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Abstract. Dirac spectrum representations of the Polyakov loop fluctuations are derived
on the temporally odd-number lattice, where the temporal length is odd with the periodic
boundary condition. We investigate the Polyakov loop fluctuations based on these ana-
lytical relations. It is semi-analytically and numerically found that the low-lying Dirac
eigenmodes have little contribution to the Polyakov loop fluctuations, which are sensitive
probe for the quark deconfinement. Our results suggest no direct one-to-one correspond-
ing between quark confinement and chiral symmetry breaking in QCD.

1 Introduction

It is one of the most important problems in particle and nuclear physics to understand the nonperturba-
tive properties of QCD, such as confinement and chiral symmetry breaking, including these relation.
By numerous efforts, these properties have been partially understood.

The Polyakov loop is an order parameter of quark confinement in the quenched QCD [1]. More-
over, recently it is pointed out that the Polyakov loop fluctuations are very sensitive probes for the
quark deconfinement even in full QCD with light quarks [2].

The low-lying eigenmodes of the Dirac operator are important for chiral symmetry breaking, for
example known as Banks-Casher relation [3]. At low temperature, the low-lying Dirac modes exist
and have dominant contribution to chiral condensate while at high temperature these modes disappear
and chiral symmetry is restored.

In the presence of light dynamical quarks, both quark deconfinement and chiral restoration are not
phase transition but crossover and take place in the same temperature region [4–7]. This observation
seems evidence that confinement and chiral symmetry breaking are strongly correlated in QCD. How-
ever, there are some contrary observations that chiral restoration does not immediately mean the quark
deconfinement. For example, “hadrons" can be observed as bound states after removal of low-lying
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Dirac modes [8]. Also, it is shown that low-lying Dirac modes are not important for confinement
properties such as the Polyakov loop and the linear confining potential of a quark-antiquark system
[9].

In this paper, we derive some analytical relations to express the Polyakov loop and its fluctuations
by Dirac eigenmodes. Then we semi-analytically and numerically show that low-lying Dirac modes
have negligible contribution to the Polyakov loop fluctuations based on these analytical relations. This
talk is mainly based on our recent work [10].

2 Polyakov loop fluctuations and Dirac mode on a lattice

In this section, we review the Polyakov loop fluctuations [2] and Dirac-mode expansion [9] as the
basics of our work. In this paper, we consider the SU(Nc) lattice QCD formalism on a square lattice
with spacing a. We denote each site as s = (s1, s2, s3, s4) with sμ = 1, 2, · · · ,Nμ and a link variable
as Uμ(s) = eiagAμ(s) with a gauge field, Aμ(s) ∈ su(Nc), and the gauge coupling g. We use spatially
symmetric lattice, i.e., N1 = N2 = N3 ≡ Nσ and N4 ≡ Nτ, with Nσ ≥ Nτ. We define all the γ-matrices
to be hermite as γ†μ = γμ.

2.1 Polyakov loop fluctuations

For each gauge configuration, the Polyakov loop L and the Z3 rotated Polyakov loop L̃ are defined as

L ≡
1

NcV

∑
s

trc{

Nτ−1∏
i=0

U4(s + i4̂)}, L̃ ≡ Le2πki/3 (k = 0,±1), (1)

where μ̂ is the unit vector in direction of μ in the lattice unit, V = N3
σNτ is the volume of 4-dimensional

lattice, k = 0 is taken in the confinement phase, and k in the deconfinement phase is chosen such that
the transformed Polyakov loop L̃ lies in its real sector. Using the Z3 rotated Polyakov loop L̃, three
Polyakov loop susceptibilities are introduced as

T 3χA =
N3
σ

N3
τ

[〈|L|2〉 − 〈|L|〉2], (2)

T 3χL =
N3
σ

N3
τ

[〈(LL)2〉 − 〈LL〉
2], (3)

T 3χT =
N3
σ

N3
τ

[〈(LT )2〉 − 〈LT 〉
2], (4)

where LL ≡ Re(L̃) and LT ≡ Im(L̃), and 〈x〉 denotes an average over all gauge configurations. Also,
their ratios are introduced as,

RA ≡
χA

χL
, RT ≡

χT

χL
. (5)

By finite-temperature lattice QCD calculation, it is found that the ratio RA is a very sensitive probe for
the quark deconfinement even in the presence of light dynamical quarks [2].
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2.2 Operator formalism and Dirac mode on a lattice

The link-variable operator Û±μ is defined by the matrix element

〈s|Û±μ|s
′〉 = U±μ(s)δs±μ̂,s′ . (6)

At the temporal boundary, we impose the temporal antiperiodicity to the link-variable operator as

〈s,Nt |Û4|s, 1〉 = −U4(s,Nt) (7)

to impose the temporal antiperiodicity to the Dirac operator for finite-temperature formalism. Using
the link-variable operator, the Polyakov loop is expressed as

L = −
1

NcV
Trc{Û

Nτ

4 } =
1

NcV

∑
s

trc{

Nt−1∏
n=0

U4(s + nt̂)}, (8)

where Trc denotes the functional trace, Trc ≡
∑

s trc, and trc is taken over color index.
Unlike the Polyakov loop, a functional trace of a product of the link-variable operators corre-

sponding to the non-closed path vanishes:

Trc(Ûμ1 Ûμ2 · · · ÛμNP
) = trc

∑
s

Uμ1 (s) · · ·UμNP
(s +

NP−1∑
k=1

μ̂k)〈s +
NP∑
k=1

μ̂k |s〉 = 0, (9)

with
∑NP

k=1 μ̂k � 0 for any non-closed path with its length NP. This notable property of the link-variable
operator is satisfied due to the definition of the link-variable operator and easily understood by Elitzur
s theorem [11] that a vacuum expectation value of a gauge-variant operator is zero.

The Dirac operator ˆ�D on the lattice is defined by

ˆ�D = γμD̂μ =
1
2a

4∑
μ=1

γμ(Ûμ − Û−μ). (10)

The eigenvalue equation of the Dirac operator can be expressed as

ˆ�D|n〉 = iλn|n〉, λn ∈ R (11)

because of the anti-hermiticity of the Dirac operator. These Dirac eigenstates |n〉 have the complete-
ness of

∑
n |n〉〈n| = 1. Due to { ˆ�D, γ5} = 0, the chiral partner γ5|n〉 is also an eigenstate with the

eigenvalue (−iλn). Known as the Banks-Casher relation [3], the low-lying Dirac modes have the dom-
inant contribution to the chiral condensate 〈ψ̄ψ〉 and thus these modes are essential modes for chiral
symmetry breaking.

3 Dirac spectrum representation of Polyakov loop fluctuations

In this section, we shortly show the derivation of the Dirac spectrum representations of the Polyakov
loop fluctuations and then discuss the relation between confinement and chiral symmetry breaking in
QCD. The detailed derivation is shown in Ref. [10, 12, 13].

We consider a temporally odd-number lattice with odd-number temporal size Nτ. On such a lattice,
we introduce a functional trace I defined as

I = Trc,γ(Û4 ˆ�D
Nτ−1

), (12)
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where Trc,γ ≡
∑

s trctrγ, and trγ is taken over spinor indexes. Substituting the definition of the Dirac
operator (10), the functional trace I is expressed as a sum of products of odd-number link-variable
operators because Nτ is odd number. Note that most of the terms in the expansion of I exactly vanish
because one cannot make a closed loop by using odd-number link-variable operators on a square
lattice. Thus there is only contribution from the closed path due to the temporal periodicity, that is the
Polyakov loop L. In this way, the functional trace I can be expressed as

I =
12V

(2a)Nτ−1
L. (13)

On the other hand, using the completeness of the Dirac mode, the functional trace is expressed as

I =
∑

n

〈n|Û4 �D̂
Nτ−1|n〉 = iNτ−1

∑
n

λNτ−1
n 〈n|Û4|n〉. (14)

Therefore, we derive the Dirac spectrum representation of the Polyakov loop:

L =
(2ai)Nτ−1

12V

∑
n

λNτ−1
n 〈n|Û4|n〉. (15)

Since the identity (15) is exactly satisfied for each gauge-configuration, the Z3 rotated Polyakov
loop L̃ can be also expressed by the Dirac modes as

L̃ =
(2ai)Nτ−1

12V

∑
n

λNτ−1
n e2πki/3〈n|Û4|n〉, (16)

where k is defined in Eq. (1). Correspondingly, we can express LL ≡ Re(L̃), LT ≡ Im(L̃), and |L|
by the Dirac modes. From these expressions and Eqs. (2)-(5), one can derive analytical relations
connecting the Polyakov loop fluctuations and the Dirac modes. In particular, we focus on the Dirac
spectrum representation of RA:

RA =

〈∣∣∣∑n λ
Nτ−1
n 〈n|Û4|n〉

∣∣∣2
〉
−
〈∣∣∣∑n λ

Nτ−1
n 〈n|Û4|n〉

∣∣∣〉2
〈(∑

n λ
Nτ−1
n Re

(
e2πki/3〈n|Û4|n〉

))2〉
−
〈∑

n λ
Nτ−1
n Re

(
e2πki/3〈n|Û4|n〉

)〉2 . (17)

Note that the series of analytical relations is exactly satisfied in both full QCD and quenched QCD.
As mentioned above, the ratio RA is a sensitive probe for the quark deconfinement and the Dirac

modes are strongly related to chiral symmtery breaking. Since Eq. (17) is an analytical relation
connecting the ratio RA and the Dirac modes, we can extract from it the information of the relation
between confinement and chiral symmetry breaking in QCD. The damping factors λNτ−1

n in sums over
all the Dirac modes appearing in Eq. (17) play important roles. Because these damping factors are
negligibly small with small eigenvalues |λn| 	 0, the contribution from the low-lying Dirac modes
to the ratio RA is strongly suppressed while these modes are responsible for saturating the chiral
condensate. In other words, important modes for chiral symmetry breaking are not important for
chiral symmetry breaking. This analytical discussion is consistent with other numerical studies of the
Dirac mode expansion [9], which show that confinement properties such as the Polyakov loop and
the confining linear force defined from the Wilson loop are almost unchanged after removal of the
low-lying Dirac modes.

Not only the damping factor λNτ−1
n , but also the Dirac-mode matrix element 〈n|Û4|n〉 should be

taken into account. If the matrix element increases stronger than the damping factor as ∼ 1/λNτ−1
n

in the small-|λ| region, the above analytical observation is not correct. However, the matrix element
〈n|Û4|n〉 does not change our analytical expectation qualitatively. The detailed numerical results of
the nontrivial behavior of the matrix element 〈n|Û4|n〉 are shown in Ref. [13].
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Figure 1. The numerical results for the Rchiral and Rconf plotted against the infrared cutoff Λ in lattice units at
β = 5.6 on 103 × 5 lattice taken from Ref. [10]. The quark mass of m = 5 MeV is taken for calculation of the
ratio Rchiral.

4 Numerical analysis

In this section, we show the numerical results based on the analytical relation (17) to quantitatively
confirm the above analytical discussion that the low-lying Dirac modes have negligible contribution
to the ratio RA.

Since the Dirac eigenvalue λn and the Dirac-mode matrix element 〈n|Û4|n〉 are gauge-invariant and
can be calculated by solving the Dirac eigenvalue equation Eq. (11), we can calculate the contribution
from each Dirac mode. We introduce the infrared cutoff Λ and define the Λ-dependent Polyakov
loops,

|L|Λ =
(2a)Nτ−1

12V

∣∣∣∣∣∣∣∣
∑
|λn |>Λ

λNτ−1
n 〈n|Û4|n〉

∣∣∣∣∣∣∣∣
, (18)

for the modulus, and

(LL)Λ = Cτ

∑
|λn |>Λ

λNτ−1
n Re

(
e2πki/3〈n|Û4|n〉

)
, (19)

(LT )Λ = Cτ

∑
|λn |>Λ

λNτ−1
n Im

(
e2πki/3〈n|Û4|n〉

)
. (20)

for the real and the imaginary part, respectively, with Cτ = (2ai)Nτ−1/12V . Then, the Λ-dependent
Polyakov loop susceptibilities, (χA)Λ, (χL)Λ, (χT )Λ, are defined using the corresponding Polyakov
loops, |L|Λ, (LL)Λ or (LT )Λ, and their ratios are also defined as

(RA)Λ =
(χA)Λ
(χL)Λ

, (RT )Λ =
(χT )Λ
(χL)Λ

. (21)
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For comparison, we introduce the cutoff-dependent chiral condensate 〈ψ̄ψ〉Λ as

〈ψ̄ψ〉Λ = −
1
V

∑
|λn |≥Λ

2m
λ2

n + m2
, (22)

where m is the current quark mass. In order to see the contribution from the low-lying Dirac modes to
the ratio RA and chiral condensate, we introduce two quantities Rconf and Rchiral as

Rconf =
(RA)Λ

RA
, Rchiral =

〈ψ̄ψ〉Λ

〈ψ̄ψ〉
. (23)

The ratios Rconf and Rchiral are calculated in the SU(3) lattice QCD at the quenched level. In
our calculation, the standard plaquette action is used on 103 × 5 lattice with two different β ≡ 2Nc

g2 :
β = 5.6 for the confinement phase and β = 6.0 for the deconfinement phase. For each β, 20 gauge-
configurations are taken every 500 sweeps after the thermalization of 5000 sweeps.

In Fig. 1, the numerical results for Rconf and Rchiral in the confinement phase are shown with
various values of the infrared cutoff Λ. We take the quark mass m = 5 MeV for the chiral condensate.
From Fig. 1, one can confirm that the quantity Rchiral is largely reduced by removal of the low-
lying Dirac modes and then the low-lying Dirac modes are important for chiral symmetry breaking.
Nevertheless, the quantity Rconf , that is the ratio RA, is almost unchanged by removing the low-lying
Dirac modes even with large cutoff Λ 	 0.5 GeV. The results in the deconfinement phase show the
similar behavior with the confinement phase. In this way, we have numerically confirmed that the
low-lying Dirac modes have little contribution to the ratio RA.

5 Summary

We have derived the Dirac spectrum representations of the Polyakov loop and its fluctuations on
the temporally odd-number lattice. Based on the analytical relations, it is semi-analytically and nu-
merically shown that the low-lying Dirac modes have negligible contribution to the Polyakov loop
fluctuations, which are good probes for the quark deconfinement although these modes have domi-
nant contribution to the chiral condensate. That is, the important modes for chiral symmetry breaking
are not important for confinement. Our results suggest no direct one-to-one corresponding between
confinement and chiral symmetry breaking in QCD.
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