

Title	Ample canonical heights for endomorphisms on projective varieties
Author(s)	Shibata, Takahiro
Citation	代数幾何学シンポジウム記録 (2017), 2017: 154-154
Issue Date	2017
URL	http://hdl.handle.net/2433/229101
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Ample canonical heights for endomorphisms on projective varieties

Takahiro Shibata

Department of Mathematics, Graduate School of Science, Kyoto University

Introduction

• We work over $\overline{\mathbb{O}}$.

- An endomorphism means a dominant morphism from a variety to itself.
- For an endomorphism f on a smooth projective variety X, the (first) dynamical degree of **f** is

$$\delta_f = \lim_{n o \infty} ((f^*)^n H \cdot H^{\dim X - 1})^{rac{1}{n}}$$

where H is an ample divisor.

- Let X be a smooth projective variety and D a divisor on X. Then h_D denotes the height function associated to D, which is determined up to the difference of a bounded function.
- ullet For a smooth projective variety X, h_X denotes a fixed height function associated to an ample divisor with $h_X \ge 1$.

Theorem 1 (The canonical height for a polarized endomorphism, Call–Silverman [CaSi93])

Let X be a smooth projective variety and f an endomorphism on X with

 $f^*H \sim dH$ where H is an ample divisor and d > 1. Then the canonical height $\hat{h}_{H}(x) = \lim_{n \to \infty} h_H(f^n(x))$

$$h_{H,f}(x) = \lim_{n o \infty} rac{d^n}{d^n}$$

converges for every $x \in X(\mathbb{Q}).$ Moreover,

• $\hat{h}_{H,f}(x) \geq 0$ for every x,

 $\hat{h}_{H,f}\circ f=d\hat{h}_{H,f}$, and

ullet (Northcott-type finiteness property) $\{x\in X(K)\mid \hat{h}_{H,f}(x)=0\}$ is a finite set for any number field K.

The canonical height is a new height function reflecting the dynamics of f. Our aim is to generalize the definition of the canonical heights to arbitrary endomorphisms.

Definition 2 Let X be a smooth projective variety and f an endomorphism on X with $\delta_f > 1$. Set $l_f = \min\left\{ l \in \mathbb{Z}_{\geq 0} \mid \left\{ rac{h_X(f^n(x))}{\delta_f^n n^l} ight\}_{n=0}^\infty ext{ is bounded for } orall x \in X(\overline{\mathbb{Q}}) ight\}.$

The upper/lower canonical heights for f are defined as

$$egin{aligned} \overline{h}_f(x) &= \limsup_{n o \infty} rac{h_X(f^n(x))}{\delta_f^n n^{l_f}}, \ & \underline{h}_f(x) &= \liminf_{n o \infty} rac{h_X(f^n(x))}{\delta_f^n n^{l_f}}. \end{aligned}$$

Immediately the following follows.

Proposition 3

Let X be a smooth projective variety and f an endomorphism on X with $\delta_f > 1$.

 $ullet \overline{h}_f(x) \geq \underline{h}_f(x) \geq 0$ for every x and • $\overline{h}_f \circ f = \delta_f \overline{h}_f, \underline{h}_f \circ f = \delta_f \underline{h}_f.$

Main results

Definition 4

Let $oldsymbol{X}$ be a smooth projective variety and $oldsymbol{f}$ an endomorphism on $oldsymbol{X}.$ For a subfield $K\subset \overline{\mathbb{Q}}$, we set

$$Z_f(K) = \{x \in X(K) \mid \underline{h}_f(x) = 0\}$$

When f is a polarized endomorphism, then $Z_f(K)$ is a finite set for every number field K (Northcott-type finiteness property). So we expect a finiteness property that $Z_f(K)$ is "small" for a general endomorphism f.

Conjecture 1

Let X be a smooth projective variety and f an endomorphism on X with $\delta_f > 1$. Take any number field K. Then $Z_f(K)$ is contained in a proper closed subset $V \subset X$ with $f(V) \subset V$.

We can prove Conjecture 1 for certain cases.

Theorem 5

Let X be a sm	ooth projective variety and $oldsymbol{f}$ an endomorphism	on X	with δ_f .	> 1.
Conjecture 1 ho	olds in the following cases.			

(i) $f^*H \equiv \delta_f H$ for an ample \mathbb{R} -divisor H on X. This contains the case when the Picard number of X is one.

(ii) $\rho(X) \leq 2$ and f is an automorphism.

(iii) $oldsymbol{X}$ is an abelian variety which is isogenous to a product of elliptic curves and pairwise non-isogenous simple abelian varieties of dimension > 1. This includes endomorphisms on abelian varieties of dimension ≤ 3 . (iv) X is a smooth projective surface.

Sketch of proof.

(i) In this case, the ample canonical height is essentially equivalent to the canonical height due to Call-Silverman.

(ii) If ho(X)=2, we can take two nef $\mathbb R$ -divisors D_\pm which are eigenvectors of f^* in $N^1(X)_{\mathbb{R}}$ and the associated canonical heights $\hat{h}_{D_\pm,f}$, which help us to compute the ample canonical height.

(iii) Step 1 Assume $X = E^r$ (E: an elliptic curve). Then $f \in \operatorname{End}(E^r)$ is represented by a (r imes r)-matrix in $\operatorname{End}(E)_{\mathbb{Q}}$: the rational number field or a imaginary quadratic field. Then we can compute the ample canonical height by the aid of the Jordan normal form of the matrix.

Step 2 Assume X is a simple abelian variety. Then it turns out that a nef canonical height introduced by Kawaguchi-Silverman [KaSi16a] is essentially equivalent to the ample canonical height. Moreover, the zero sets of nef canonical heights on abelian varieties were determined by Kawaguchi-Silverman [KaSi16b]. Step 3 A general f is split to a product of endomorphisms in Step 1 or Step 2. Then we can prove the claim.

(iv) Step 1 If f is an automorphism on a surface, it turns out that the ample canonical height is essentially equivalent to the the canonical height due to Kawaguchi [Kaw08].

Step 2 Any non-automorphic endomorphism on a minimal surface which is isomorphic to neither \mathbb{P}^2 nor abelian surfaces admits a certain fibration to a curve ([MSS17]). Then we can investigate the zero set of the ample canonical height by the aid of the fibration structure.

Applications

Theorem 6 (A dynamical Mordell–Lang type result)

Let X be a smooth projective variety and f,g endomorphisms on X such that $\delta_f = \delta_g > 1$ and $l_f = l_g$. We assume one of the following:

 $\bullet f^*H \equiv \delta_f H$ and $g^*H' \equiv \delta_g H'$ for some ample $\mathbb R$ -divisors H, H' on X , $ullet
ho(X) \leq 2$ and f,g are automorphisms,

 $\bullet X$ is an abelian variety which is isogenous to a product of elliptic curves and pairwise non-isogenous simple abelian varieties of dimension > 1, or

• X is a smooth projective surface.

Take a dense f-orbit $O_f(x)$ and a dense g-orbit $O_g(y)$. Then the set $\{|n-m| \mid n,m \in \mathbb{Z}_{\geq 0}, \; f^n(x) = g^m(y) \}$ is upper bounded. Furthermore, if both f and g are étale, then the set $\{(n,m)\in (\mathbb{Z}_{>0})^2\mid f^n(x)=g^m(y)\}$ is a finite union of sets of the form $\{(kn+i,kn+j)\}_{n=0}^\infty$ for some $k,i,j\in\mathbb{Z}_{\geq 0}.$

References

[CaSi93] G. S. Call, J. H. Silverman, Canonical heights on varieties with morphisms, Compositio Math. 89 (1993), no. 2, 163-205.

[KaSi16a] S. Kawaguchi, J. H. Silverman, On the dynamical and arithmetic degrees of rational self-maps of algebraic varieties, J. Reine Angew. Math. 713 (2016), 21 - 48

[KaSi16b] S. Kawaguchi, J. H. Silverman, Dynamical canonical heights for Jordan blocks, arithmetic degrees of orbits, and nef canonical heights on abelian varieties, Trans. Amer. Math. Soc. 368 (2016), no. 7, 5009-5035.

[Kaw08] S. Kawaguchi, Projective surface automorphisms of positive topological entropy from an arithmetic viewpoint, Amer. J. Math. 130 (2008), no. 1, 159-186.

[MSS17] Y. Matsuzawa, K. Sano, T. Shibata, Arithmetic degrees and dynamical degrees of endomorphisms on surfaces, preprint (2017).