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Introduction

We work over Q.
An endomorphism means a dominant morphism from a variety to itself.
For an endomorphism f on a smooth projective variety X, the (first) dynamical
degree of f is

�f = lim

n!1
((f⇤

)

nH · HdimX�1

)

1

n,

where H is an ample divisor.
Let X be a smooth projective variety and D a divisor on X. Then hD denotes
the height function associated to D, which is determined up to the di↵erence of a
bounded function.
For a smooth projective variety X, hX denotes a fixed height function associated
to an ample divisor with hX � 1.

Theorem 1 (The canonical height for a polarized endomorphism,
Call–Silverman [CaSi93])

Let X be a smooth projective variety and f an endomorphism on X with

f⇤H ⇠ dH where H is an ample divisor and d > 1. Then the canonical height

ˆhH,f(x) = lim

n!1

hH(fn
(x))

dn

converges for every x 2 X(Q). Moreover,

ˆhH,f(x) � 0 for every x,
ˆhH,f � f = dˆhH,f , and

(Northcott-type finiteness property) {x 2 X(K) | ˆhH,f(x) = 0} is a finite

set for any number field K.

The canonical height is a new height function reflecting the dynamics of f . Our aim
is to generalize the definition of the canonical heights to arbitrary endomorphisms.

Definition 2
Let X be a smooth projective variety and f an endomorphism on X with �f > 1.
Set

lf = min

(
l 2 Z�0

|
(
hX(fn

(x))

�nfn
l

)1

n=0

is bounded for 8x 2 X(Q)

)
.

The upper/lower canonical heights for f are defined as

hf(x) = lim sup

n!1

hX(fn
(x))

�nfn
lf

,

hf(x) = lim inf

n!1

hX(fn
(x))

�nfn
lf

.

Immediately the following follows.

Proposition 3
Let X be a smooth projective variety and f an endomorphism on X with �f > 1.

hf(x) � hf(x) � 0 for every x and

hf � f = �fhf , hf � f = �fhf .

Main results

Definition 4
Let X be a smooth projective variety and f an endomorphism on X. For a
subfield K ⇢ Q, we set

Zf(K) = {x 2 X(K) | hf(x) = 0}.
When f is a polarized endomorphism, then Zf(K) is a finite set for every number
field K (Northcott-type finiteness property). So we expect a finiteness property
that Zf(K) is “small” for a general endomorphism f .

Conjecture 1

Let X be a smooth projective variety and f an endomorphism on X with �f > 1.

Take any number field K. Then Zf(K) is contained in a proper closed subset

V ⇢ X with f(V ) ⇢ V .

We can prove Conjecture 1 for certain cases.

Theorem 5
Let X be a smooth projective variety and f an endomorphism on X with �f > 1.

Conjecture 1 holds in the following cases.

(i) f⇤H ⌘ �fH for an ample R-divisor H on X. This contains the case when

the Picard number of X is one.

(ii) ⇢(X)  2 and f is an automorphism.

(iii) X is an abelian variety which is isogenous to a product of elliptic curves and

pairwise non-isogenous simple abelian varieties of dimension > 1. This includes

endomorphisms on abelian varieties of dimension  3.

(iv) X is a smooth projective surface.

Sketch of proof.

(i) In this case, the ample canonical height is essentially equivalent to the canonical
height due to Call–Silverman.
(ii) If ⇢(X) = 2, we can take two nef R-divisors D± which are eigenvectors of f⇤

in N1

(X)R and the associated canonical heights ˆhD±,f , which help us to
compute the ample canonical height.
(iii) Step 1 Assume X = Er (E: an elliptic curve). Then f 2 End(Er

) is
represented by a (r ⇥ r)-matrix in End(E)Q: the rational number field or a
imaginary quadratic field. Then we can compute the ample canonical height by the
aid of the Jordan normal form of the matrix.
Step 2 Assume X is a simple abelian variety. Then it turns out that a nef

canonical height introduced by Kawaguchi–Silverman [KaSi16a] is essentially
equivalent to the ample canonical height. Moreover, the zero sets of nef canonical
heights on abelian varieties were determined by Kawaguchi–Silverman [KaSi16b].
Step 3 A general f is split to a product of endomorphisms in Step 1 or Step 2.
Then we can prove the claim.
(iv) Step 1 If f is an automorphism on a surface, it turns out that the ample
canonical height is essentially equivalent to the the canonical height due to
Kawaguchi [Kaw08].
Step 2 Any non-automorphic endomorphism on a minimal surface which is
isomorphic to neither P2 nor abelian surfaces admits a certain fibration to a curve
([MSS17]). Then we can investigate the zero set of the ample canonical height by
the aid of the fibration structure.

Applications

Theorem 6 (A dynamical Mordell–Lang type result)
Let X be a smooth projective variety and f, g endomorphisms on X such that

�f = �g > 1 and lf = lg. We assume one of the following:

f⇤H ⌘ �fH and g⇤H 0 ⌘ �gH 0
for some ample R-divisors H,H 0

on X,

⇢(X)  2 and f, g are automorphisms,

X is an abelian variety which is isogenous to a product of elliptic curves and

pairwise non-isogenous simple abelian varieties of dimension > 1, or

X is a smooth projective surface.

Take a dense f -orbit Of(x) and a dense g-orbit Og(y). Then the set

{|n � m| | n,m 2 Z�0

, fn
(x) = gm

(y)} is upper bounded. Furthermore, if

both f and g are étale, then the set {(n,m) 2 (Z�0

)

2 | fn
(x) = gm

(y)} is a

finite union of sets of the form {(kn + i, kn + j)}1
n=0

for some k, i, j 2 Z�0

.
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