance with 

theoretical calculations can have two S = 1/2 spins positioned on CuII and F16Pc•3−. In total, two 

[CuII(F16Pc)•3−]•− radical anions per formula unit are present in 2 (the total number of S = 1/2 

spins is four per formula unit). The formation of a diamagnetic [CuI(F16Pc)2−]− anion in 2, with 

the different charge distribution, decreases the total magnetic moment of the salt in comparison 

with the case where only [CuII(F16Pc)•3−]•− radical anions are present (in this case an effective 

magnetic moment of 4.24 µB is expected for six non-interacting S = 1/2 spins per formula unit). 

The Weiss temperature of −21.5 K estimated in the 80–300 K range (Fig. 8, right panel, line b) 

indicates antiferromagnetic coupling between spins. 

To elucidate the magnetic interactions in the centrosymmetric [CuII(F16Pc)•3−]2 (type II) 

dimers within the stacks separated by diamagnetic [CuI(F16Pc2−)]− anions, we used the 

Heisenberg model for a four spin system, such as Cu(S1)-J2-F16Pc(S2)-J1-F16Pc(S3)-J2-Cu(S4), 

where S1, S2, S3, and S4 are S = 1/2 spins. The fitting equation40 is as follows: 

Figure 10. Temperature dependence of χMT (black squares) observed in 2 and approximation of 

the data by the Heisenberg model for four spin system40 (red curve). See the text for parameters 

of fitting. 
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E1 = −J2–J1/2 

E2 = J2–J1/2 

E3 = J1/2 + (J22 + J12)1/2 

E4 = J1/2 − (J22 + J12)1/2 

E5 = J2 + J1/2 + (4J22 − 2J2J1 + J12)1/2 

E6 = J2 + J1/2 − (4J22 − 2J2J1 + J12)1/2 

As a result, we obtained the antiferromagnetic interactions J1/kB = −23.5 K and J2/kB = −8.1 K 

under the conditions of f = 0.9 (fix) and g = 2 (fix) to reduce the number of parameters, 

indicating stronger intermolecular (J1) and weaker intramolecular (J2) magnetic interactions (Fig. 

10). Under centrosymmetric conditions, it is also possible to model as F16Pc(S1)-J2-Cu(S2)-J1-

Cu(S3)-J2-F16Pc(S4), and also to obtain the intermolecular (J1) and intramolecular (J2) magnetic 

interactions. But the Cu(S2)-Cu(S3) direct magnetic interaction should not be strong, since the 

d(x2−y2) orbital of Cu is directed not toward the paired Cu atom, but toward the F16Pc plane. 

Previously, it was also shown that the magnetic coupling between the paramagnetic central 

metal atoms and the Pc•3− radical trianions within one [CuII(Pc)•3−]•− (CuII (S = 1/2) and Pc•3− (S 

= 1/2)) or [VIVO(Pc)•3−]•− unit (VIV (S = 1/2) and Pc•3− (S = 1/2)) is antiferromagnetic and weak, 

since the Weiss temperatures for the salts with these isolated units are only −4 and −9.6 K, 

respectively.18 Therefore, the magnetic properties of this salt are mainly dominated by the 

coupling between (F16Pc)•3− macrocycles in the dimers. This coupling is relatively weak in 

comparison with that in the [TiIVO(Pc)•3−]2 dimers in (Et4N+)[TiIVO(Pc)•3−]·C6H4Cl2, in which 

short interplanar distances (3.129 Å) and larger overlap integrals result in a diamagnetic state, 

even below 150 K.18 The reason for the weaker intermolecular magnetic interaction may be 

attributable to the larger interplanar F16Pc distance in the dimers of 3.275 Å and smaller overlap 

integrals between them. EPR signals are not manifested in the spectrum of 2 at room temperature. 
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A similar situation is observed for the π-stacking compounds with the [FeI(Cl16Pc)2−]− anions 

containing paramagnetic FeI centers (S = 1/2).20 Observation of the EPR spectrum for FeI is only 

possible in the salt with isolated [FeI(Cl16Pc)2−]− anions only.21 

Conclusion 

Two new salts of copper octafluoro- and hexadecafluorophthalocyanines have been obtained in 

crystalline form. Salt 1 contains dianions, in which two extra electrons are delocalized over the 

F8Pc macrocycle, and the charged state of CuII remains unchanged. Salt 2 is the first example of 

a π-stacking compound containing metal phthalocyanine with the F16Pc•3− radical trianions. The 

unusual charge distibution, in which metal-reduced and macrocycle-reduced anions are stacked 

to form a ∙∙∙[CuII(F16Pc)•3−]•−∙∙∙[CuI(F16Pc)2−]−∙∙∙[CuII(F16Pc)•3−]•−∙∙∙ arrangement, proves the 

internal degree of freedom of the charge distibution within a molecule, whether the extra electron 

is accomodated on the metal center or on the Pc macrocycle. We believe that hexadecafluoro- or 

hexadecachlorophthalocyanines of other metals can show a more homogeneous charge 

distribution, allowing exotic materials to be synthesized.  

Supporting Information: The IR spectra of starting compounds and salts 1 and 2, and details of 

the DFT calculations for 1 and 2 are available free of charge via the Internet at 

http://pubs.acs.org. 
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SYNOPSYS 

Crystalline anionic salts with copper octafluoro- and hexadecafluorophthalocyanines have been 

obtained: (Bu4N+)2[CuII(F8Pc)4−]2−⋅2C6H4Cl2 (1) and (PPN+)3[Cu(F16Pc)]33−⋅2C6H5CN (2). 

Closed-shell F8Pc4− tetraanions are formed in 1 without reduction of CuII. Salt 2 contains π-π 

stacks of ∙∙∙[CuII(F16Pc)•3−]•−∙∙∙[CuI(F16Pc)2−]−∙∙∙[CuII(F16Pc)•3−]•−∙∙∙, suggested by DFT 

calculations based on the crystal structure and supported by the observed magnetism.  
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