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Dirac spectrum representations of the Polyakov loop fluctuations are derived on the temporally

odd-number lattice, where the temporal length is odd with the periodic boundary condition.

We investigate the Polyakov loop fluctuations based on these analytical relations. It is semi-

analytically and numerically found that the low-lying Dirac eigenmodes have little contribution

to the Polyakov loop fluctuations, which are sensitive probe for the quark deconfinement. Our re-

sults suggest no direct one-to-one corresponding between quark confinement and chiral symmetry

breaking in QCD.
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1. Introduction

It is one of the most important problems in particle and nuclear physics to understand the
nonperturbative properties of QCD, such as confinement and chiral symmetry breaking, including
these relation. By numerous efforts, these properties have been partially understood.

The Polyakov loop is an order parameter of quark confinement in the quenched QCD [1].
Moreover, recently it is pointed out that the Polyakov loop fluctuations are very sensitive probes
for the quark deconfinement even in full QCD with light quarks [2].

The low-lying eigenmodes of the Dirac operator are important for chiral symmetry breaking,
for example known as Banks-Casher relation [3]. At low temperature, the low-lying Dirac modes
exist and have dominant contribution to chiral condensate while at high temperature these modes
disappear and chiral symmetry is restored.

In the presence of light dynamical quarks, both quark deconfinement and chiral restoration are
not phase transition but crossover and take place in the same temperature region [4, 5, 6, 7]. This
observation seems evidence that confinement and chiral symmetry breaking are strongly correlated
in QCD. However, there are some contrary observations that chiral restoration does not immedi-
ately mean the quark deconfinement. For example, “hadrons" can be observed as bound states
after removal of low-lying Dirac modes [8]. Also, it is shown that low-lying Dirac modes are not
important for confinement properties such as the Polyakov loop and the linear confining potential
of a quark-antiquark system [9].

In this paper, we derive some analytical relations to express the Polyakov loop and its fluctua-
tions by Dirac eigenmodes. Then we semi-analytically and numerically show that low-lying Dirac
modes have negligible contribution to the Polyakov loop fluctuations based on these analytical
relations. This talk is mainly based on our recent work [10].

2. Polyakov loop fluctuations and Dirac mode on a lattice

In this section, we review the Polyakov loop fluctuations [2] and Dirac-mode expansion [9] as
the basics of our work. In this paper, we consider the SU(Nc) lattice QCD formalism on a square
lattice with spacinga. We denote each site ass= (s1,s2,s3,s4) with sµ = 1,2, · · · ,Nµ and a link
variable asUµ(s) = eiagAµ (s) with a gauge field,Aµ(s) ∈ su(Nc), and the gauge couplingg. We use
spatially symmetric lattice, i.e.,N1 = N2 = N3 ≡ Nσ andN4 ≡ Nτ , with Nσ ≥ Nτ . We define all the
γ-matrices to be hermite asγ†

µ = γµ .

2.1 Polyakov loop fluctuations

For each gauge configuration, the Polyakov loopL and theZ3 rotated Polyakov loop̃L are
defined as

L ≡ 1
NcV

∑
s

trc{
Nτ−1

∏
i=0

U4(s+ i4̂)}, L̃ ≡ Le2πki/3 (k= 0,±1), (2.1)

where µ̂ is the unit vector in direction ofµ in the lattice unit,V = N3
σ Nτ is the volume of 4-

dimensional lattice,k = 0 is taken in the confinement phase, andk in the deconfinement phase
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is chosen such that the transformed Polyakov loopL̃ lies in its real sector. Using theZ3 rotated
Polyakov loopL̃, three Polyakov loop susceptibilities are introduced as

T3χA =
N3

σ
N3

τ
[⟨|L|2⟩−⟨|L|⟩2], (2.2)

T3χL =
N3

σ
N3

τ
[⟨(LL)

2⟩−⟨LL⟩2], (2.3)

T3χT =
N3

σ
N3

τ
[⟨(LT)

2⟩−⟨LT⟩2], (2.4)

whereLL ≡Re(L̃) andLT ≡ Im(L̃), and⟨x⟩ denotes an average over all gauge configurations. Also,
their ratios are introduced as,

RA ≡ χA

χL
, RT ≡ χT

χL
. (2.5)

By finite-temperature lattice QCD calculation, it is found that the ratioRA is a very sensitive probe
for the quark deconfinement even in the presence of light dynamical quarks [2].

2.2 Operator formalism and Dirac mode on a lattice

The link-variable operator̂U±µ is defined by the matrix element

⟨s|Û±µ |s′⟩=U±µ(s)δs±µ̂,s′ . (2.6)

At the temporal boundary, we impose the temporal antiperiodicity to the link-variable operator as

⟨s,Nt |Û4|s,1⟩=−U4(s,Nt) (2.7)

to impose the temporal antiperiodicity to the Dirac operator for finite-temperature formalism. Us-
ing the link-variable operator, the Polyakov loop is expressed as

L =− 1
NcV

Trc{ÛNτ
4 }= 1

NcV
∑
s

trc{
Nt−1

∏
n=0

U4(s+nt̂)}, (2.8)

where Trc denotes the functional trace, Trc ≡ ∑strc, and trc is taken over color index.
Unlike the Polyakov loop, a functional trace of a product of the link-variable operators corre-

sponding to the non-closed path vanishes:

Trc(Ûµ1Ûµ2 · · ·ÛµNP
) = trc∑

s
Uµ1(s) · · ·UµNP

(s+
NP−1

∑
k=1

µ̂k)⟨s+
NP

∑
k=1

µ̂k|s⟩= 0, (2.9)

with ∑NP
k=1 µ̂k ̸= 0 for any non-closed path with its lengthNP. This notable property of the link-

variable operator is satisfied due to the definition of the link-variable operator and easily understood
by Elitzur’s theorem [11] that a vacuum expectation value of a gauge-variant operator is zero.

The Dirac operator̸̂D on the lattice is defined by

ˆ̸D = γµD̂µ =
1
2a

4

∑
µ=1

γµ(Ûµ −Û−µ). (2.10)

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
3
1
5

Dirac spectrum representation of Polyakov loop fluctuations in lattice QCD Takahiro M. Doi

The eigenvalue equation of the Dirac operator can be expressed as

ˆ̸D|n⟩= iλn|n⟩, λn ∈ R (2.11)

because of the anti-hermiticity of the Dirac operator. These Dirac eigenstates|n⟩ have the com-
pleteness of∑n |n⟩⟨n| = 1. Due to{ ˆ̸D,γ5} = 0, the chiral partnerγ5|n⟩ is also an eigenstate with
the eigenvalue (−iλn). Known as the Banks-Casher relation [3], the low-lying Dirac modes have
the dominant contribution to the chiral condensate⟨ψ̄ψ⟩ and thus these modes are essential modes
for chiral symmetry breaking.

3. Dirac spectrum representation of Polyakov loop fluctuations

In this section, we shortly show the derivation of the Dirac spectrum representations of the
Polyakov loop fluctuations and then discuss the relation between confinement and chiral symmetry
breaking in QCD. The detailed derivation is shown in Ref. [10, 12, 13].

We consider a temporally odd-number lattice with odd-number temporal sizeNτ . On such a
lattice, we introduce a functional traceI defined as

I = Trc,γ(Û4 ˆ̸DNτ−1
), (3.1)

where Trc,γ ≡ ∑strctrγ , and trγ is taken over spinor indexes. Substituting the definition of the Dirac
operator (2.10), the functional traceI is expressed as a sum of products of odd-number link-variable
operators becauseNτ is odd number. Note that most of the terms in the expansion ofI exactly vanish
because one cannot make a closed loop by using odd-number link-variable operators on a square
lattice. Thus there is only contribution from the closed path due to the temporal periodicity, that is
the Polyakov loopL. In this way, the functional traceI can be expressed as

I =
12V

(2a)Nτ−1L. (3.2)

On the other hand, using the completeness of the Dirac mode, the functional trace is expressed as

I = ∑
n
⟨n|Û4 ̸D̂Nτ−1|n⟩= iNτ−1∑

n
λ Nτ−1

n ⟨n|Û4|n⟩. (3.3)

Therefore, we derive the Dirac spectrum representation of the Polyakov loop:

L =
(2ai)Nτ−1

12V ∑
n

λ Nτ−1
n ⟨n|Û4|n⟩. (3.4)

Since the identity (3.4) is exactly satisfied for each gauge-configuration, theZ3 rotated Polyakov
loop L̃ can be also expressed by the Dirac modes as

L̃ =
(2ai)Nτ−1

12V ∑
n

λ Nτ−1
n e2πki/3⟨n|Û4|n⟩, (3.5)

wherek is defined in Eq. (2.1). Correspondingly, we can expressLL ≡ Re(L̃), LT ≡ Im(L̃), and
|L| by the Dirac modes. From these expressions and Eqs. (2.2)-(2.5), one can derive analytical
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relations connecting the Polyakov loop fluctuations and the Dirac modes. In particular, we focus
on the Dirac spectrum representation ofRA:

RA =

⟨∣∣∑n λ Nτ−1
n ⟨n|Û4|n⟩

∣∣2⟩−⟨∣∣∑n λ Nτ−1
n ⟨n|Û4|n⟩

∣∣⟩2⟨(
∑n λ Nτ−1

n Re
(
e2πki/3⟨n|Û4|n⟩

))2
⟩
−
⟨

∑n λ Nτ−1
n Re

(
e2πki/3⟨n|Û4|n⟩

)⟩2
. (3.6)

Note that the series of analytical relations is exactly satisfied in both full QCD and quenched QCD.
As mentioned above, the ratioRA is a sensitive probe for the quark deconfinement and the

Dirac modes are strongly related to chiral symmtery breaking. Since Eq. (3.6) is an analytical
relation connecting the ratioRA and the Dirac modes, we can extract from it the information of the
relation between confinement and chiral symmetry breaking in QCD. The damping factorsλ Nτ−1

n

in sums over all the Dirac modes appearing in Eq. (3.6) play important roles. Because these damp-
ing factors are negligibly small with small eigenvalues|λn| ≃ 0, the contribution from the low-lying
Dirac modes to the ratioRA is strongly suppressed while these modes are responsible for saturat-
ing the chiral condensate. In other words, important modes for chiral symmetry breaking are not
important for chiral symmetry breaking. This analytical discussion is consistent with other numer-
ical studies of the Dirac mode expansion [9], which show that confinement properties such as the
Polyakov loop and the confining linear force defined from the Wilson loop are almost unchanged
after removal of the low-lying Dirac modes.

Not only the damping factorλ Nτ−1
n , but also the Dirac-mode matrix element⟨n|Û4|n⟩ should be

taken into account. If the matrix element increases stronger than the damping factor as∼ 1/λ Nτ−1
n

in the small-|λ | region, the above analytical observation is not correct. However, the matrix element
⟨n|Û4|n⟩ does not change our analytical expectation qualitatively. The detailed numerical results of
the nontrivial behavior of the matrix element⟨n|Û4|n⟩ are shown in Ref. [13].

4. Numerical analysis

In this section, we show the numerical results based on the analytical relation (3.6) to quan-
titatively confirm the above analytical discussion that the low-lying Dirac modes have negligible
contribution to the ratioRA.

Since the Dirac eigenvalueλn and the Dirac-mode matrix element⟨n|Û4|n⟩ are gauge-invariant
and can be calculated by solving the Dirac eigenvalue equation Eq. (2.11), we can calculate the
contribution from each Dirac mode. We introduce the infrared cutoffΛ and define theΛ-dependent
Polyakov loops,

|L|Λ =
(2a)Nτ−1

12V

∣∣∣∣∣ ∑
|λn|>Λ

λ Nτ−1
n ⟨n|Û4|n⟩

∣∣∣∣∣ , (4.1)

for the modulus, and

(LL)Λ =Cτ ∑
|λn|>Λ

λ Nτ−1
n Re

(
e2πki/3⟨n|Û4|n⟩

)
, (4.2)

(LT)Λ =Cτ ∑
|λn|>Λ

λ Nτ−1
n Im

(
e2πki/3⟨n|Û4|n⟩

)
. (4.3)
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Figure 1: The numerical results for theRchiral andRconf plotted against the infrared cutoffΛ in lattice units
atβ = 5.6 on 103×5 lattice taken from Ref. [10]. The quark mass ofm= 5 MeV is taken for calculation of
the ratioRchiral.

for the real and the imaginary part, respectively, withCτ = (2ai)Nτ−1/12V. Then, theΛ-dependent
Polyakov loop susceptibilities,(χA)Λ, (χL)Λ, (χT)Λ, are defined using the corresponding Polyakov
loops,|L|Λ, (LL)Λ or (LT)Λ, and their ratios are also defined as

(RA)Λ =
(χA)Λ

(χL)Λ
, (RT)Λ =

(χT)Λ

(χL)Λ
. (4.4)

For comparison, we introduce the cutoff-dependent chiral condensate⟨ψ̄ψ⟩Λ as

⟨ψ̄ψ⟩Λ =− 1
V ∑

|λn|≥Λ

2m
λ 2

n +m2 , (4.5)

wherem is the current quark mass. In order to see the contribution from the low-lying Dirac modes
to the ratioRA and chiral condensate, we introduce two quantitiesRconf andRchiral as

Rconf =
(RA)Λ

RA
, Rchiral =

⟨ψ̄ψ⟩Λ

⟨ψ̄ψ⟩
. (4.6)

The ratiosRconf andRchiral are calculated in the SU(3) lattice QCD at the quenched level. In
our calculation, the standard plaquette action is used on 103×5 lattice with two differentβ ≡ 2Nc

g2 :
β = 5.6 for the confinement phase andβ = 6.0 for the deconfinement phase. For eachβ , 20
gauge-configurations are taken every 500 sweeps after the thermalization of 5000 sweeps.

In Fig. 1, the numerical results forRconf andRchiral in the confinement phase are shown with
various values of the infrared cutoffΛ. We take the quark massm= 5 MeV for the chiral con-
densate. From Fig.1, one can confirm that the quantityRchiral is largely reduced by removal of
the low-lying Dirac modes and then the low-lying Dirac modes are important for chiral symmetry
breaking. Nevertheless, the quantityRconf, that is the ratioRA, is almost unchanged by removing
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the low-lying Dirac modes even with large cutoffΛ ≃ 0.5 GeV. The results in the deconfinement
phase show the similar behavior with the confinement phase. In this way, we have numerically
confirmed that the low-lying Dirac modes have little contribution to the ratioRA.

5. Summary

We have derived the Dirac spectrum representations of the Polyakov loop and its fluctuations
on the temporally odd-number lattice. Based on the analytical relations, it is semi-analytically and
numerically shown that the low-lying Dirac modes have negligible contribution to the Polyakov
loop fluctuations, which are good probes for the quark deconfinement although these modes have
dominant contribution to the chiral condensate. That is, the important modes for chiral symmetry
breaking are not important for confinement. Our results suggest no direct one-to-one corresponding
between confinement and chiral symmetry breaking in QCD.

References

[1] H.J. Rothe, “Lattice Gauge Theories", (World Scientific, 2012), and references therein.

[2] P.M. Lo, B. Friman, O. Kaczmarek, K. Redlich and C. Sasaki, Phys. Rev. D88, 014506 (2013); Phys.
Rev. D88, 074502 (2013).

[3] T. Banks and A. Casher, Nucl. Phys. B169, 103 (1980).

[4] F. Karsch, Lect. Notes Phys.583, 209 (2002), and references therein.

[5] F. R. Brown, F. P. Butler, H. Chen, N. H. Christ, Z. Dong, W. Schaffer, Leo I. Unger and Alessandro
Vaccarino, Phys. Rev. Lett.65, 2491 (1990).

[6] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo, Nature (London)443, 675 (2006).

[7] A. Bazavovet al., Phys. Rev. D85, 054503 (2012).

[8] C.B. Lang and M. Schrock, Phys. Rev. D84, 087704 (2011); L.Ya. Glozman, C.B. Lang, and M.
Schrock, Phys. Rev. D86, 014507 (2012).

[9] S. Gongyo, T. Iritani and H. Suganuma, Phys. Rev. D86, 034510 (2012); T. Iritani and H. Suganuma,
Prog. Theor. Exp. Phys.,3, 033B03 (2014).

[10] T. M. Doi, K. Redlich, C. Sasaki and H. Suganuma, Phys. Rev. D92, 094004 (2015).

[11] S. Elitzur, Phys. Rev. D12, 3978 (1975).

[12] H. Suganuma, T. M. Doi, T. Iritani, arXiv:1404.6494 [hep-lat]; Proc. Sci. (Lattice 2013), 374 (2013);
Proc. Sci. (QCD-TNT-III), 042 (2014); EPJ Web of Conf.71, 00129 (2014); Proc. Sci. (Hadron
2013), 121 (2014).

[13] T. M. Doi, H. Suganuma, T. Iritani, Phys. Rev. D90, 094505 (2014); Proc. Sci. (Lattice 2013), 375
(2013); Proc. Sci. (Hadron 2013), 122 (2014).

7


