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We study baryons in holographic QCD corresponding to 1+1 dimensional single-flavor (N f=1) QCD
for the first time. We formulate 1+1 QCD using an S 1-compactified D2/D8/D8 branes in the super-
string theory, and describe the baryon as a topological configuration in 1+1 N f=1 QCD, correspond-
ing to Π1(U(1)) = Z. Unlike 1+3 QCD with N f ≥ 2, however, we find that the low-dimensional
baryonic soliton is generally unstable against a scale transformation/variation and swells infinitely
in 1+1 N f=1 QCD at the leading of large Nc. We thus point out a serious difficulty on the soliton
picture of baryons in large Nc in the single-flavor world in both 1+1 and 1+3 QCD. We also com-
pare the low-dimensional holographic baryon with the Abrikosov vortex, i.e., a stable topological
configuration in Type-II superconductors.
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1. Introduction: Holographic QCD and Baryons in Large Nc

Since 1973, quantum chromodynamics (QCD) has been established as the fundamental theory
of the strong interaction. Nevertheless, it is very difficult to solve QCD directly in an analytical
manner, and many effective models of QCD have been used instead of QCD, but most models cannot
be derived from QCD and its connection to QCD is unclear. To analyze nonperturbative QCD, the
lattice QCD Monte Carlo simulation has been also used as a first-principle calculation of the strong
interaction. However, it has several weak points. For example, the state information (e.g. the wave
function) is severely limited, because lattice QCD is based on the path-integral formalism. Also, it
is difficult to take the chiral limit, because zero-mass pions require infinite volume lattices. There
appears a notorious “sign problem” at finite density.

On the other hand, holographic QCD [1–3] has a direct connection to QCD, and can be de-
rived from QCD in some limit. In fact, holographic QCD is equivalent to infrared QCD in large Nc
and strong ’t Hooft coupling λ, via gauge/gravity correspondence. Remarkably, holographic QCD is
successful to reproduce many hadron phenomenology such as vector meson dominance, the KSRF
relation, hidden local symmetry, the GSW model and the Skyrme soliton picture [2]. Unlike lattice
QCD simulations, holographic QCD is usually formulated in the chiral limit, and does not have the
sign problem at finite density [3].

In general, when large Nc is taken, QCD reduces a weakly interacting theory of mesons (and
glueballs), and the baryon is described as a Skyrmion, i.e., a topological chiral soliton of mesons
(mainly Nambu-Goldstone bosons) [4] Actually, in holographic QCD with large Nc, the theory is
described by pseudoscalar, vector and axial-vector mesons [2], and baryons do not appear as explicit
degrees of freedom but appear as spatially-extended topological solitons composed of mesons [3].
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2. Puzzle in Single Flavor (N f=1) World in Large Nc

In large Nc QCD, the effective theory includes only meson degrees of freedom, and therefore
one has to take the soliton picture for the description of baryons [4]. In our real world with N f ≥ 2,
there occurs spontaneous breaking of the chiral symmetry, i.e., SU(N f )L×SU(N f )R → SU(N f )V , and
baryons can be described as topological chiral solitons, according to the nontrivial homotopy group
Π3(SU(N f )A) = Z [4]. Actually, this topological chiral-soliton picture of baryons is successful for the
semi-quantitative description of baryons [5].

In the single-flavor (N f=1) world, however, baryons cannot be described as topological objects,
because of absence of the topological charge, i.e., Π3(U(1)A) = 1. Of course, QCD with single
flavor (N f=1) is a possible quantum field theory. Actually, if the Higgs coupling to d, s-quarks were
large enough, the single-flavor world would be realized. In N f=1 QCD, there appear only a massive
pseudoscalar meson η′(ūγ5u), a vector meson ω(ūγµu), and a baryon ∆++(uuu), as low-lying hadrons.
Unlike the N f ≥ 2 case, the single-flavor QCD does not have the topological charge because of
Π3(U(1)A)=1, and therefore baryons cannot be described as topological objects. Thus, in the single-
flavor world, it is difficult to describe baryons with mesons in large Nc, where baryons do not appear
explicitly. This is an open problem still now.

In this context, we notice that 1+1 single-flavor QCD has the topological object, corresponding
to the nontrivial homotopy group Π1(U(1)) = Z. In fact, as a natural possibility, it is expected that
the baryon can be described as the topological object in 1+1 single-flavor QCD, like 1+3 QCD with
N f ≥ 2. This is a motivation to investigate baryons in 1+1 single-flavor QCD, especially in large Nc,
where baryons do not appear explicitly.

3. Holographic QCD corresponding to 1+1 Single-Flavor QCD and Baryons

The baryons in 1+1 QCD have been usually studied with the bosonization technique [6]. How-
ever, to investigate the topological aspect relating to Π1(U(1)) = Z, one has to describe baryons as
topological objects. For this purpose, holographic QCD is suitable, because baryons appear as topo-
logical objects in this framework [7].

Similarly to the Sakai-Sugimoto model, massless 1+1 QCD can be constructed with an S 1-
compactified D2/D8/D8-brane system [8], as shown in Fig. 1. Here, Nc D2-branes give color de-
grees of freedom, and N f=1 D8-brane gives flavor degrees of freedom. The gluons appear as 2-2
string modes on Nc D2-branes, and the left/right quarks appear as 2-8 string modes at the cross point
between D2 and D8/D8 branes. In this paper, we use the MKK = 1 unit [2].

Fig. 1. The S 1-compactified D2/D8/D8-brane system which gives 1+1 QCD with Nc color and N f flavor.

In large Nc, Nc D2-branes are extremely massive and can be replaced by a gravitational back-
ground, via the gauge/gravity correspondence. From this D2/D8/D8-brane system, the effective the-
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ory of massless 1+1 QCD is derived as a 1+2 dimensional U(N f=1) gauge theory in the flavor space,

S =
Nc

8π

∫
dtdxdz

[
f (z)FµzFµz − g(z)

1
2

FµνFµν + ϵLMN ALFMN

]
, (1)

at the leading of 1/Nc and 1/λ expansion [8]. Remarkably, this theory can be treated at the classical
level. Here, z is the extra spatial dimension appearing in holographic QCD, and f (z) ≡ (1+ z2)1/2 and
g(z) ≡ (1 + z2)−11/10 appear as the gravitational effect from Nc D2-branes [8].

The action (1) has two parts, i.e., the Dirac-Born-Infeld (DBI) action (the 1st and 2nd terms) and
the Chern-Simons (CS) three-form (the last term). [The Greek index runs over (0,1)= (t, x) and the
capital index runs over (0,1,2)= (t, x, z).] In 1+1 QCD, the CS term is the leading order as well as
the DBI terms [8], while the CS term is subleading of 1/λ expansion compared with the leading DBI
term in 1+3 QCD [3].

In this two-dimensional spatial system on (x, z), we note a topological charge, called the Pontrya-
gin index,

Q ≡
∫

dxdz
1

4π
ϵi jFi j =

1
2π

∫
dxdzFxz =

1
2π

∫
dxdzH ∈ Z, (2)

which is an integer, according toΠ1(U(N f=1))=Z. Here, H ≡ Fxz is the magnetic field in the U(N f=1)
gauge theory, and Q is the total magnetic flux divided by 2π. From the holographic viewpoint, this
topological charge corresponds to the baryon number, similarly in the holographic dual of 1+3 QCD
[7]. On the topological object in the two-dimensional space (x, z), we note that its direct analogue is
the Abrikosov vortex with “quantization of the magnetic flux” in Type-II superconductors.

Next, we consider the topological soliton solution corresponding to the (multi)baryon with the
baryon number B = Q(∈ Z). For the calculation, we take the temporal gauge A0 = 0, which leads to
the ordinary canonical formalism. From action (1), the Lagrangian density reads

L = Nc

8π

[
f (z){Ȧ2

z − (∂xAz − ∂zAx)2} + g(z)Ȧ2
x + 2(AzȦx − AxȦz)

]
, (3)

and the Hamiltonian densityH ≡ ΠAx Ȧx + ΠAz Ȧz − L with ΠAi ≡ δL/δȦi is written as

H = Nc

8π

{
g(z)Ȧ2

x + f (z)Ȧ2
z + f (z)(∂xAz − ∂zAx)2

}
=

Nc

8π

{
g(z)E2

x + f (z)E2
z + f (z)H2

}
, (4)

where the CS term disappears and Ei = Ȧi in the temporal gauge. Here, H is non-negative because
of f (z) > 0 and g(z) > 0. Then, the total energy M[A⃗] of the configuration A⃗ = (Ax, Az) is given by

M[A⃗] =
Nc

8π

∫
dxdz

{
g(z)E2

x + f (z)E2
z + f (z)H2

}
. (5)

We now consider the ground-state soliton, i.e., the lowest (multi)baryon state, under the topo-
logical constraint of B = Q ≡ 1

2π

∫
dxdzH(∈ Z). Since this topological condition does not act on

the electric field E⃗, we can take Ex = Ez = 0 for the ground-state soliton without change of the
topological charge Q, so that A⃗ is t-independent. Thus, the ground-state soliton mass is described as

M[A⃗(x, z)] =
Nc

8π

∫
dxdz f (z)H2 =

Nc

8π

∫
dxdz f (z)

[
∂xAz(x, z) − ∂zAx(x, z)

]2 . (6)
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4. A Scale Instability of Holographic Baryons in 1+1 Single-Flavor QCD

From Eq.(6), one can investigate the (multi)baryonic solutions in holographic QCD correspond-
ing to 1+1 QCD with N f = 1, at the leading of 1/Nc and 1/λ expansions. As a remarkable conclusion,
we find that all the (multi)baryonic solutions are generally unstable against some scale transformation
(scale variation) and swell infinitely. We show this scale instability of baryonic solitons below.

Suppose we obtain a topological (baryonic) solution A⃗sol(x, z) = (Asol
x (x, z), Asol

z (x, z)), which
minimizes the mass M[A⃗(x, z)] and satisfies the topological condition of B = Q[A⃗(x, z)](∈ Z). As a
general property of the solution, its total energy M must be a minimum, i.e.,

M[A⃗sol] ≤ M[A⃗sol + δA⃗], (7)

against any small variations δA⃗(x, z) consistent with the topological condition B = Q[A⃗sol + δA⃗](∈ Z).
As a simple variation, we consider a “scaled configuration” of

A⃗λ(x, z) ≡ (λAsol
x (λx, z), Asol

z (λx, z)), (8)

which includes the original solution A⃗sol(x, z) at λ = 1, i.e., A⃗λ=1(x, z) = A⃗sol(x, z). The scaled config-
uration A⃗λ(x, z) has the same topological charge as

Q[A⃗λ] =
1

2π

∫
dxdz

[
∂xAsol

z (λx, z) − ∂zAsol
x (λx, z)

]
=

1
2π

∫
dx̄dz

[
∂x̄Asol

z (x̄, z) − ∂zAsol
x (x̄, z)

]
= Q[A⃗sol], (9)

with x̄ = λx. The total energy M of this scaled configuration A⃗λ(x, z) is λ times of the original mass
M[A⃗sol]:

M[A⃗λ] =
Nc

8π

∫
dxdz f (z)

[
∂xAsol

z (λx, z) − ∂zλAsol
x (λx, z)

]2
= λ

Nc

8π

∫
dx̄dz f (z)

[
∂x̄Asol

z (x̄, z) − ∂zAsol
x (x̄, z)

]2
= λM[A⃗sol]. (10)

Therefore, the total energy becomes smaller continuously to zero, when λ goes to zero from unity.
This leads to “swelling instability” of the topological configuration with any baryon number B = Q,
as shown in Fig. 2. Thus, in holographic QCD of 1+1 single-flavor QCD, all the (multi)baryonic
configurations are unstable against this type of scale variation, and any topological (baryonic) con-
figuration swells infinitely, at the leading of 1/Nc and 1/λ expansions.

Fig. 2. The scale instability of the baryonic soliton configuration in the holographic dual of 1+1 QCD with
N f=1. All the (multi)baryonic solutions swell infinitely at the leading of 1/Nc and 1/λ expansions.

5. Comparison with Abrikosov Vortex in Type-II Superconductor

Finally, to understand the physical reason of the swelling instability of the topological (baryonic)
configuration in holographic QCD of 1+1 single-flavor QCD, we compare it with the Abrikosov
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Fig. 3. The Abrikosov vortex in Type-II superconductors: a stable topological configuration composed of
the magnetic field H and the Cooper-pair scalar field φ. The vortex has a topological charge on Π1(U(1)) = Z.

vortex, which is a stable topological configuration appearing in the Type-II superconductor in an
external magnetic field. (See Fig. 3.)

The superconducting theory consists of the photon field Aµ and the Cooper-pair scalar field φ,

H = 1
2

H⃗2 + |(i∂⃗ + eA⃗)φ|2 + λ(|φ|2 − v2)2, (11)

and has a topological charge of the Pontryagin index, e.g., Q = 1
2π

∫
dxdyHz ∈ Z, corresponding to

Π1(U(1)) ∈ Z, and the Abrikosov vortex is a topological configuration with Q = 1.
On the scale transformation, the photon-field contribution is to promote “swelling” of the soliton,

and the scalar-field contribution is to promote “shrinkage” of the soliton. Because of the competition
between these two opposite effects, the Abrikosov vortex is stable against the scale transformation.

On the other hand, holographic QCD of 1+1 QCD has only the vector field AM in 1+2 dimension,
at the leading order of 1/Nc and 1/λ. On the scale transformation, the vector-field contribution is to
promote swelling of the soliton. Because of this one-side effect, the topological (baryonic) soliton is
unstable against the scale transformation, unlike the stable Abrikosov vortex in superconductors.

6. Summary

We have studied baryons in holographic QCD corresponding to 1+1 dimensional single-flavor
QCD for the first time. After formulating 1+1 QCD with an S 1-compactified D2/D8/D8 branes,
we have described the baryon as a topological configuration in 1+1 N f=1 QCD, corresponding to
Π1(U(1)) = Z. Unlike 1+3 QCD with N f ≥ 2, we have found that the low-dimensional (multi)baryonic
soliton is generally unstable against a scale transformation/variation and swells infinitely in 1+1 N f=1
QCD at the leading of 1/Nc and 1/λ. In this way, there is a serious difficulty on the soliton picture of
baryons in large Nc in the single-flavor world in both 1+1 QCD and 1+3 QCD.
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