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Some Relations for Quark Confinement and Chiral Symmetry

Breaking in QCD

Hideo Suganuma1,a, Takahiro M. Doi1, Krzysztof Redlich2, and Chihiro Sasaki2

1Department of Physics, Kyoto University, Kitashirakawaoiwake, Sakyo, Kyoto 606-8502, Japan
2Institute of Theoretical Physics, University of Wroclaw, PL-50204 Wroclaw, Poland

Abstract. We analytically study the relation between quark confinement and spontaneous

chiral-symmetry breaking in QCD. In terms of the Dirac eigenmodes, we derive some

formulae for the Polyakov loop, its fluctuations, and the string tension from the Wilson

loop. We also investigate the Polyakov loop in terms of the eigenmodes of the Wilson, the

clover and the domain wall fermion kernels, respectively. For the confinement quantities,

the low-lying Dirac/fermion eigenmodes are found to give negligible contribution, while

they are essential for chiral symmetry breaking. These relations indicate no direct one-to-

one correspondence between confinement and chiral symmetry breaking in QCD, which

seems to be natural because confinement is realized independently of the quark mass.

1 Introduction

Color confinement and spontaneous chiral-symmetry breaking [1] are two outstanding nonperturba-

tive phenomena in QCD, and they and their relation [2–4] have been studied as one of the important

difficult problems in theoretical particle physics. For quark confinement, the Polyakov loop 〈LP〉 is

one of the typical order parameters, which relates to the single-quark free energy Eq as 〈LP〉 ∝ e−Eq/T

at temperature T . For chiral symmetry breaking, the standard order parameter is the chiral condensate

〈q̄q〉, and low-lying Dirac modes are known to play the essential role [5].

A strong correlation between confinement and chiral symmetry breaking has been suggested by

approximate coincidence between deconfinement and chiral-restoration temperatures [6]. Their cor-

relation has been also suggested in terms of QCD-monopoles [7, 8], which topologically appear in

QCD in the maximally Abelian (MA) gauge. By removing the monopoles from the QCD vacuum,

confinement and chiral symmetry breaking are simultaneously lost in lattice QCD [7, 8]. (See Fig. 1.)

This indicates an important role of QCD-monopoles to both confinement and chiral symmetry break-

ing, and thus these two phenomena seem to be related via the monopole. However, the direct relation

of confinement and chiral symmetry breaking is still unclear.

Actually, an accurate lattice QCD study [9] shows about 25MeV difference between the deconfine-

ment and the chiral-restoration temperatures, i.e., Tdeconf ≃ 176MeV and Tchiral ≃ 151MeV. We also

note that some QCD-like theories exhibit a large difference between confinement and chiral symme-

try breaking. For example, in an SU(3) gauge theory with adjoint-color fermions, the chiral transition

occurs at much higher temperature, Tchiral ≃ 8Tdeconf [10]. In 1+1 QCD with N f ≥ 2, confinement is
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realized, but spontaneous chiral symmetry breaking does not occur, because of the Coleman-Mermin-

Wagner theorem. Also in N = 1 SUSY 1+3 QCD with N f = Nc + 1, while confinement is realized,

chiral symmetry breaking does not occur. A recent lattice study of SU(2)-color QCD with N f = 2

shows that a confined but chiral-restored phase is realized at a large baryon density [11].

QCD� QCD in  

MA gauge�

MA  gauge fixing�

Monopole  

projection�

Photon  

projection�

Monopole part�

Photon part�

Monopole current�

Only with monopole,  

Confinement , 

Chiral Sym Breaking, 

Instanton are reproduced�

After removing monopole,  

No Confinement,  

No Chiral Breaking, 

No Instanton�

Hodge 
decomposition�

Figure 1. In the MA gauge, monopoles topologically appear. By removing the monopole from the QCD vacuum,

confinement and chiral symmetry breaking are simultaneously lost [7, 8]. This means crucial role of monopoles

to both confinement and chiral symmetry breaking, but does not mean the direct correspondence between them.

In this paper, considering the essential role of low-lying Dirac modes to chiral symmetry breaking

[6], we derive analytical relations between the Dirac modes and the confinement quantities, e.g., the

Polyakov loop [2], its fluctuations [3] and the string tension [4], in the lattice QCD formalism.

2 Dirac operator, Dirac eigenvalues and Dirac modes in lattice QCD

In this paper, we take an ordinary square lattice with spacing a and the size V ≡ N3
s×Nt, and impose the

standard temporal periodicity/anti-periodicity for gluons/quarks. In lattice QCD, the gauge variable

is expressed as the link-variable Uµ(s) ≡ eiagAµ(s) with the gauge coupling g and the gluon field Aµ(x),

and the simple Dirac operator and the covariant derivative operator are given as

6D̂ =
1

2a

4
∑

µ=1

γµ(Ûµ − Û−µ), D̂µ =
1

2a
(Ûµ − Û−µ), (1)

where the link-variable operator Û±µ [2–4, 12] is defined by

〈s|Û±µ|s
′〉 = U±µ(s)δs±µ̂,s′ , (2)

with U−µ(s) ≡ U
†
µ(s − µ̂). This simple Dirac operator ˆ6D is anti-hermite and satisfies

ˆ6D
†

s′,s = −
ˆ6Ds,s′ . (3)

We define the normalized Dirac eigenmode |n〉 and the Dirac eigenvalue λn,

ˆ6D|n〉 = iλn|n〉 (λn ∈ R), 〈m|n〉 = δmn. (4)
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Because of anti-hermiticity of 6D, the Dirac eigenmode |n〉 satisfies the complete-set relation,

∑

n

|n〉〈n| = 1. (5)

In lattice QCD, any functional trace becomes a sum over all the space-time site, i.e., Tr =
∑

s tr,

which is defined for each lattice gauge configuration. For enough large volume lattice, e.g., Ns → ∞,

the functional trace is proportional to the gauge ensemble average, Tr Ô =
∑

s tr Ô ∝ 〈Ô〉gauge ave.,

for any operator Ô. Note also that, because of the definition of Û±µ in Eq.(2), the functional trace

Tr(Ûµ1
Ûµ2
· · · ÛµN

) of any product of link-variable operators corresponding to “non-closed line” is

exactly zero [2–4] at each lattice gauge configuration, before taking the gauge ensemble average.

In this paper, we mainly use the lattice unit, a = 1, for the simple notation.

3 Polyakov loop and Dirac modes in temporally odd-number lattice QCD

To begin with, we study the Polyakov loop and Dirac modes in temporally odd-number lattice QCD

[2–4], where the temporal lattice size Nt(< Ns) is odd. In general, only gauge-invariant quantities

such as closed loops and the Polyakov loop survive in QCD, according to the Elitzur theorem [6]. All

the non-closed lines are gauge-variant and their expectation values are zero.

Now, we consider the functional trace [2–4],

I ≡ Trc,γ(Û4
ˆ6D

Nt−1
) =
∑

n

〈n|Û4 6D̂
Nt−1|n〉 = iNt−1

∑

n

λNt−1
n 〈n|Û4|n〉, (6)

where Trc,γ ≡
∑

s trctrγ includes the sum over all the four-dimensional site s and the traces over color

and spinor indices. In Eq.(6), we have used the completeness of the Dirac mode,
∑

n |n〉〈n| = 1.

From Eq.(1), Û4
ˆ6D

Nt−1
is expressed as a sum of products of Nt link-variable operators. Then,

Û4
ˆ6D

Nt−1
includes many trajectories with the total length Nt, as shown in Fig. 2.

Figure 2. Partial examples of the trajectories in I = Trc,γ(Û4
ˆ6D

Nt−1
). For each trajectory, the total length is Nt, and

the “first step” is positive temporal direction, Û4. All the trajectories with the odd length Nt cannot form a closed

loop on the square lattice, so that they are gauge-variant and give no contribution, except for the Polyakov loop.

Note that all the trajectories with the odd-number length Nt cannot form a closed loop on the square

lattice, and give gauge-variant contribution, except for the Polyakov loop. Thus, in I = Trc,γ(Û4
ˆ6D

Nt−1
),

only the Polyakov-loop can survive as the gauge-invariant component, and I is proportional to the

Polyakov loop LP. Actually, we can mathematically derive the relation of

I = Trc,γ(Û4
ˆ6D

Nt−1
) = Trc,γ{Û4(γ4D̂4)Nt−1} = 4Trc(Û4D̂

Nt−1

4
) =

4

2Nt−1
Trc{Û

Nt

4
} = −

4NcV

2Nt−1
LP, (7)
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where the last minus reflects the temporal anti-periodicity of 6D [4]. (Because of Eq.(2), the functional

trace of “non-closed line” is exactly zero [2–4] at each lattice gauge configuration.)

In this way, we obtain the analytical relation between the Polyakov loop LP and the Dirac modes

in QCD on the temporally odd-number lattice [2–4],

LP = −
(2i)Nt−1

4NcV

∑

n

λNt−1
n 〈n|Û4|n〉, 〈LP〉 = −

(2i)Nt−1

4NcV

〈

∑

n

λNt−1
n 〈n|Û4|n〉

〉

gauge ave.

, (8)

which are mathematically robust. From Eq.(8), one can investigate each Dirac-mode contribution to

the Polyakov loop. As a remarkable fact, low-lying Dirac modes give negligible contribution to the

Polyakov loop, because of the suppression factor λ
Nt−1
n in Eq.(8) [2–4]. In lattice QCD calculations,

we have numerically confirmed the relation (8) and tiny contribution of low-lying Dirac modes to the

Polyakov loop in both confined and deconfined phases [2].

4 Polyakov-loop fluctuations and Dirac eigenmodes

Next, we investigate Polyakov-loop fluctuations. As shown in Fig. 3(a), the Polyakov loop LP has

fluctuations in longitudinal and transverse directions. We define its longitudinal and transverse com-

ponents, LL ≡ Re L̃P and LT ≡ Im L̃P, with L̃P ≡ LP e2πik/3 where k ∈ {0,±1} is chosen such that the

Z3-transformed Polyakov loop lies in its real sector [3, 13]. We introduce the Polyakov-loop fluctua-

tions as χA ∝ 〈|LP|
2〉 − |〈LP〉|

2, χL ∝ 〈L
2
L
〉 − 〈LL〉

2 and χT ∝ 〈L
2
T
〉 − 〈LT 〉

2. Some ratios of them largely

change around the transition temperature, and can be good indicators of the QCD transition [13].

Figure 3. (a) The scatter plot of the Polyakov loop in lattice QCD. (b) The lattice QCD result for the infrared

Dirac-mode cut quantities of Rconf(ΛIRcut) ≡ RA(ΛIRcut)/RA and Rchiral(ΛIRcut) ≡ 〈q̄q〉ΛIRcut
/〈q̄q〉 plotted against the

infrared cutoff ΛIRcut introduced on Dirac eigenvalues [3]. This figure is taken from Ref.[3]. In contrast to the

sensitivity of the chiral condensate Rchiral, the Polyakov-loop fluctuation ratio Rconf is almost unchanged against

the infrared cutoff ΛIRcut of the Dirac mode.

In temporally odd-number lattice QCD, we derive Dirac-mode expansion formulae for Polyakov-

loop fluctuations [3]. For example, the Dirac spectral representation of the ratio RA ≡ χA/χL is

RA =

〈

∣

∣

∣

∑

n λ
Nt−1
n 〈n|Û4|n〉

∣

∣

∣

2
〉

gauge ave.
−
〈∣

∣

∣

∑

n λ
Nt−1
n 〈n|Û4|n〉

∣

∣

∣

〉2

gauge ave.

〈

(

∑

n λ
Nt−1
n Re

(

e2πik/3〈n|Û4|n〉
))2
〉

gauge ave.
−
〈

∑

n λ
Nt−1
n Re

(

e2πik/3〈n|Û4|n〉
)〉2

gauge ave.

. (9)

Because of the reduction factor λ
Nt−1
n in the Dirac-mode sum, all the Polyakov-loop fluctuations are

almost unchanged by removing low-lying Dirac modes [3].
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As the demonstration, we show in Fig. 3(b) the lattice QCD result of Rconf(ΛIRcut) ≡ RA(ΛIRcut)/RA

and Rchiral(ΛIRcut) ≡ 〈q̄q〉ΛIRcut
/〈q̄q〉 in the presence of the infrared Dirac-mode cutoff ΛIRcut introduced

on Dirac eigenvalues [3]. As the Dirac-mode cutoff ΛIRcut increases, the chiral condensate Rchiral

rapidly reduces, but the Polyakov-loop fluctuation ratio Rconf is almost unchanged [3].

5 The Wilson loop and Dirac modes on arbitrary square lattices

In this section, we investigate the Wilson loop and the string tension in terms of the Dirac modes, on

arbitrary square lattices with any number of Nt [4]. We consider the ordinary Wilson loop of the R×T

rectangle. The Wilson loop on the xi-t (i = 1, 2, 3) plane is expressed by the functional trace,

W ≡ TrcÛR
i ÛT
−4ÛR

−iÛ
T
4 = TrcÛstapleÛT

4 , (10)

where we introduce the “staple operator” Ûstaple defined by

Ûstaple ≡ ÛR
i ÛT
−4ÛR

−i. (11)

In fact, the Wilson-loop operator is factorized as a product of Ûstaple and ÛT
4

, as shown in Fig. 4.

Figure 4. Left: The Wilson loop W on a R × T rectangle. Right: The factorization of the Wilson-loop operator

as a product of Ûstaple ≡ ÛR
i ÛT
−4

ÛR
−i and ÛT

4
[4]. Here, T , R and the lattice size N3

s × Nt are arbitrary.

5.1 Case of even T

In the case of even number T , we consider the functional trace,

J ≡ Trc,γÛstaple
ˆ6D

T
=
∑

n

〈n|Ûstaple 6D
T |n〉 = (−)

T
2

∑

n

λT
n 〈n|Ûstaple|n〉, (12)

where the completeness of the Dirac mode,
∑

n |n〉〈n| = 1, is used. Similarly in Sec. 3, one finds

J =
1

2T
Trc,γÛstaple

















4
∑

µ=1

γµ(Ûµ − Û−µ)

















T

=
1

2T
Trc,γÛstaple(γ4Û4)T =

4

2T
TrcÛstapleÛT

4 =
4

2T
W, (13)
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at each lattice gauge configuration. In fact, U4 must be selected in all the 6D ∝
∑

µ γµ(Uµ −U−µ) in 6D ,

to form a loop in the functional trace. All other terms correspond to non-closed lines and give exactly

zero, because of the definition of Û±µ in Eq.(2). Thus, we obtain [4]

W =
(−)

T
2 2T

4

∑

n

λT
n 〈n|Ûstaple|n〉. (14)

Then, the inter-quark potential V(R) is written as

V(R) = − lim
T→∞

1

T
ln〈W〉 = − lim

T→∞

1

T
ln

∣

∣

∣

∣

∣

∣

∣

〈

∑

n

(2λn)T 〈n|Ûstaple|n〉

〉

∣

∣

∣

∣

∣

∣

∣

, (15)

and the string tension σ is expressed as

σ = − lim
R,T→∞

1

RT
ln〈W〉 = − lim

R,T→∞

1

RT
ln

∣

∣

∣

∣

∣

∣

∣

〈

∑

n

λT
n 〈n|Ûstaple|n〉

〉

∣

∣

∣

∣

∣

∣

∣

. (16)

Owing to the reduction factor λT
n in the sum, the string tension σ, i.e., the confining force, is to be

unchanged by the removal of the low-lying Dirac-mode contribution.

5.2 Case of odd T

In the case of odd number T , the similar results can be obtained by considering

J ≡ Trc,γÛstapleÛ4
ˆ6D

T−1
=
∑

n

〈n|ÛstapleÛ4 6D
T−1|n〉 = (−)

T−1
2

∑

n

λT−1
n 〈n|ÛstapleÛ4|n〉. (17)

Actually, one finds

J =
1

2T−1
Trc,γÛstapleÛ4

















4
∑

µ=1

γµ(Ûµ − Û−µ)

















T−1

=
1

2T−1
Trc,γÛstapleÛ4(γ4Û4)T−1 =

4

2T−1
W, (18)

and obtains for odd T the similar formula of [4]

W =
(−)

T−1
2 2T−1

4

∑

n

λT−1
n 〈n|ÛstapleÛ4|n〉. (19)

Then, the inter-quark potential V(R) and the sting tension σ are written as

V(R) = − lim
T→∞

1

T
ln〈W〉 = − lim

T→∞

1

T
ln

∣

∣

∣

∣

∣

∣

∣

〈

∑

n

(2λn)T−1〈n|ÛstapleÛ4|n〉

〉

∣

∣

∣

∣

∣

∣

∣

,

σ = − lim
R,T→∞

1

RT
ln〈W〉 = − lim

R,T→∞

1

RT
ln

∣

∣

∣

∣

∣

∣

∣

〈

∑

n

λT−1
n 〈n|ÛstapleÛ4|n〉

〉

∣

∣

∣

∣

∣

∣

∣

, (20)

where σ is unchanged by removing the low-lying Dirac-mode contribution due to λT−1
n in the sum.
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6 The Polyakov loop v.s. Wilson, clover and domain wall fermions

All the above formulae are mathematically correct, because we have just used the Elitzur theorem (or

precisely Eq.(2) for Û±µ) and the completeness
∑

n |n〉〈n| = 1 on the Dirac operator (1). However, one

may wonder the doublers [6] in the use of the simple lattice Dirac operator (1). In this section, we

express the Polyakov loop with the eigenmodes of the kernel of the Wilson fermion [6], the clover

(O(a)-improved Wilson) fermion [14, 15] and the domain wall (DW) fermion [16, 17], respectively

[18]. In these fermionic kernel, light doublers are absent.

6.1 The Wilson fermion

The Wilson fermion kernel [6] can be described with the link-variable operator Û±µ as [18]

K̂ = ˆ6D + m +
r

2a

±4
∑

µ=±1

γµ(Ûµ − 1) =
1

2a

4
∑

µ=1

γµ(Ûµ − Û−µ) + m +
r

2a

4
∑

µ=1

γµ(Ûµ + Û−µ − 2), (21)

where each term of K̂ includes one Û±µ at most, and connects only the neighboring site or acts on the

same site. Near the continuum, a ≃ 0, Eq.(21) becomes K̂ ≃ ( ˆ6D + m) + arD̂2 and the Wilson term

arD̂2 is O(a).

For the Wilson fermion kernel K̂, we define its eigenmode |n〉〉 and eigenvalue λ̃n as

K̂|n〉〉 = iλ̃n|n〉〉, λ̃n ∈ C. (22)

Note that, without the Wilson term, the eigenmode of K̂ = ˆ6D + m is the simple Dirac eigenmode |n〉,

i.e., K̂|n〉 = (iλn + m)|n〉, and satisfies the completeness of
∑

n |n〉〈n| = 1. In the presence of the O(a)

Wilson term, K̂ is neither hermite nor anti-hermite, and the completeness may include an O(a) error,

∑

n

|n〉〉〈〈n| = 1 + O(a). (23)

Now, on the lattice with Nt = 4l + 1, we consider the functional trace,

J ≡ Tr(Û2l+1
4 K̂2l). (24)

Using the quasi-completeness of Eq.(23) for the eigenmode |n〉〉, one finds, apart from an O(a) error,

J ≃
∑

n

〈〈n|Û2l+1
4 K̂2l|n〉〉 =

∑

n

(iλ̃n)2l〈〈n|Û2l+1
4 |n〉〉. (25)

We note that the kernel K̂ in Eq. (21) includes many terms, and J ≡ Tr(Û2l+1
4

K̂2l) consists of products

of link-variable operators, accompanying with c-number factors. In each product, the total number of

Û does not exceed Nt, because of Eq. (21). Each product gives a trajectory as shown in Fig. 5.

Among the trajectories, however, only the Polyakov loop LP can form a closed loop and survives in

J, so that one gets J ∝ LP. Thus, apart from an O(a) error, we obtain [18]

LP ∝
∑

n

λ̃2l
n 〈〈n|Û

2l+1
4 |n〉〉. (26)

Due to the suppression factor of λ̃2l
n in the sum, one finds again small contribution from low-lying

modes of K̂ to the Polyakov loop LP.
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Figure 5. Some examples of the trajectories in J ≡ Tr(Û2l+1
4

K̂2l) for the Nt = 5 (l = 1) case. The length does not

exceed Nt for each trajectory. Only the Polyakov loop LP can form a closed loop and survives in J.

6.2 The clover (O(a)-improved Wilson) fermion

The clover fermion is an O(a)-improved Wilson fermion [14], and its kernel is expressed as [18]

K̂ =
1

2a

4
∑

µ=1

γµ(Ûµ − Û−µ) + m +
r

2a

4
∑

µ=1

γµ(Ûµ + Û−µ − 2) +
arg

2
σµνGµν, (27)

with σµν ≡
i
2
[γµ, γν]. Here, Gµν is the clover-type lattice field strength defined by

Gµν ≡
1

8
(Pµν + P†µν), (28)

with

Pµν(x) ≡ 〈x|(ÛµÛνÛ−µÛ−ν + ÛνÛ−µÛ−νÛµ + Û−µÛ−νÛµÛν + Û−νÛµÛνÛ−µ)|x〉. (29)

The sum of the Wilson and the clover terms is O(a2) near the continuum, and the clover fermion gives

accurate lattice results [15]. Since Gµν acts on the same site, each term of K̂ in Eq.(27) connects only

the neighboring site or acts on the same site, so that one can use almost the same technique as the

Wilson fermion case.

For the clover fermion kernel K̂, we define its eigenmode |n〉〉 and eigenvalue λ̃n as

K̂|n〉〉 = iλ̃n|n〉〉, λ̃n ∈ C,
∑

n

|n〉〉〈〈n| = 1 + O(a2). (30)

Again, on the lattice with Nt = 4l + 1, we consider the functional trace,

J ≡ Tr(Û2l+1
4 K̂2l) ≃

∑

n

〈〈n|Û2l+1
4 K̂2l|n〉〉 =

∑

n

(iλ̃n)2l〈〈n|Û2l+1
4 |n〉〉, (31)

where we have used the quasi-completeness for |n〉〉 in Eq.(30) within an O(a2) error. J ≡ Tr(Û2l+1
4

K̂2l)

consists of products of link-variable operators, accompanying with c-number factors, and each product
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gives a trajectory as shown in Fig. 5. Among the trajectories, only the Polyakov loop LP can form a

closed loop and survives in J, i.e., J ∝ LP. Thus, apart from an O(a2) error, we obtain [18]

LP ∝
∑

n

λ̃2l
n 〈〈n|Û

2l+1
4 |n〉〉, (32)

and find small contribution from low-lying modes of K̂ to the Polyakov loop LP, due to λ̃2l
n in the sum.

6.3 The domain wall (DW) fermion

Finally, we consider the domain wall (DW) fermion [16, 17], where the “exact” chiral symmetry is

realized in the lattice formalism by introducing an extra spatial coordinate x5. The DW fermion is

formulated in the five-dimensional space-time, and its (five-dimensional) kernel is expressed as

K̂5 =
1

2a

4
∑

µ=1

γµ(Ûµ − Û−µ) + m +
r

2a

4
∑

µ=1

γµ(Ûµ + Û−µ − 2) + γ5∂̂5 + M(x5), (33)

where the last two terms in the RHS are the kinetic and the mass terms in the fifth dimension. Here,

x5-dependent mass M(x5) is introduced as shown in Fig.6, where M0 = |M(x5)| = O(a−1) is taken

to be large. As for the extra coordinate x5, there are only kinetic and mass terms in K̂5, so that the

eigenvalue problem is solved in the fifth direction, and chiral zero modes are found to appear [16, 17].

Figure 6. The construction of the domain wall (DW) fermion by introducing the fifth dimension of x5 and the

x5-dependent mass M(x5). There appear left- and right-handed chiral zero modes localized around x5 = 0 and

x5 = N5, respectively.

For the five-dimensional DW fermion kernel K̂5, we define its eigenmode |ν〉 and eigenvalueΛν as

K̂5|ν〉 = iΛν|ν〉, Λν ∈ C,
∑

ν

|ν〉〈ν| = 1 + O(a). (34)

Note that each term of K̂5 in Eq.(33) connects only the neighboring site or acts on the same site in the

five-dimensional space-time, and hence one can use almost the same technique as the Wilson fermion

case. On the lattice with Nt = 4l + 1, we consider the functional trace,

J ≡ Tr(Û2l+1
4 K̂2l

5 ) ≃
∑

ν

〈ν|Û2l+1
4 K̂2l

5 |ν〉 =
∑

ν

(iΛν)
2l〈ν|Û2l+1

4 |ν〉, (35)
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where the quasi-completeness for |ν〉 in Eq.(34) is used. J ≡ Tr(U2l+1
4

K2l
5

) consists of products of

link-variable operators with other factors, and each product gives a trajectory as shown in Fig. 5 in the

projected four-dimensional space-time. Among the trajectories, only the Polyakov loop LP can form

a closed loop and survives in J, i.e., J ∝ LP. Thus, apart from an O(a) error, we obtain

LP ∝
∑

ν

Λ2l
ν 〈ν|Û

2l+1
4 |ν〉. (36)

Because of the simple x5-dependence in K̂5 in Eq.(33), the extra degrees of freedom in the fifth

dimension can be integrated out in the generating functional, and one obtains the four-dimensional

physical-fermion kernel K̂4 [17]. The physical fermion mode is given by the eigenmode |n〉〉 of K̂4,

K̂4|n〉〉 = iλ̃n|n〉〉, λ̃n ∈ C. (37)

We find that the four-dimensional physical fermion eigenvalue λ̃n of K̂4 can be approximated by the

eigenvalue Λν of the five-dimensional DW kernel K̂5 as

Λν = λ̃nν + O(M−2
0 ) = λ̃nν + O(a2), (38)

where M0 = |M(x5)| = O(a−1) is taken to be large.

Combining with Eq.(36), apart from an O(a) error, we obtain

LP ∝
∑

ν

λ̃2l
nν
〈〈ν|Û2l+1

4 |ν〉〉, (39)

and find small contribution from low-lying physical-fermion modes of K̂4 to the Polyakov loop LP,

because of the suppression factor λ̃2l
nν

in the sum.

7 Summary and Concluding Remarks

In QCD, we have derived analytical relations between the Dirac modes and the confinement quantities

such as the Polyakov loop, its fluctuations and the string tension in the lattice formalism, and have

found negligible contribution from the low-lying Dirac modes to the confinement quantities.

We have also investigated the Polyakov loop in terms of the eigenmodes of the Wilson, the clover

and the domain wall fermion kernels, respectively, and have obtained the similar results.

These relations indicate no direct one-to-one correspondence between confinement and chiral

symmetry breaking. In other words, there is some independence of confinement from chiral prop-

erties in QCD. This seems natural because confinement is realized independently of the quark mass.
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