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Abstract. The H-dibaryon (uuddss) is studied in holographic QCD for the first time. In
holographic QCD, four-dimensional QCD, i.e., SU(Nc) gauge theory with chiral quarks,
can be formulated with S 1-compactified D4/D8/D8-brane system. In holographic QCD
with large Nc, all the baryons appear as topological chiral solitons of Nambu-Goldstone
bosons and (axial) vector mesons, and the H-dibaryon can be described as an SO(3)-type
topological soliton with B = 2. We derive the low-energy effective theory to describe
the H-dibaryon in holographic QCD. The H-dibaryon mass is found to be twice of the
B = 1 hedgehog-baryon mass, MH ≃ 2.00MHH

B=1, and is estimated about 1.7GeV, which is
smaller than mass of two nucleons (flavor-octet baryons), in the chiral limit.

1 Introduction

Nowadays, QCD is established as the fundamental theory of the strong interaction, and all the ex-
perimentally observable hadrons have been considered as color-singlet composite particles of quarks
and gluons. From QCD, as well as ordinary mesons (q̄q) and baryons (qqq) in the valence picture,
there can exist “exotic hadrons” [1] such as glueballs, multi-quarks [2, 3] and hybrid hadrons, and the
exotic-hadron physics has been an interesting field theoretically and experimentally.

The H-dibaryon, B = 2 SU(3) flavor-singlet bound state of uuddss, has been one of the oldest
multi-quark candidates, first predicted by R. L. Jaffe in 1977 from a group-theoretical argument of the
color-magnetic interaction in the MIT bag model [2]. In 1985, the H-dibaryon was also investigated
[4, 5] in the Skyrme-Witten model [6–8]. These two model calculations suggested a low-lying H-
dibaryon below the ΛΛ threshold, which means the stability of H against the strong decay. In 1991,
however, Imai group experimentally excluded the low-lying H-dibaryon [9], and found the first event
of the double hyper nuclei, i.e., 6

ΛΛ
He, instead. Then, the current interest is mainly possible existence

of the H-dibaryon as a resonance state.
Theoretically, it is still interesting to consider the stability of H-dibaryons in the SU(3) flavor-

symmetric case of mu = md = ms [10–12], because the large mass of H may be due to an SU(3)
flavor-symmetry breaking by the large s-quark mass, ms ≫ mu,d, in the real world. Actually, recent
lattice QCD simulations suggest the stable H-dibaryon in an SU(3) flavor-symmetric and large quark-
mass region [10, 11].

So, how about the H-dibaryon in the chiral limit of mu = md = ms = 0? Although the lattice QCD
calculation is usually a powerful method to evaluate hadron masses, it is fairly difficult to take the
chiral limit, because a large-volume lattice is needed for such a calculation to control massless pions.
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In this paper, we study the H-dibaryon and its properties in the chiral limit using holographic QCD
[13], which has a direct connection to QCD, unlike most effective models. In particular, we investigate
the H-dibaryon mass from the viewpoint of its stability in the chiral limit.

2 Holographic QCD

In this section, we briefly summarize the construction of holographic QCD from a D-brane system
[14, 15], and derive the low-energy effective theory of QCD [16] at the leading order of 1/Nc and 1/λ
expansions, where the ’t Hooft coupling λ ≡ Ncg

2
YM is given with the gauge coupling gYM.

2.1 QCD-equivalent D-brane system

Just after J. M. Maldacena’s discovery of the AdS/CFT correspondence in 1997 [17], E. Witten [14]
succeeded in 1998 the formulation of non-SUSY four-dimensional pure SU(Nc) gauge theories using
an S 1-compactified D4-brane in the superstring theory. In 2005, Sakai and Sugimoto showed a re-
markable formulation of four-dimensional QCD, i.e., SU(Nc) gauge theory with chiral quarks, using
an S 1-compactified D4/D8/D8-brane system [15], as shown in Fig. 1. Such a construction of QCD is
often called holographic QCD.

This QCD-equivalent D-brane system consists of Nc D4-branes and N f D8/D8-branes, which give
color and flavor degrees of freedom, respectively. In this system, gluons appear as 4-4 string modes on
Nc D4-branes, and the left/right quarks appear as 4-8/4-8̄ string modes at the cross point between D4
and D8/D8 branes, as shown in Fig. 1. This D-brane system possesses the SU(Nc) gauge symmetry
and the exact chiral symmetry [15], and gives QCD in the chiral limit.

Figure 1. Construction of holographic QCD
with an S 1-compactified D4/D8/D8-brane
system, which corresponds to non-SUSY
four-dimensional QCD with chiral quarks
[15, 16]. This figure is taken from Ref.[16].

Figure 2. Holographic QCD after the
replacement of large-Nc D4 branes by a
gravitational background via the
gauge/gravity correspondence [14–16].
This figure is taken from Ref.[16].

In holographic QCD, 1/Nc and 1/λ expansions are usually taken. In large Nc, D4-branes are the
dominant gravitational source, and can be replaced by their SUGRA solution [15] as shown in Fig. 2,
via the gauge/gravity correspondence. In large λ, the strong-coupling gauge theory is converted into a
weak-coupling gravitational theory [14]. In this paper, we consider the leading order of 1/Nc and 1/λ
expansions.
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2.2 Low-energy effective theory

In the presence of the D4-brane gravitational background gMN , the D8/D8 brane system can be ex-
pressed with the non-Abelian Dirac-Born-Infeld (DBI) action,

S DBI
D8 = T8

∫
d9x e−ϕ

√
−det(gMN + 2πα′FMN) , (1)

at the leading order of 1/Nc and 1/λ expansions. Here, FMN ≡ ∂MAN − ∂N AM + i[AM , AN] is the field
strength of the U(N f ) gauge field AM in the flavor space on the D8 brane. The surface tension T8,
the dilaton field ϕ and the Regge slope parameter α′ are defined in the framework of the superstring
theory, and, for the simple notation, we have taken the MKK = 1 unit, where the Kaluza-Klein mass
MKK is the energy scale of this theory [15].

After some calculations, one can derive the meson theory equivalent to infrared QCD at the leading
order of 1/Nc and 1/λ [15, 16]. For the construction of the low-energy effective theory, we only
consider massless Nambu-Goldstone (NG) bosons and the lightest SU(N f ) vector meson ρµ(x) ≡
ρµ(x)aT a ∈ su(N f ), which we simply call “ρ-meson". We eventually derive the four-dimensional
effective action in Euclidean space-time xµ = (t, x) [16],

S HQCD =

∫
d4x
{ f 2
π

4
tr(LµLµ) −

1
32e2 tr[Lµ, Lν]2 +

1
2

tr(∂µρν − ∂νρµ)2 + m2
ρtr(ρµρµ)

− ig3ρtr
{
(∂µρν − ∂νρµ)[ρµ, ρν]

} − 1
2
g4ρtr[ρµ, ρν]2 + ig1tr

{
[αµ, αν](∂µρν − ∂νρµ)

}
+ g2tr

{
[αµ, αν][ρµ, ρν]

}
+ g3tr

{
[αµ, αν]([βµ, ρν] + [ρµ, βν])

}
− ig4tr

{
(∂µρν − ∂νρµ)([βµ, ρν] + [ρµ, βν])

} − g5tr
{
[ρµ, ρν]([βµ, ρν] + [ρµ, βν])

}
− 1

2
g6tr
(
[αµ, ρν] + [ρµ, αν]

)2 − 1
2
g7tr
(
[βµ, ρν] + [ρµ, βν]

)2 }
, (2)

where Lµ is defined with the chiral field U(x) or the NG boson field π(x) ≡ πa(x)T a ∈ su(N f ) as

Lµ ≡
1
i

U†∂µU ∈ su(N f ), U(x) ≡ ei2π(x)/ fπ ∈ SU(N f ). (3)

The axial vector current αµ and the vector current βµ are defined as

αµ ≡ lµ − rµ ∈ su(N f )A, βµ ≡
1
2

(lµ + rµ) ∈ su(N f )V , (4)

with the left and the right currents,

lµ ≡
1
i
ξ†∂µξ, rµ ≡

1
i
ξ∂µξ

†, ξ(x) ≡ eiπ(x)/ fπ ∈ SU(N f ). (5)

Thus, we obtain the effective meson theory derived from QCD in the chiral limit at the leading
order of 1/Nc and 1/λ expansions. Note that this theory has just two independent parameters, e.g.,
the Kaluza-Klein mass MKK ∼ 1GeV and κ ≡ λNc/216π3 [15, 18], and all the coupling constants and
masses in the effective action (2) are expressed with them [16]. As a remarkable fact, in the absence
of the ρ-meson, this effective theory reduces to the Skyrme-Witten model [6] in Euclidean space-time,

LSkyrme =
f 2
π

4
tr(LµLµ) −

1
32e2 tr[Lµ, Lν]2. (6)
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3 H-dibaryon as a B=2 Topological Chiral Soliton in Holographic QCD
As a general argument, large-Nc, QCD becomes a weakly interacting meson theory, and baryons
are described as topological chiral solitons of mesons [7]. In holographic QCD with large Nc, the
H-dibaryon is also described as a B = 2 chiral soliton, and its static profile is expressed with the
“SO(3)-type hedgehog Ansatz”, similarly in the Skyrme-Witten model [4, 5]. Here, the SO(3) is the
flavor-symmetric subalgebra of SU(3) f , and its generators Λi=1,2,3 are

Λ1 = λ7 =

0 0 0
0 0 −i
0 i 0

 , Λ2 = −λ5 =

 0 0 i
0 0 0
−i 0 0

 , Λ3 = λ2 =

0 −i 0
i 0 0
0 0 0

 , (7)

which satisfy the SO(3) algebra and the following relations,

[Λi,Λ j] = iϵi jkΛk, (Λ · x̂)3 = Λ · x̂, Tr[(Λ · x̂)2 − 2/3] = 0, (8)

with x̂ ≡ x/r and r ≡ |x|. The SO(3)-type hedgehog Ansatz [4, 5, 13] is generally expressed as

U(x) = ei{(Λ·x̂)F(r)+[(Λ·x̂)2−2/3]φ(r)} ∈ SU(3) f , F(r) ∈ R, φ(r) ∈ R, (9)

where F(r) and φ(r) are the chiral profile functions characterizing the NG boson field. Note that U(x)
in Eq.(9) is the general form of the special unitary matrix which consists of Λ · x̂, because of Eq.(8).
For the topological soliton, the B = 2 boundary condition [4, 5] is given as

F(∞) = φ(∞) = 0, F(0) = φ(0) = π. (10)

On the SU(3) f ρ-meson field, we use the SO(3) Wu-Yang-’t Hooft-Polyakov Ansatz,

ρ0(x) = 0, ρi(x) = ϵi jk x̂ jG(r)Λk ∈ so(3) ⊂ su(3), G(r) ∈ R, (11)

similarly in the B = 1 case in holographic QCD [16]. (This G(r) corresponds to −G̃(r) in Ref.[16].)
Thus, all the above treatments are symmetric in the (u, d, s) flavor space.

Substituting Ansätze (9) and (11) in Eq.(2), we derive the effective action to describe the static
H-dibaryon in terms of the profile functions F(r), φ(r) and G(r) [13]:

S HQCD =

∫
d4x
{ f 2

π

4

[2
3
φ′2 + 2F′2 +

8
r2 (1 − cos F cosφ)

]
+

1
32e2

16
r2

[
(φ′2 + F′2)(1 − cos F cosφ)

+ 2φ′F′ sin F sinφ +
1
r2

{
(1 − cos F cosφ)2 + 3 sin2 F sin2 φ

}]
+

1
2

[
8
( 3
r2 G2 +

2
r

GG′ +G′2
)]
+ m2

ρ[4G2] + g3ρ

[
8

G3

r

]
+

1
2
g4ρ[4G4]

− g1

[16
r

{(1
r

G +G′
)(

F′ sin
F
2

cos
φ

2
+ φ′ cos

F
2

sin
φ

2

)
+

1
r2 G(1 − cos F cosφ)

}]
− g2

[ 8
r2 G2(1 − cos F cosφ)

]
+ g3

[16
r3 G
{
3 sin F sin

F
2

sinφ sin
φ

2
+
(
1 − cos

F
2

cos
φ

2

)
(1 − cos F cosφ)

}]
− g4

[16
r2 G2

(
1 − cos

F
2

cos
φ

2

)]
− g5

[8
r

G3
(
1 − cos

F
2

cos
φ

2

)]
+ g6
[
4G2(F′2 + φ′2)

]
+ g7

[ 8
r2 G2

{
3 sin2 F

2
sin2 φ

2
+
(
1 − cos

F
2

cos
φ

2

)2}] }
=

∫
dt
∫ ∞

0
dr 4πr2ε[F(r), φ(r),G(r)]. (12)
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4 H-dibaryon Solution in Holographic QCD

To obtain the topological soliton solution of the H-dibaryon in holographic QCD, we numerically
calculate the profiles F(r), φ(r) and G(r) [13] by minimizing the Euclidean effective action (12) under
the boundary condition (10) [19]. The two independent parameters, e.g., MKK and κ ≡ λNc/216π3, are
set to reproduce the pion decay constant fπ=92.4MeV and the ρ-meson mass mρ=776MeV [15, 16].

For the H-dibaryon solution in holographic QCD, we obtain the chiral profiles, F(r) and φ(r),
and the scaled ρ-meson profile G(r)/κ1/2 as shown in Fig. 3, and estimate the H-dibaryon mass of
MH ≃ 1673MeV in the chiral limit. Figure 4 shows the energy density 4πr2ε(r) in the H-dibaryon.
The root mean square radius of the H-dibaryon is estimated as

√
⟨r2⟩H ≃ 0.413fm in terms of the

energy density. For comparison, we calculate the B = 1 hedgehog (HH) baryon in holographic QCD

with the same numerical condition, and estimate MHH
B=1 ≃ 836.7MeV and

√
⟨r2⟩HH

B=1 ≃ 0.362fm. Thus,

the H-dibaryon mass is twice of the B = 1 hedgehog-baryon mass, MH ≃ 2.00MHH
B=1.

r [fm]

F
(r

),
ϕ

(r
)

G
(r
)/
κ
1
/2
[f
m
-1
]

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3

chiral F(r)
chiral φ(r)
ρ-meson

Figure 3. The chiral profiles, F(r) and φ(r), and the
scaled ρ-meson profile G(r)/κ1/2 in the H-dibaryon as the
SO(3)-type hedgehog soliton solution in holographic
QCD. Here, the topological boundary condition of B = 2
is F(0) = φ(0) = π and F(∞) = φ(∞) = 0.

r [fm]

4
π

r
2
ε
(r

)
[f

m
-2

]

0

5

10

15

20

25

30

0 0.5 1 1.5 2

With Vector Meson

Without Vector Meson

Figure 4. The energy density distribution 4πr2ε(r) in the
H-dibaryon (solid curve), and that without vector mesons
(dashed curve) for comparison.

We summarize in Table 1 the mass and the radius of the H-dibaryon and the B = 1 hedgehog
baryon in holographic QCD. Since the nucleon mass MN is larger than the B = 1 hedgehog mass
MHH

B=1 by the rotational energy [6, 8], the H-dibaryon mass is smaller than mass of two nucleons
(flavor-octet baryons) , MH < 2MN, in the chiral limit.

Finally, we examine the vector-meson effect for the H-dibaryon by comparing with the ρ(x) = 0
case. As the result, we find that the chiral profiles F(r) and φ(r) are almost unchanged and slightly
shrink by the vector-meson effect, and the energy density also shrinks slightly, as shown in Fig. 4.
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Table 1. The mass MH and the radius
√
⟨r2⟩H of the H-dibaryon in the chiral limit in holographic QCD, together

with those of the B = 1 hedgehog (HH) baryon.

MH
√
⟨r2⟩H MHH

B=1

√
⟨r2⟩HH

B=1

1673 MeV 0.413 fm 836.7 MeV 0.362 fm

As a significant vector-meson effect, we find that about 100MeV mass reduction is caused by the
interaction between NG bosons and vector mesons in the interior region of the H-dibaryon.

5 Summary and Concluding Remarks
We have studied the H-dibaryon (uuddss) as the B = 2 SO(3)-type topological chiral soliton solution
in holographic QCD for the first time. The H-dibaryon mass is twice of the B = 1 hedgehog-baryon
mass, MH ≃ 2.00MHH

B=1, and is estimated about 1.7GeV, which is smaller than mass of two nucleons
(flavor-octet baryons), in the chiral limit. In holographic QCD, we have found that the vector-meson
effect gives a slight shrinkage of the chiral profiles and the energy density, and also gives about
100MeV mass reduction of the H-dibaryon.
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