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Abstract 

The application potential of Li-ion batteries is growing as demand increases in different fields at 

various stages in energy systems, in addition to their conventional role as power sources for portable 

devices. In particular, applications in electric vehicles and renewable energy storage are increasing 

for Li-ion batteries. For these applications, improvements in battery performance are necessary. The 

Li-ion battery produces and stores electric power from the electrochemical redox reactions between 

the electrode materials. The interface between the electrodes and electrolyte strongly affects the 

battery performance because the charge transfer causing the electrode redox reaction begins at this 

interface. Understanding of the surface structure, electronic structure, and chemical reactions at the 

electrode–electrolyte interface is necessary to improve battery performance. However, the interface 

is located between the electrode and electrolyte materials, hindering the experimental analysis of the 

interface; thus, the physical properties and chemical processes have remained poorly understood 

until recently. Investigations of the physical properties and chemical processes at the interface have 

been performed using advanced surface science techniques. In this review, current knowledge and 

future research prospects regarding the electrode–electrolyte interface are described for the further 

development of Li-ion batteries.  
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Abbreviations 

 

ABF  Annular Bright Field 

AFM  Atomic Force Microscopy 

AM  Amplitude Modulation 

EC  Ethylene Carbonate 

CVD  Chemical Vapor Deposition 

DEC  Diethyl Carbonate 

DFT-MD Density Functional Theory-Molecular Dynamics 

DMC  Dimethyl Carbonate 

DME  Dimethoxyethane 

DMSO  Dimethyl Sulfoxide 

DOS  Density of States 

DR-XAS Depth Resolved X-ray Absorption Spectroscopy 

EDX  Energy Dispersive X-ray 

EELS  Electron Energy Loss Spectroscopy 

EIS  Electrochemical Impedance Spectroscopy  

EMC  Ethyl Methyl Carbonate 
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ESD  Electrostatic Spray Deposition 

FEC  Fluoroethylene Carbonate 

FM  Frequency Modulation 

GC  Gas Chromatography 

HAADF  High-Angle Annular Dark-Field 

HAX-PES Hard X-ray Photoelectron Spectroscopy 

HOPG   Highly Oriented Pyrolytic Graphite 

HREELS High Resolution Electron Energy Loss Spectroscopy 

IR  Infrared 

LEED  Low Energy Electron Diffraction 

LLT  La0.55Li0.35TiO3 

MD  Molecular Dynamics 

MS  Mass Spectroscopy 

NR  Neutron Reflectivity 

PE  Polyethylene 

PEO  Polyethylene Oxide 

PES  Photoelectron Spectroscopy 

PLD  Pulsed Laser Deposition 
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PM-FTIR Polarization-modulation Fourier-transform infrared 

PP  Polypropylene  

PVdF  Polyvinylidene Difluoride 

RF  Radio Frequency 

SEI  Solid Electrolyte Interphase 

SEIRA  Surface Enhanced Infrared Absorption 

SEM  Scanning Electron Microscopy 

SERS  Surface Enhanced Raman Scattering  

SFG  Sum Frequency Generation 

SOC  State of Charge 

SLD  Scattering Length Density  

STEM  Scanning Transmission Electron Microscopy 

STM  Scanning Tunneling Microscopy 

STO  SrTiO3 

STS  Scanning Tunneling Spectroscopy 

TEM  Transmission Electron Microscopy 

TERS  Tip Enhanced Raman Scattering 

TRF-XAS Total-reflection Fluorescence X-ray Absorption Spectroscopy 
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UHV  Ultra High Vacuum 

VC  Vinylene carbonate 

WKB  Wentzel-Kramers-Brillouin 

XPS  X-ray Photoelectron Spectroscopy 

XRD  X-ray Diffraction 

XRR  X-ray Reflectivity 
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1. Introduction 

Concerns regarding environmental pollution and the depletion of energy sources in our life are 

increasing. The most realistic and feasible strategy to solve these problems is the enhancement of the 

efficiency of energy use. Energy usage at a specific time and place by generating electricity using a 

rechargeable battery is one suitable method for improving efficiency. Currently, Li-ion batteries are 

the most common type of rechargeable batteries, with widespread use in portable electronic devices. 

Recently, the application of Li-ion batteries has expanded to electric vehicles, factories, and 

renewable energy storage [1-4]. To meet the demands of these new applications, Li-ion batteries 

require improvements in capacity, cycling, and high-rate performance. To improve battery 

performance, the interface between the electrodes and electrolyte must be both thoroughly 

understood and controllable. In this review, current knowledge and future research prospects 

regarding the electrode–electrolyte interface in Li-ion batteries are summarized. 

The first Pb–acid rechargeable battery was invented in 1859 by Gaston Plante; the 

development of nickel–cadmium and nickel–hydrogen batteries followed, and finally led to 

rechargeable batteries using Li [1-4]. The high specific capacity (3860 A·h/g) of Li suggested its use 

as an electrode material; Li–TiS2 and Li–MoS2 batteries are examples of Li-ion battery systems. 

However, the low recharging performances and safety issues of Li negative electrodes induced the 

replacement of Li-negative electrodes with intercalated materials. In lithiated carbon (typically 
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graphite), the charge–discharge reaction in an appropriate organic electrolyte forms a stable surface 

film known as the solid electrolyte interphase (SEI) on the electrode [5]. The applicability of LiCoO2 

in positive electrode material was discovered by Goodenough et al. in 1980 [6]. Current Li-ion 

batteries use graphite negative electrodes and lithiated-metal layered compounds, typically LiCoO2, 

as positive electrodes, in which the Li insertion and extraction processes occur during the charge and 

discharge reactions, respectively. In 1991, Li-ion batteries were commercialized by SONY for use in 

small electric devices because they offered high energy densities [7]. At present, Li-ion batteries are 

indispensable power sources for portable electronic devices in modern life [1-4, 9].  

Modern industrial Li-ion batteries are typically composed of the following components (Fig. 

1):  

A. A current collector for the negative electrode 

B. A composite negative electrode 

C. A separator to prevent direct contact between the negative and positive electrodes immersed 

in an organic electrolyte 

D. A composite positive electrode 

E. A current collector for the positive electrode  

Typically, Cu is used for A. B is prepared by mixing the active material with a binder. Carbon 

materials and F-containing resins like polyvinylidene difluoride (PVdF) are typically used as the 
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active and binder materials, respectively. When active materials with low electron conductivity are 

used, the conductive material, i.e. acetylene black is mixed with the composite electrode. For C, 

polyethylene (PE) or polypropylene (PP) microporous membranes are used as separators. The 

separator is immersed by the electrolyte, typically a Li salt such as LiPF6, is dissolved in a 

carbonate-based organic solvent, often a mixture of ethylene carbonate (EC) and dimethyl carbonate 

(DMC), diethyl carbonate (DEC), or ethyl methyl carbonate (EMC). Small amounts of additives 

such as vinylene carbonate (VC) are also dissolved in the electrolyte to improve the battery 

performance. For D, a mixture of the active material, binder, and conductive materials is prepared 

(Fig. 2) [8]. Layered metal oxides like LiCoO2 and PVdF are typical active and binder materials, 

respectively. To improve the electron conductivity, carbon materials like acetylene black are used as 

the conductive material. For E, Al foil is typically used, with the composite positive electrode pasted 

onto the metallic current collector. During the charge–discharge reaction in a Li-ion battery, Li ions 

and electrons move by diffusion between the active materials in the negative and positive electrodes. 

During the charging and discharging of a Li-ion battery, Li ions move between the positive and 

negative electrodes. Here, it is assumed that Li ions initially occupy the positive electrode (Fig. 3). 

To begin the discharging reaction, a lower electrochemical potential is applied to the positive 

electrode. To compensate for the difference in electrochemical potential between the positive and 

negative electrodes, an electric double layer forms at the electrolyte side of the electrode–electrolyte 
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interface. In this electric double layer, charge transfer and the solvation of Li ions occurs [10-11]. At 

the interface of the negative electrode, desolvation proceeds, while a space charge layer forms at the 

electrode side that distorts the crystal and local structures of the electrode [1-4, 12, 13]. In addition, 

the electrolyte often decomposes to form an interface layer [1-5, 10, 11, 14]. These physical 

properties and chemical reactions at the interface strongly influence the performance; i.e., the 

capacity, cyclic properties, and high-rate behaviors, of Li-ion batteries. However, the interface is 

buried within the electrode and electrolyte, which hinders its analysis. Electrochemical studies have 

provided important information regarding the interface, but much remains unknown. 

In this review, the current understanding of the surface structures and electronic structures for 

typical electrode materials is summarized because these properties are the most fundamental in 

affecting the interfacial phenomena. In addition, the chemical reactions occurring at the electrode–

electrolyte interface are described. These are useful in further understanding of the interface and in 

improving the performance of Li-ion batteries. 

 

2. Preparation and growth of samples for experimental studies surface and interface study 

Composite electrodes are used in industrial Li-ion batteries; these have complex structures 

because of their components (Fig. 2). The extraction of surface and interface properties from the 

active materials within such composite electrodes is difficult. In order to study the surface and 
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interface properties, model electrodes can be useful. In this section, several methods used to prepare 

model electrodes and investigate surface and interface phenomena are described. 

 

2.1. Thin films 

The most popular method used to investigate interface phenomena in Li-ion batteries is the use 

of thin-film samples of the active materials. Thermal vapor deposition, radio-frequency (RF) 

sputtering, RF magnetron sputtering, chemical vapor deposition (CVD), electrostatic spray 

deposition (ESD), sol-gel methods, and pulsed laser deposition (PLD) can be used to prepare thin-

film samples [14, 15]. RF sputtering and RF magnetron sputtering are the most convenient ways to 

prepare thin films; however, obtaining flat samples using these methods is difficult, as they produce 

thin films of polycrystalline particles. Among the above preparation methods, PLD is the most 

precise technique for preparing thin-film samples; epitaxial LiCoO2(104)/ SrRuO3(100)/Nb–

SrTiO3(100) is shown as an example in Fig. 4 [16]. PLD can induce epitaxial film growth on a 

crystalline substrate, meaning that this technique can prepare sufficiently high-quality samples [15-

17]. However, determining the conditions necessary to prepare high-quality, highly crystalline, and 

flat thin films of the required composition is difficult, and doing so for compounds containing 

several elements is especially difficult. In addition, because the technique is so refined, obtaining 

thicker films requires long processing times.  
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2.2. Single crystals 

The most ideal form in which to study the interface or surface properties of an electrode 

material is the bulk (millimeter-sized) single crystal. Single crystals are traditionally used in surface 

science work; they offer the best opportunities to precisely characterize details of the materials [18, 

19]. However, the preparation of single-crystal electrode materials is difficult. For the typical active 

materials of Li-ion batteries, only highly oriented pyrolytic graphite (HOPG) [20], LixCoO2 (Fig. 5) 

[21], and LixFePO4 [22, 23] have been prepared as bulk single crystals for studying their interface 

and surface properties. Small-size (micrometer-scale) single crystals have been reported for 

LiMn2O4 and Li2MnO3 [24-27], but a detailed study requires further developments in preparing 

millimeter-scale single crystals. Single-crystalline Li4Ti5O12 was successfully prepared by inserting 

Li into single-crystalline TiO2 by calcining TiO2 with a Li compound [28]. 

 

2.3. Others 

Experiments using composite electrodes can also be used to study interface phenomena. By 

using scanning electron microscopy (SEM) or transmission electron microscopy (TEM), the 

interface can be directly observed, even with composite electrodes. As described above, composite 

electrodes are used in industrial Li-ion batteries; thus, the results are easily adapted for industrial 
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batteries. 

 

3. Analytical methods 

3.1.  Surface and interface structure 

To study the surface structure of an electrode, surface X-ray diffraction can be used [29]. In 

this method, high-flux X-rays irradiate the sample surface at an incident angle of less than the 

critical angle for the total reflection. The penetration depth of the X-ray is limited to several 

nanometers [30]. The diffraction therefore reflects the crystalline structure in the surface region of 

the several nanometers of the material. This method can be also used for the interface with the 

electrolyte.  

Reflectivity measurements of X-rays and neutrons can be used to study the composition, 

roughness, and thickness of components at interfaces [31-36]. These measurements are performed by 

measuring the intensity of an X-ray or neutron beam reflection from the sample surface or interface 

after irradiation at a very small incident angle. Both X-ray reflectivity (XRR) and neutron 

reflectivity (NR) measurements can be used to analyze the composition, roughness, and thickness of 

a sample. XRR has advantageous signal intensity relative to NR, which is important for the detailed 

analysis of the reflectivity pattern. However, NR is highly sensitive to light elements, and the 

electrolytes of Li-ion batteries generally comprise the light elements of C, O, H, P, and F. Therefore, 
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NR has advantages in analyzing Li-ion battery systems. Because most materials have refractive 

indices n < 1, a neutron ray incident at an angle below the critical angle upon a flat sample 

experiences total optical reflection at the surface. The reflectivity intensity decreases in proportion to 

q
−4

, where q is the scattering vector. For an incident angle exceeding the critical angle, the incident 

neutron beam is divided into reflected and transmitted beams. The transmitted beam also divides into 

reflected and transmitted beams at each interface (Fig. 6). The waves from each reflected neutron 

beam are added and their relative phases cause interference oscillations, or Kiessig fringes. These 

oscillations reflect the scattering lengths and thicknesses of the material. The reflectivity of the 

neutron R(q) is expressed by the following equation: 

R(q) = RF(q) exp(−q
2σ2

)   (1) 

where RF(q) and σ are the Frenckel reflection at a perfectly flat interface and the standard deviation 

of the composition distribution at the interface. Thus, the neutron reflectivity reflects the 

composition, thickness, and roughness of the interfaces. 

Microscopic techniques can directly show surface and interface structures at the molecular or 

atomic level. TEM and electron diffraction are widely used to analyze surface and interface 

structures [23, 37]. With the recent development of scanning transmission electron microscopy 

(STEM) based on spherical aberration correction techniques, the positions, elements, and local 

electronic structures of each atomic column can be analyzed [38]. Although the concept of spherical 
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aberration correction was proposed long ago, electron lenses using spherical aberration correction 

techniques were first achieved in Germany in the 1990s [39]. The resolution of TEM imaging 

continued to improve with the refinement of spherical aberration correction techniques [40]. Today, 

resolutions of < 0.05 nm can be achieved [41]. The direct observation of transition metals in active 

electrode materials by high-angle annular dark-field scanning transmission electron microscopy 

(HAADF-STEM) and the analysis of local electronic structures by STEM-electron energy loss 

spectroscopy (EELS) have been reported [42]. In addition, the observation of light elements such as 

Li, O, and H can be achieved by annular bright-field (ABF) STEM [43, 44]. TEM can be used to 

observe the surface structures of electrodes in cross-sectional imaging. 

Scanning probe microscopic techniques are often used for direct observations of surface and 

interface structures. The first scanning probe microscopy technique, scanning tunneling microscopy 

(STM), was developed by Binning and Rorher [45, 46]. The STM experimental system firstly 

reported by Binning et al. [45] is shown in Fig. 7. In STM, a bias voltage is applied between a sharp 

metallic probe tip and the conductive sample. By moving the tip toward the sample surface, a 

tunneling current is detected before contact is established. The tunneling current I is very sensitive to 

the tip–sample distance s. While maintaining a constant tunneling current I, the tip scans the sample 

surface. The trajectory of the tip during the scan reflects the surface structure and electronic structure 

with atomic resolution. 
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Here, the theoretical background of the dependence of the sensitivity of the tunneling current I 

on the tip–sample distance s is explained [46, 47]. With the assumption of no-inelasticity, the 

tunneling current I is expressed as: 

I ∝  ∫ 𝜌𝑠(𝐸)𝜌𝑡(−𝑒𝑉 + 𝐸)𝑇(𝐸, 𝑒𝑉)𝑑𝐸
𝑒𝑉

0
  ---(2) 

where e, V, 𝜌𝑠(E), 𝜌𝑡(𝐸), and T(E, eV) are the electron charge, applied bias voltage, the densities of 

states (DOS) at the surface of the sample and at the probe tip at the energy E, and the tunneling 

probability of an electron of energy E to another site, respectively (Fig. 8). Using the Wentzel–

Kramers–Brillouin (WKB) approximation, T(E, eV) is expressed by 

𝑇(𝐸, 𝑒𝑉) =  exp (−
4𝜋𝑠√2𝑚

ℎ
√(Ф(𝑧) + 

𝑒𝑉

2
− 𝐸))   ---(3) 

where s, m, h, and Ф(𝑧) are the tip–sample distance, electron mass, Planck constant, and the work 

function at position z. From equations (2) and (3), with the approximation of (A) a flat tip–sample 

potential Ф and (B) constant values for 𝜌𝑠(E) and 𝜌𝑡(𝐸), the tunneling current I is expressed by  

I ≅  f(V)exp (−2s√
4𝑚𝜋

ℎ
(Ф −

𝑒|𝑉|

2
))   (4) 

where f(x) is a function that is almost constant with changes in V. Equation (4) indicates that the 

tunneling current I changes exponentially with the tip–sample distance s, providing the high 

resolution of STM imaging. STM can be operated in vacuum, ambient atmospheres, and liquids [47, 

48]. In addition, spectroscopic measurements based on STM can be used to study the electronic [47-

52], vibrational [53-55], and spin structures [56-58], as well as the chemical reaction dynamics, of 
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single molecules [59-65]. 

Based on the principles of operation, STM is applicable only to conductive samples. Atomic 

force microscopy (AFM) uses a cantilever probe similar to that in STM; however, AFM can be used 

to image insulators. In STM, the tunneling current is used to monitor the tip–sample distance. In 

AFM, the forces generated between the cantilever tip and the sample are used to control the tip–

sample distance. These forces Fts include both long- and short-range contributions. In the long range 

(typically exceeding 10 nm), the van der Waals, electrostatic, and magnetic forces have large 

contributions in vacuum, while electric double-layer forces have large contributions on the long-

range interactions in liquids [66]. In the short range (typically less than 1 nm), chemical forces and 

Pauli repulsive forces are typically prevalent in vacuum. In liquid, solvation forces would have large 

contributions in the short range as well as van der Walls, electrostatic and magnetic forces. Other 

forces (such as chemical and Pauli repulsive forces) would also have contributions in the short range. 

For high-resolution imaging by AFM, the short-range forces are exploited.  

Early AFM operation was performed in a static mode, in which the tip maintained contact with 

the sample surface under a constant force. This method was simple, but damage to the sample 

surface was unavoidable. Later, dynamic modes in which the cantilever oscillation was developed to 

solve the problem of surface damage. In the dynamic-mode AFM, the mode can be controlled by 

amplitude modulation (AM) or frequency modulation (FM); the amplitude and frequency are both 
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affected by the forces between the tip and sample. In AM mode, the amplitude of the cantilever 

oscillation is used as the feedback signal and is maintained at a constant value. The tip periodically 

makes contact with the sample surface; however, the force of the contact is much smaller than that in 

the static mode. In 1991, Albrechit et al. reported an application of the FM mode that improved the 

time scale of the change in frequency of the cantilever [67]. The application of FM mode AFM 

dramatically improved the imaging resolution to the atomic level [68]. AFM operation in FM-mode 

(FM-AFM) can be performed in vacuum, but was not used in liquids because of the extreme 

reduction of the Q factor of oscillation by hydrodynamic interactions with the cantilever. Yamada et 

al. developed a system using small amplitude and large noise reduction in the cantilever deflection 

sensor that permitted FM-AFM operation in liquids (Fig. 9) [69-71]. True atomic resolution in liquid 

was first achieved in imaging muscovite mica in water [69]. FM-AFM in liquid has the unique 

ability of imaging the density distribution of molecules in the liquid phase around solid–liquid 

interfaces by detecting frequency shifts as the probe moves relative to the interface [71].  

 

3.2. Electronic structure 

To study the electronic structure of solid surfaces, photoelectron spectroscopy (PES) is widely 

used in surface science as well as in battery research [72-74]. In Li-ion batteries, interface layers are 

often formed during the charge and discharge reaction processes on the electrodes by the 
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decomposition of the electrolyte. The interface layer is generally thick, typically measuring more 

than several tens of nanometers in scale [14, 74, 75], thus blocking the escape of photoelectrons 

from the electrode materials and impeding analysis of the interface electronic structure beneath the 

surface. To overcome this problem, hard X-ray photoelectron spectroscopy (HAX-PES) using 

synchrotron X-rays is used to analyze electronic structures beneath interface layers. By using high-

energy X-rays, the escape depth of the photoelectrons is increased. For example, the escape depth of 

a photoelectron of 1.5 keV is estimated to be ~3 nm for carbon materials; however, this is increased 

to ~50 nm for a photoelectrons of 8.0 keV. The use of HAX-PES is spreading for battery systems 

[72, 74]. In addition, ambient-PES could potentially be used to study the electronic structure at the 

interface [76-78]. However, no work has yet reported such an analysis for a battery system. 

In addition to PES, total-reflectancion fluorescence X-ray absorption spectroscopy (TRF-XAS) 

(Fig. 10) is used to study the electronic structure of surfaces of electrodes [13, 79-82]. With the X-

ray introduced at the angle of total reflectance, the fluorescence is limited to that from the surface 

region of the top several nanometers of the electrode [79]. By applying this technique, an electronic 

structure of the electrode can be analyzed during the charging and discharging processes. 

 STM and scanning tunneling spectroscopy (STS) can also be used to directly show the atomic-

scale surface electronic structures of electrodes. From equation (3) with the approximation of the flat 

potential Ф between the tip and sample, the differential of equation (2) with respect to the potential 
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is expressed as: 

𝑑𝐼

𝑑𝑉
= 𝑒𝜌𝑠(𝐸)𝜌𝑡(0) exp (−

4𝜋𝑠√2𝑚

ℎ
√(Ф + 

𝑒𝑉

2
− 𝐸))  𝑠  --- (5) 

If the applied bias V is sufficiently low, equation (6) changes to 

𝑑𝐼

𝑑𝑉
= 𝑒𝜌𝑠(𝐸)𝜌𝑡(0) exp (−

4𝜋𝑠√2𝑚

ℎ
√Ф)  𝑠 --- (6) 

The derived equation (6) shows that dI/dV reflects 𝜌𝑠(𝐸). Thus, the DOS at the surface can be 

determined by measuring dI/dV.  

 

3.3. Vibrational structure 

To analyze the reaction mechanisms occurring at the surface and interface, vibrational 

techniques are useful. Infrared (IR), Raman, and sum frequency generation (SFG) spectroscopy have 

been reported for use in analyzing electrode interfaces in Li-ion batteries. IR and Raman 

spectroscopy are complementary methods. In situ polarization-modulation Fourier-transform IR 

(PM-FTIR) [83], surface-enhanced IR absorption (SEIRA) [84, 85], surface-enhanced Raman 

scattering (SERS) [86, 87], and tip-enhanced Raman scattering (TERS) [88] are advanced IR and 

Raman spectroscopic techniques used to investigate interfacial phenomena. While these techniques 

are useful, few reports on their use with battery systems have been published. SFG spectroscopy 

(Fig. 11) is an interface-selective vibrational spectroscopy method, ideal for investigating interface 

reactions [89-91].  
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3.4. Theoretical methods 

In addition to experiments, theoretical methods can be used to investigate the surface and 

interface properties of Li-ion battery materials. Much of the interfacial character remains unknown 

through experimental analysis because of technical problems in existing measurement systems. First 

principles calculations are widely used to investigate the surface, electronic, vibrational, and spin 

structures at the surfaces and interfaces of battery materials. The combination of experimental results 

and first principles calculations can permit the deep interpretation of the experimental results [92, 

93]. With knowledge from first principles calculations and predictions, classical molecular dynamics 

(MD) calculations can be used to understand the atomic natures of interface reactions in large-scale 

systems. In MD calculations, constructions of precise interatomic potentials should be used; 

however, such construction in complex systems is generally very difficult. Recently, density 

functional theory–molecular dynamics (DFT-MD) calculations have been applied to investigate the 

interface reactions in Li-ion batteries [94]. 

 

3.5. Other analytical methods 

While publications have not yet been reported, other traditional surface science techniques 

could be used to analyze the interfaces in rechargeable batteries. Low-energy electron diffraction 
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(LEED) [95] could be used to analyze the surface structure, while high-resolution electron energy 

loss spectroscopy (HREELS) [96] could be used to study vibrational structures. However, these 

methods are disadvantageous in using electron beams. The electrode materials in rechargeable 

batteries have often low electronic conductivity and become negatively charged under electron beam 

irradiation. Thus, the application of these techniques is generally difficult. Measurements using ionic 

[97] and He [98] scattering could also provide useful information regarding the surface structures of 

battery systems.  

 

4. Surface structures of electrode materials 

Understanding the surface structures of electrode materials is necessary to understand the interfacial 

phenomena. Here, current knowledge regarding the surface structures of some electrode materials 

for Li-ion battery is described. LiCoO2, LiFePO4, LiMn2O4, carbon, Li4Ti5O12, and LiTi2O4 are 

selected because they are common in Li-ion batteries and investigations of their surface and 

electronic structures are reported. 

 

4.1. Positive electrode materials 

4.1.1. LixCoO2 

LiCoO2 [6] is one of the most widely used materials for positive electrode in Li-ion batteries. 
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The crystal structure of LiCoO2 is layered rock salt in the R3̅m space group (Fig.12). The surface 

structure of LiCoO2 has been theoretically predicted by first-principles calculations by several 

groups. Kramar et al. investigated multiple low-index surfaces of LiCoO2 [99]. The (001) and (104) 

(= (0001) and (101̅4), respectively, in the Miller–Bravais indices used in Fig. 13) surfaces were 

stable within a wide range of O chemical potentials, with relative surface stabilities depending on the 

atmosphere. In oxidizing atmospheres, the prevalence of (001) surfaces was higher than that of 

(104), while in reducing atmospheres it was opposite. 

LiCoO2 surfaces were experimentally prepared by PLD techniques [13, 16, 79]; however, their 

atomic structures was not investigated. A clean LixCoO2 (001) surface can be prepared by the 

cleavage of a single crystal of LixCoO2; by this procedure the surface structures are clearly 

observable by STM [21]. After cleavage, a clear hexagonal structure was observed at the sample 

voltage bias (Vs) of −1.0 V (Fig. 14) due to Li ions on the LixCoO2(001) surface. As the tip 

approached the sample surface, noisier images were obtained, as shown in Fig. 15. The noise arose 

from the high mobility of Li ions on the surface. After removing the Li ions from the (001) surface, 

the CoO2 layer in LixCoO2 was observed with high resolution (Fig. 16). From the comparison with 

the surface DOS calculated by first principles calculations, it was concluded that the protrusions in 

the STM images obtained under positive sample bias were caused by O ions near the Co
4+

, produced 

by the removal of Li ions. No significant reconstructions were observed on this surface.  
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LiCoO2(104) is one of the most attractive surfaces for structure studies because the (104) 

surface is nearly parallel to the direction of Li diffusion in bulk LiCoO2 [99]. LiCoO2(104) can be 

prepared by the epitaxial growth of thin films on SrTiO3 (STO) substrates [16, 31]. However, 

atomically flat surfaces cannot be obtained through this method. Thus, the atomic nature of the 

LiCoO2(104) surface structure is incompletely understood. Theoretical analysis of the (104) surface 

structure is also incomplete; future work remains necessary to determine the precise surface structure 

of this material. 

 

4.1.2. LiFePO4 

Olivine-type LiFePO4 belongs to the orthorhombic space group Pnma (Fig. 17) and shows 

better cyclic performance relative to LiCoO2 as a positive electrode in Li-ion batteries [100]. In 

addition, the price of Fe is relatively low among the metals used in Li-ion battery electrode 

materials. In early research, the surface structure of LiFePO4 was mainly investigated by theoretical 

calculations [101, 102]. The (010) surface of LiFePO4 is of particular interest because the vector 

normal to the surface shows high Li-ion conductivity [103-105]. Wang and Fischer et al. revealed 

that the LiFePO4(010) surface was highly stable via theoretical calculations [101, 102]. Wang et al. 

used first-principles calculations to study the surface energy and structure, while Fisher et al. used a 

classical force field (or empirical potential model) to describe the interatomic forces active in much 
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larger systems. In the second model, each of the ions was assigned a formal charge that remained 

fixed throughout the relaxation process; in reality, the electronic structure near a surface is altered or 

relaxed slightly, causing slight differences in the net effective charges on surface atoms relative to 

those in the crystal bulk. This means that the surface relaxation forces calculated by Fisher et al. 

tended to be stronger than those calculated by Wang et al. This effect is the most noticeable for the 

higher-energy surfaces where greater structural relaxation occurs because they are lower in stability. 

Although the two calculations used different approaches, the predictions of LiFePO4(010) as the 

most stable surface structure were almost identical. The termination of the bulk structure at the 

position of Li ions achieves the most stability (Fig. 18). With this termination, the coordination 

numbers of Li–O and Fe–O are decreased, the bond distances of Li–O and Fe–O decrease slightly, 

and the surface shows Li vacancies. The calculated structure of LiFePO4(010) reported by Fisher et 

al. is shown in Fig. 19.  

Recently, the structure of LiFePO4(010) was experimentally observed using cross-sectional 

TEM by Kobayashi et al [23]. They reported the surface reconstructions after the cleavage of this 

surface (Fig.20). The observed structure well matched with the structure predicted by the first 

principles calculations. It also clarified the changes in the surface structure induced by Li extraction 

from the surface. 

Other surfaces of LiFePO4, (100), (101), (201), and (301) were also determined to be stable by 



27 
 

first-principles calculations [101]. A calculation based on classical force fields also showed that 

(011), (201), and (221) surfaces are stable (Table 1) [102]. In fact, some of these surfaces have lower 

surface energies than (010), although Li diffusion is less efficient and the redox potential is more 

positive than those in (010) [101].  

 

4.1.3. LiMn2O4 

Spinel-type LiMn2O4 [106] has a cubic crystal structure in the Fd3̅m space group (Fig. 21) and 

the advantages of low cost, high voltage, and fast Li diffusion from the three-dimensional network of 

channels. Theoretical analyses of the surface structures have been reported [107, 108]. Benedek and 

Thackeray reported that Li-terminated (001) has the lowest surface energy [107]. However, an 

experiment showed that LiMn2O4 particles are predominantly terminated by (111) surfaces [109-

114]. Karim et al. applied antiferromagnetic ordering along the [110] directions and found that 

LiMn2O4(111) with the inverse spinel structure was the most stable surface (Fig. 22) [108].  

By using first principles calculations and a grand canonical thermodynamic formalism, 

Warburton et al. investigated the stability of the surface structures to compare the non-stoichiometric 

surfaces with previously reported stoichiometric surface terminations in variously oxidative and 

reductive environments [115]. Fig. 23 shows the surface energy of each surface for several chemical 

potentials of Li (ΔμLi) and O (ΔμO) [115]. In general, (111) is the most stable for a wide range of ΔμLi 
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and ΔμO values. This is consistent with the results previously reported by Karim. However, the 

observed surface structure was not inverse spinel; they suggested that the Li-terminated structure 

(Fig. 24) was the most stable. This structure reduced the dipole moment of the MnxO4x layers with 

an additional Li layer at the interface. Experimentally, the stability of LiMn2O4(111) against 

dissolution, which causes the capacity to decrease, has been observed [116]. 

 

4.2. Negative electrode materials 

4.2.1. Carbon 

Carbon materials are currently the most popular materials for negative electrodes in Li-ion 

batteries. Both graphitic and non-graphitic carbon materials are used in Li-ion batteries. In this 

review, only graphitic carbon is discussed because its crystalline nature is needed for analysis of the 

surface structure. The crystal structure of graphitic carbon, based on sp
2
-hybridized carbon atoms 

forming a planar honeycomb structure known as graphene, is well known. Each graphene layer 

interacts with others by van der Waals forces; layered lattice structures of graphene form with the 

layer distance of 0.33 nm [2]. The perfect stacking of graphene layers via one of two stacking 

patterns produces graphite. The stacking pattern sequence of ABABAB forms hexagonal graphite, 

while that of ABCABC sequences forms a rhombohedral structure. In this work, we discuss research 

on hexagonal graphite because HOPG, a typical single-crystal graphite form, has a hexagonal 
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structure in the P63/mmc space group (Fig.25).  

Graphite can have two surface structures (Fig. 25). One is the basal plane (Fig. 25), 

observation of which can be achieved by ultra-high-vacuum (UHV)-STM or AFM [47, 48, 66]. In 

aqueous solutions, the honeycomb basal plane surface structure can be observed by STM or AFM 

and is identical to the structure observed in UHV (Fig. 26) [117]. However, in the electrolyte of Li-

ion batteries, the surface structures were not be directly observed by microscopic techniques.  

The other possible graphite surface is the edge plane (Fig. 25), which can be zigzag or 

armchair in structure (Fig. 27). These surfaces are more active for Li insertion and extraction than 

the basal plane [1-3]. However, defects on the edge plane such as dangling bonds, C–H, C–OH, and 

C–OOH can influence Li insertion and extraction [2]. Investigation of the edge plane of HOPG has 

been reported [118, 119], but the surface structure has not yet been atomically analyzed because of 

the difficulty in preparing clean and flat edge-plane graphite surfaces. 

 

4.2.2. Li4Ti5O12 and LiTi2O4 

Li4Ti5O12 (Fig. 28) and LiTi2O4 (Fig. 29) are two Li–Ti oxide compounds that show good 

performance as negative electrodes in Li-ion batteries. Both compounds have spinel crystal-based 

structures in the Fd3̅m space group, although LiTi2O4 has a relatively distorted structure. The 

materials, particularly Li4Ti5O12, offer the advantage of stable cyclic performance because the 
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volumetric changes accompanying Li insertion and extraction are almost negligible [120, 121]. In 

addition, the materials provide constant electrode potentials and sufficient electron conductivities 

[120, 121]. Calculations of Li4Ti5O12 surfaces have not yet been reported. Experimentally, single-

crystal layers of Li4Ti5O12 can be prepared by the solid-state reaction of single-crystalline TiO2 with 

LiOH·H2O powder [28]. The surface structure of Li4Ti5O12(111) can be imaged by UHV-STM (Fig. 

30) [122] and by FM-AFM in aqueous solutions (Fig. 31) [123]. The Li4Ti5O12(111) surface is 

comprised of Li and O atoms (Fig. 32) [123], with bright spots in the STM image assigned to surface 

Li ions. In liquid-FM-AFM image, it is suggested that the origin of the bright spots may be 

influenced by water molecules [123]. The surface structure of Li4Ti5O12 can also be observed by 

TEM [124, 125]. The change of the surface structure to a rock-salt structure by immersion into an 

electrolyte (1 M LiPF6 in PC) [124], as well as Li insertion to the surface caused by irradiation by an 

electron beam [125] are observed. The structures of other surfaces of Li4Ti5O12 have not been 

observed experimentally.  

For LiTi2O4, the thermodynamic stabilities of the surface structures have been calculated by 

first-principles calculations [126]. The stabilities of the five terminations of (100)-Ti2O4, (110)-

Ti2O4, (210)-Ti2O4, (111)-LiTiO4, and (310)-Ti2O8 were reported to depend on the chemical 

potentials of Ti and O [126]. In recent experiments, Okada et al. observed the surface structure of 

LiTi2O4(111) by STM after preparing thin-film LiTi2O4 on a flat STO substrate by PLD [17]. Using 
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first principles calcualtions, they clarified that the prepared LiTi2O4(111) surface was terminated by 

Ti.  

 

5. Electronic structures of electrode materials 

The electronic structures of electrode surfaces strongly influence interfacial phenomena in battery 

systems. The current status of investigations regarding the electronic structures of the surfaces of Li-

ion battery electrode materials is described in this section. 

 

5.1. Positive electrode materials 

5.1.1. LiCoO2 

The electronic structures of LiCoO2 surfaces have been theoretically calculated and reported by 

several groups. Hu et al. used first-principles calculations to investigate the electronic structure of 

LiCoO2(003) [127] with both Li–O and Co–O terminations as well as the non-polar surface of 

LiCoO2(003). The highest occupied state had mostly Co 3d with a small amount of O 2p character. 

In their reports, the (003) surfaces with Li–O and Co–O terminations showed metallic 

characteristics, despite the insulating nature of the bulk LiCoO2. The contribution of Co 3d, Li 1s/2p, 

and O 2p and the expansion of the bandwidth of O 2p each cause the narrowing of the electronic 

bandgap, suggesting that the surface electronic structure is closely related to the surface termination. 
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The surface electronic structure is also strongly affected by the spin state of surface Co atoms. Qian 

et al. reported that the spin transition of Co from low to intermediate spin narrowed the bandgaps of 

both LiCoO2(104) and (110) surfaces [128]. In addition, Huang et al. reported that the exchange of 

surface Li to H narrowed the bandgap of the LiCoO2(001) surface [129]. These reports support the 

significant influence of small structural variations, such as defects, on the surface electronic 

structure.  

Experimentally, the electronic structure of the Li0.67CoO2(001) surface prepared by the 

cleavage of a bulk single crystal was investigated [21]. On the Li-terminated Li0.67CoO2(001) 

surface, n-type semiconductive behavior was observed by STS (Fig. 33); the half-monolayer of Li 

ions should be present on the Li-terminated surface to satisfy the charge compensation needed to 

retain the Co
3+

 oxidation state. For areas with higher Li ion coverage, the excess Li ions induce the 

reduction of subsurface Co ions to the Co
2+

 oxidation state, causing the n-type semiconductive 

behavior of the surface.  

When Li ions are removed from the surface, the CoO2 layer can be observed by STM [21]. 

Two distinct areas of ordered (Fig 34) and disordered (Fig. 35) structure were observed. In the 

ordered area, protrusions form a 3 × 3 hexagonal lattice, attributed by first principles calculations to 

O ions coordinated with three Co
3+

 and Co
4+ 

ions each for the occupied and unoccupied state images, 

respectively. Co
4+

 is formed by the removal of Li ions. STS measurements in this region reveal 
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metallic features (Fig. 34d), which is different from the Li-terminated surface. Meanwhile, the 

disordered area shows further differences; Fig. 35d shows the STS from the disordered area, clearly 

depicting semiconductive behavior and a clear bandgap. These observations demonstrate the effects 

of Li ionic ordering on the electronic structure and local electron conductivity of the electrode 

surface. These effects arise from the scattering of conductive electrons by the random distribution of 

the electronic structure. During the charging and discharging processes of a Li-ion battery, Li ions 

diffuse between the positive and negative electrodes; generally, high Li-ion conductivity in the 

electrodes promotes better battery performance. In addition, electrons are transferred between the 

two electrodes during the charge and discharge processes to maintain electrode charge neutrality. 

Thus, both electronic and ionic conductivity are required for electrodes. These clearly confirm that 

electrodes with ordered structures provide better battery performance than those with disordered 

structures.  

 

5.1.2. LiFePO4 

Based on optical measurements, the bandgap of LiFePO4 is estimated to be ~3.8–4.0 eV [130]; 

this is confirmed by first-principles calculations, indicating that LiFePO4 is electronically insulating 

in nature [130]. A smaller bandgap of ~2.0 eV on the LiFePO4(010) surface was obtained by first-

principles calculations [131, 132]. However, additional first-principles analyses predicted metallic 
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electronic structures for LiFePO4(100) and LiFePO4(001) [132]. It was also reported that the 

oxidation of the LiFePO4(010) surface (Fig. 36 and 37) or the formation of an Li2S/oxidized 

LiFePO4(010) interface can change the surface electronic properties from insulating to metallic in 

nature because of the formation of hybrid states [131]. These characteristic properties predicted 

theoretically have not yet been experimentally studied. 

 

5.1.3. LiMn2O4 

The electronic structure of the most stable LiMn2O4(111) surface has not been yet reported, but 

that of LiMn2O4(001) has been studied via calculation methods. Bulk LiMn2O4 contains Mn ions 

with the oxidation state of +3.5 [133]. On the Li-terminated LiMn2O4(001) surface, the decreasing of 

Mn coordination with O induces a decrease in the oxidation state of Mn to +3 [133]. The Mn 3d 

projected DOS in Fig. 38e shows that t2g and dz2 (a component of eg) are fully occupied. The electron 

from the ionized Li fills the 3dz2 state. This agrees with X-ray photoelectron spectroscopy (XPS) 

observations of Mn
3+

 in LiMn2O4 [134] and matches the features of MnO-terminated LiMn2O4(001), 

which are almost the same as those of (010) and (100) [133]. 

Using first principles calculations, Warburton et al. reported that the charge of Mn ions on the 

(001) surface is reduced from ~3+ to ~2+ with the removal of O [135]. The disproportion of Mn ions 

may enhance the dissolution of Mn in the electrolyte [134, 135]. The formation of Mn
2+ 

is consistent 
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with the experimentally determined susceptibility of the (001) surface to corrosion and dissolution 

[136, 137]. 

 

5.2. Negative electrode materials 

5.2.1. Carbon 

The electronic structure of the basal plane of graphite can be experimentally observed by 

photoelectron and inverse photoelectron spectroscopy, as well as STS [138-141]. Fig. 39 shows the 

STS spectra obtained from the HOPG basal plane surface [139]. The DOS increases linearly 

depending on the energy. The bonding π and anti-bonding π* states cross approximately at the Fermi 

energy level EF, characteristic of a zero-gap semiconductor. Between the saddle points of the 

bonding and anti-bonding π and π* states, an energy difference of ~4 eV is observed, matching 

previous theoretical results (Fig. 40) [142]. In the STS, a surface state at approximately +3.0 V is 

observed. The electronic structure of the basal plane of graphite is affected by surface modification. 

For example, it is reported that the adsorption of metal on the graphite causes the formation of a 

charge transfer state below EF [143]. 

The electronic structures of both armchair- and zigzag-conformation graphite edge sites have 

been widely investigated. As shown in the STS obtained from an armchair-conformation HOPG 

edge sites, the electronic structure is similar to that of the HOPG basal plane (Fig. 41a) [144]. This 
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matches both experimental and theoretical results showing the energetic stability of the armchair-

structured edge [145-157]. Meanwhile, the electronic structure of the zigzag edge is distinct, as 

shown by STS in Fig. 41b [144]. A clear peak spanning −100 to −20 mV is observed, arising from 

the non-bonding π electronic structures localized at the carbon atoms comprising the zigzag edge. 

This state is half-filled, forming a localized spin that contrasts with the diamagnetic properties of 

bulk graphite.   

All these reports concern the electronic structure of the edge “sites.” Still, no experimental 

investigations on the electronic structure of the edge “plane” of graphite have been reported owing to 

the difficulty in preparation. 

 

5.2.2. Li4Ti5O12 and LiTi2O4 

Neither theoretical nor experimental investigations of the electronic structure of Li4Ti5O12 

surfaces have been reported, although the electronic structure of the interface between Li4Ti5O12 and 

Li7Ti5O12 formed during charging and discharging has been investigated by first-principles 

calculations [158, 159]. The insertion of Li ions into Li4Ti5O12 causes two phase separations between 

Li4Ti5O12 and Li7Ti5O12 [160]. Bulk Li4Ti5O12 and Li7Ti5O12 are both insulators; however, the 

interface at the phase boundary between Li4Ti5O12 and Li7Ti5O12 for [111] is metallic. At this 

interface, one Li atom is extracted from a 16c site in Li7Ti5O12, causing the DOS around EF to ensure 
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the metallic nature of the interface. The electronic structures of the (100), (110), (111), (210), and 

(310) surfaces for different configurations of LiTi2O4 were calculated by first-principles calculations 

(Fig. 42) [126]. Non-zero DOS in the bandgap was observed by the contribution from Ti in many of 

the termination cases. Some of these states are partially occupied, and high electron conductivities 

are predicted at the surfaces. For LiTi2O4(111), Okada et al. observed that the pseudogap opening at 

EF modified the surface to show superconductivity, unlike the bulk [17].  

  

6. Chemical reactions at the interface 

As described in the introduction, the chemical reactions at the electrode–electrolyte interface 

strongly affect the performance of the Li-ion battery. In this section, current knowledge relating to 

the interface layer formed by electrolyte decomposition, the formation of the space charge layer, and 

the desolvation processes is described. 

 

6.1.  Interface layer formation 

One major topic in studying interface reactions is the formation of interface layers by 

electrolyte decomposition. Many experimental results have shown that the formation of the interface 

layer affects the battery performance [14, 75]. For graphite electrodes, the interface layer or SEI [5] 

has been particularly widely investigated [14]. PES, SEM, TEM, energy-dispersive X-ray (EDX) 
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spectroscopy, and EELS have been used to analyze the composition, thickness, and structure of the 

SEI, mainly based on ex-situ analysis performed by opening batteries at different states of charge 

(SOC) [14]. Ex-situ analysis is helpful, but the opening of the battery can affect the state of the 

interface layer and dynamic processes such as non-equilibrium states cannot be detected by ex-situ 

analysis. To solve these problems, in-situ analysis of the interface layer has been reported recently 

[14]. Because the interface is located between the organic electrolyte and solid electrolyte, the 

analysis method must be able to approach the buried interface; in addition, the interface layer is 

mainly composed of light elements such as C, O, and H, so the analytical method must be sensitive 

to light elements.  

NR measurements fulfill these analytical requirements. NR measurements were performed to 

analyze the composition, thickness, and roughness of an LiCoO2–electrolyte interface [16]. For NR 

analysis, a flat sample is necessary; an epitaxial film of LiCoO2(104) on SrRuO3(100)/Nb–

SrTiO3(100) was prepared (Fig. 4). Fig 43 shows the results of NR and analyzed scattering length 

density for the pristine, electrolyte-immersed (1 M LiClO4 in deuterated EC:DMC vol. 1:2), fully 

charged (+4.2 V vs. Li/Li
+
), and fully discharged (3.3 V vs. Li/Li

+
) LiCoO2(104)/SrRuO3(100)/Nb-

SrTiO3 (100). After the immersion of LiCoO2(104) in the electrolyte, an interface layer forms ((ii) in 

Fig. 43a and 43b). From the analysis of scattering length density (SLD), it is determined that the 

interface layer mainly comprises polyethylene oxide (PEO). In electrolytes using mixed EC/DMC 
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solvents, the accumulation of EC on LiCoO2 electrodes because of the high polarization of EC has 

been observed [90]. At the interface of LiCoO2(104) and the electrolyte, EC molecules should 

contact with the LiCoO2(104) surface. With this contact with LiCoO2(104), Co ions are reduced, as 

observed in polycrystalline LiCoO2 [13]. PEO formation is caused by the oxidative polymerization 

of the EC molecules. According to previous first principles calculations [161], the EC molecular 

oxidation produces the unstable radical species 1 as follows: 

[EC-ClO4
-
] – e

-
 → O=CH-C

●

H2 + CO2 + HClO4 

 

Based on the reactions, the reaction of species 1 with additional EC molecules forms the radical 

species 2 and 3. 

O=CH-C
●

H2 + EC → CO2 + O=CH-CH2-O-C
●

H2-CH2  

 

 

O=CH-CH2-O-CH2-C
●

H2 + EC → CO2 + O=CH-CH2-O-C2H4-O-CH2-C
●

H2  

 

From the reactions, a general expression of the product of the polymerization is given as 4. 

 O=CH-CH2-[-O-CH2-CH2-]n-O-CH2-C
●

H2 

 

1 

4 

1 2 

2 3 
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Product 4 mainly comprises the PEO group ([-O-CH2CH2-]n-); thus, a PEO layer is formed at the 

electrolyte–LiCoO2(104) interface. During charging ((iii) in Fig. 43a and 43b), the thickness of the 

interface layer is increased from 30.6 nm to 48.8 nm and insertion of Li into the layer is observed. 

These changes are caused by the additional decomposition of the electrolyte via oxidative reaction 

and the trapping of Li ions extracted from LiCoO2(104). For the composition of the interface layer, 

the addition of inorganic species such as Li2CO3, LiCl, LiOCO2CD3, and (LiCO2CD2)2 is suggested. 

In the discharge process, the thickness of the interface is decreased from 48.8 nm to 35.6 nm, 

although the composition remains mostly unchanged ((vi) in Fig. 43a and 43b). These changes are 

attributed to the simple stripping of the interface layer by the insertion and diffusion of Li in the 

discharge process. This suggests that interactions in the interface layer are not strong. These NR 

analyses clearly show the dynamic changes in the interface layer during the charge and discharge 

processes. 

On graphite electrodes, SEI formation has been detected by FT-IR [162-171], XPS [172-175], 

gas chromatography (GC) [176], and TEM [177-179] and directly observed by in-situ AFM [20]. 

Fig. 44 shows the in-situ AFM of basal HOPG in 1 M LiClO4 in EC-DMC (vol. 1:1) during potential 

scan between 2.9 and 0.05 V (vs. Li/Li
+
). The insertion of solvated Li into the basal plane of HOPG 

is observed from the step below 1.0 V (vs. Li/Li
+
) in EC-based electrolytes at room temperature. At 

~0.95–0.80 V (vs. Li/Li
+
), the terrace structure is changed (Fig. 44c) by the intercalation of the 
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solvated Li from the step. In addition, the formation of a blister with a height of ~15–20 nm (white 

circle in Fig. 44c) from the accumulation of decomposition products of the solvated Li in the 

graphite layers is observed (Fig. 44d). At potentials more negative than 0.65 V (vs. Li/Li
+
), particle-

like precipitates are observed on HOPG. From pyrolysis/GC/mass spectroscopy (MS) analysis, the 

precipitates contain longer polymerized compounds with repeated oxyethylene units similar to PEO. 

The number of the precipitates increases as the potential decreases to 0.05 V (vs. Li/Li
+
), as shown in 

Fig. 44e, but they disappear at 2.9 V (vs. Li/Li
+
) after the reverse sweep as shown in Fig. 44f, 

probably because of scratching by the AFM tip. The surface morphology changes and the number of 

precipitates observed in the second cycle of Li intercalation are very small. This is an important 

finding because it suggests that effective SEI exists  even after the removal of the surface by the 

AFM tip. The SEI formation is affected by impurities in the electrolyte. The formation of pits and 

the interface layer triggered by the electrochemical decomposition of POF2OH in the electrolyte are 

observed on the basal plane of HOPG [180, 181].   

For SEI formation on the edge plane of a graphite electrode, Domi et al. used a polished edge 

plane-oriented HOPG sample to observe the surface morphology changes by in-situ AFM [118, 119]. 

The formation of fine particles smaller than 0.1 μm was observed in the range of 1.0–0.6 V (vs. 

Li/Li
+
). These are remnants of the blisters observed on the basal plane. With further sweeping of the 

potential into the negative region, the formation of precipitates by electrolyte decomposition was 
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observed, similar to that on the basal plane. The thickness of the layer formed on the edge plane was 

~55 nm, slightly thicker than that on the basal plane (~44 nm). The formation of the thicker layer 

was caused by the higher activity of the edge plane compared to that of the basal plane. After the 

second cycle, the layer thickness was estimated as 66 and 77 nm on the edge and basal planes, 

respectively; indicating a suppressed increase in thickness on the edge plane. This implies that the 

layer formed on the edge plane in the first cycle works as an effective passivation layer, and 

suppresses the decomposition of the electrolyte than that on the basal plane.  

 

6.2. Space charge layer 

On the electrode surfaces of a working battery, space charge layers with properties differing 

from those of the bulk are formed by the electric field [12]. The effects of space charge layer 

formation on the battery performance have been suggested by studies on Li-ion batteries using solid 

electrolytes [12]. The electrochemical performance of the electrode and the interfacial resistance are 

both affected by electrode coatings; the effects are interpreted to arise from the space charge layer. 

The space charge layer formation on an LixCoO2 electrode in organic electrolyte was observed by 

TRF-XAS [13, 79-82]. On the LiCoO2 surface, differences in the electronic structural behavior were 

observed relative to that of the bulk [13, 79]. When the electrode was in contact with the electrolyte, 

the reduction of Co ions on the electrode surface was observed (Fig. 45a). This reduction was caused 
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by the compensation of the electrochemical potential between the positive and negative electrodes. 

On the LiCoO2 surface, the compensation of the electrochemical potential is achieved by the 

formation of the space charge layer because the electronic structure features a conduction band 

minimum at a relatively low energy [182]. The crystal structure of the LiCoO2 surface is distorted by 

the formation of the space charge layer, causing the irreversible deterioration of the surface of the 

electrode during the first charging process (Fig. 46a, 46b) and the subsequent capacity fading in later 

charge–discharge cycling (Fig.47).  

On the surface of LiFePO4, another typical material for positive electrode in Li-ion batteries, 

different surface electronic structure features were observed [77]. The electronic structure of Fe at 

the surface of the LiFePO4 electrode does not change upon contact with the electrolyte (Fig. 45b). In 

addition, during charging process, the irreversible change of the surface structure observed in 

LiCoO2 is absent in LiFePO4 (Figs. 46c, 46d). Because of the reversible surface changes, the charge 

and discharge capacity of LiFePO4 remains stable during cycling. The observed stability of the 

LiFePO4 surface arises from the suppression of the formation of the space charge layer. Because the 

conduction band minimum of LiFePO4 is relatively higher in energy [128], compensation for the 

electrochemical potential difference between the working and counter electrodes is less easily 

achieved by the formation of a space charge layer on the LiFePO4 surface (Fig. 47). Instead of a 

space charge layer, an electric double layer formed on the electrolyte side compensates for the 
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difference in electrochemical potential. Thus, the LiFePO4 electrode shows reversible surface 

changes during the charge process and improved cyclic performance during charge–discharge 

cycling.  

The effects of surface coatings on the space charge layer formed on electrodes can be analyzed 

by TRF–XAS and depth-resolved XAS (DR-XAS) spectroscopy [81]. MgO coatings on LiCoO2 can 

improve the Coulombic efficiency of the charge and discharge capacity at high potentials of ~4.3–

4.4 V (vs. Li/Li
+
). TRF-XAS shows that the reduction of Co ions during the soaking of the 

electrolyte and the structural deterioration of the LiCoO2 surface are suppressed by the MgO coating. 

This is explained by the formation of a solid solution of Mg on the LiCoO2 surface (Fig. 48); the 

solution phase stabilizes the layered structure of LiCoO2 and thus prevents structural deterioration 

caused by the space charge layer.  

By adding VC to the electrolyte, space charge layer formation at the LiCoO2 surface is 

suppressed [82]. Battery performance improvements by the addition of VC are well known for 

negative electrode reactions, particularly with carbon negative electrodes. Similar to the negative 

electrode coating, the VC improves the cyclic charge–discharge capacity of LiCoO2. TRF-XAS 

analysis revealed that VC in the electrolyte suppressed the reduction of Co ions and the structural 

deterioration of the LiCoO2 surface. These demonstrate the suppression of space charge layer 

formation, similar to the effects of an MgO coating on LiCoO2. However, the VC additive does not 
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form solid solutions as the MgO coating does. A different mechanism suppresses the formation of 

the space charge layer. Because of the high dielectric constant of VC of 127 [14], many VC 

molecules are expected to accumulate at the LiCoO2 surface. VC is more easily oxidized than EC, 

and the oxidized VC molecules initiate polymerization on the LiCoO2 surface. Thus, the surface of 

LiCoO2 becomes covered by an interface layer formed by the oxidative decomposition of VC. This 

layer physically separates the LiCoO2 from the electrolyte, thereby suppressing further oxidation of 

the solvent molecules, and reduction of the Co ions. The formation of an irreversible structural 

change at the LiCoO2 surface due to the formation of the space charge layer was not observed (Fig. 

49). These improve the cyclic performance of LiCoO2. 

So far, analysis of the space charge layer has been performed by spectroscopic measurements. 

In future, the changes described above should be directly observed by microscopic techniques. The 

most suitable equipment to analyze the surface structure changes are STM and AFM because they 

can operate during the charge and discharge processes.  

 

6.3. Desolvation process 

Li ions in the electrolytes of Li-ion battery systems are coordinated with organic solvents [10, 

11]. When the Li ions are transferred from the electrolyte to the electrode, the ions must release the 

coordinated solvent molecules via desolvation processes. Electrochemical analysis has concluded 
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that the desolvation process has a high energy barrier and is necessary in understanding the 

interfacial processes. 

We begin the discussion with Li transfer between a solid and liquid electrolyte because the 

chemical reactions at the solid–liquid interface do not include electrolyte decomposition, a redox 

reaction that affects the resistance. In the experiments, the main contribution of the interfacial 

resistance is assigned to Li transfer between the solid and liquid electrolytes. Electrochemical 

impedance spectroscopy (EIS) can be used to estimate the resistance to ion transfer between the 

electrode and electrolyte. Fig. 50 shows an example of the Nyquist plot for a four-probe system used 

in the experiments consisting of Li/electrolyte/La0.55Li0.35TiO3 (LLT)/electrolyte/Li [10]. The 

electrolyte is 1 M LiCF3SO3 in PC. The low-frequency semicircle is assigned to the LLT–electrolyte 

Li-transfer resistance. From the temperature dependence of the resistance and Arrhenius plotting, the 

activation barrier energy was estimated; the activation barrier clearly depended on the solvents used 

in the electrolyte. The activation barrier for the system using dimethyl sulfoxide (DMSO) as the 

solvent is 69.9 kJ/mol, higher than that using PC (57.3 kJ/mol) or fluoroethylene carbonate (FEC, 

31.5 kJ/mol) (Fig. 51). First principles calculations show similar tendencies: the desorption energy of 

a solvent molecule from a single Li ion decreases in the order of DMSO, PC, and FEC [10]. The 

activation barriers for interfacial Li transfer in EC-DMC and DMC solvents were also estimated; 

those in DMC-only electrolytes were ~16–21 kJ/mol smaller than those in EC-DMC. As explained 
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previously, the interfacial resistance mainly arises from Li ion transfer in these experiments. Thus, it 

is shown that Li ion transfer at the interface is influenced by the desorption of solvents coordinated 

with Li ions. 

The activation barrier to Li transfer between an LiCoO2 thin-film electrode and a liquid 

electrolyte (1 M LiClO4 in PC) was also estimated by EIS measurements to be 61.0 kJ/mol (Fig. 52) 

[183]. This value is similar to that obtained at the LLT/electrolyte interface in PC solvent (57.3 

kJ/mol). This similarity supports the strong correlation of the interfacial resistance with the 

desolvation process, even at the electrode–electrolyte interface in Li-ion batteries. 

The influence of the desolvation process is also observed with graphite electrodes [184]. From 

EIS measurements, the activation barriers to Li ion transfer in dimethoxyethane (DME) and EC-

DEC electrolytes with HOPG electrodes are estimated as 25 and ~53–60 kJ/mol (Fig. 53), 

respectively. From X-ray diffraction (XRD) measurements of the HOPG electrode after lithiation, 

the Li ions in graphite in the EC- DEC-based electrolyte are desolvated; however, those in the DME-

based electrolyte remain coordinated with solvent molecules in graphite. This originates from 

differences of the interactions between Li and the different solvents. In the EC-DMC-based 

electrolyte, EC molecules are coordinated with Li ions. The interaction strength of DME and Li ions 

is higher than that of EC and Li ions. Thus, the DME molecules cannot desorb at the interface. In the 

EC-DEC-based electrolyte, EC decomposes and forms an efficient SEI on the graphite electrode 
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because the Li ions are efficiently desorbed from EC solvent molecules at the interface. 

The above results demonstrate that the desolvation process strongly affects Li ion transfer at 

the electrode–electrolyte interface. Desolvation (and solvation) occur in the electric double layer 

formed on the interface. To understand the molecular actions during the desolvation process, the 

electric double layer must be carefully investigated using advanced spectroscopic or microscopic 

analyses. Methods to observe the desolvation and solvation processes and thereby clarify the 

mechanism of the electronic double layer include interface-sensitive vibrational spectroscopic 

techniques, such as SEIRA [84, 85] and SFG [89-91]. With analysis of the coordination structures of 

Li ions at the interface by vibrational spectroscopy, the desolvation and solvation steps can be 

clarified. Recently, several studies analyzing the interface have been reported [89-91]. Microscopic 

techniques such as STM [185] and AFM [69, 70, 186, 187] can directly visualize the desolvation and 

solvation processes. We recently used FM-AFM in liquid to analyze the interface structures formed 

by tetraglyme, a organic solvent investigated for use in Li-ion batteries, and graphite [188]. The 

adsorbed tetraglyme molecules are clearly observed to form a linear superstructure with a molecular 

distance of ~0.65 nm on HOPG (Fig. 54). From vertical scanning, the formation of a layered 

structure of the exiting probability of tetraglyme at the interface with the distance of 0.60 nm is 

observed (Fig. 55). This demonstrated that the liquid-phase molecular distribution at the electrode–

electrolyte interface can be directly visualized by FM-AFM. This technique can therefore be applied 
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to interfacial analysis in working batteries. Observations of electrode–electrolyte interface structures 

in electrochemical conditions were reported [187]; the application of these techniques to Li-ion 

batteries can be expected to provide new insights on the interface reactions. 

 

 

7. Concluding remarks 

In this review, current knowledge regarding the geometric and electronic structures at the 

surfaces of various electrode materials, as well as that regarding the chemical processes at the 

electrode–electrolyte interfaces, are summarized for Li-ion batteries. The break in crystalline 

periodicity at the interface strongly influences the interfacial physical properties. The stability of the 

surface structure of the electrode material strongly depends on the plane orientation and the 

atmosphere. In addition, the electronic structure is significantly influenced by the termination 

structure. These induce complexities in the investigation of the physical properties of the electrode 

surfaces in Li-ion batteries. So far, experimental investigations have been limited to the surface 

structures of LiCoO2(001), LiFePO4(010), Li4Ti5O12(111), LiTi2O4(111), and the basal plane of 

graphite and the electronic structures of LiCoO2(001), graphite (basal planes and edge sites but not 

on the plane), and LiTi2O4(111). Other systems have only been investigated by theoretical 

calculations. Obviously, more surfaces should be widely investigated, in addition to these reported 
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systems. The physical properties of the surfaces of electrode materials with high activity for Li 

insertion and extraction, such as LiCoO2(104) and the edge plane of graphite, remain 

uncharacterized at present. As described above, this is because of the difficulty in preparing high-

quality samples having atomically flat surfaces. Breakthroughs to prepare such surfaces are 

necessary for progress in the experimental investigation of the surface and electronic structures of 

these materials.  

Regarding the chemical processes at the electrode–electrolyte interface, the thickness, 

composition, and roughness of interface layers have been analyzed by NR and AFM, allowing 

clarification of the dynamical changes and real SEI formation at the electrode–electrolyte interfaces. 

Also, the effects of space charge layers on battery performance have been investigated by TRF-XAS. 

It is clarified that the control of the space charge layer is important in improving battery 

performance. In addition, EIS analysis provided the desolvation processes have a strong influence on 

the interface reactions that gives new information to improve the battery performance by controlling 

the interface. For further improvements in battery performance, the atomic and molecular natures of 

the materials should be carefully studied. Much work remains regarding the electrode–electrolyte 

interface in Li-ion batteries that can be accomplished using surface science techniques; both 

advanced and traditional techniques can be applied. We believe that both surface and interfacial 

characterization can elucidate new aspects of the electrode–electrolyte interface in Li-ion batteries, 
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thus driving innovative improvements in battery performance to contribute to future energy and 

environmental solutions. 
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Figure 1. Schematic model of typical structure of an industrial Li-ion battery. 
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Figure 2. An example of cross-sectional SEM image of LiCoO2 composite electrode prepared by 

94.5% LiCoO2, 2.0% carbon black, and 3.5% polyvinylidene fluoride (PVdF) by the weight. The 

horizontal dark band near bottom of image is aluminum current collector. The composite electrode is 

located on the aluminum current collector. In the composite electrode, bright, gray and dark regions 

are observed. The bright regions are the active material (LiCoO2). The gray regions are mixtures of 

conductive material (carbon black) and binder (PVdF).  The dark regions are pore domains. The pore 

domains are occupied by electrolyte in Li-ion battery. Reprinted with permission from Ref. 8. 2011, 

The Electrochemical Society.  
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Figure 3. Schematic model of the structure of the interface between electrode and electrolyte. Green 

and white balls are Li ions and anions, respectively. Yellow ellipses are solvent molecules. Positive 

and negative electrodes having layered structures are shown as examples.  
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Figure 4. Cross sectional TEM image of an epitaxial LiCoO2 thin film grown on SrRuO3/Nb-SrTiO3. 

Reprinted with permission from Ref. 16. Copyright 2016 American Chemical Society. 
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Figure 5. A photograph of the prepared single crystal of LiCoO2. 
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Figure 6. Schematic model of reflection of X-ray or neutron at interface between layers. 
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Figure 7. First schematic model of scanning tunneling microscope shown in Ref. 45. Reprinted 

figure with permission from Ref. 45. Copyright 1982 by the American Physical Society. 

  



86 
 

 

Figure 8. Potential model of tunneling junction in scanning tunneling microscopy. 
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Figure 9. Schematic model of frequency-modulation atomic force microscopy in liquid. 
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Figure 10. Schematic model of measurement system of total reflection fluorescence X-ray 

absorption spectroscopy in electrochemical condition.  
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Figure 11. Schematic model of sum frequency generation due to irradiation of IR and visible 

(wavelength = ωIR and ωvis) light. 
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Figure 12. Crystal structure of LiCoO2. Green and red balls show Li and O, respectively. Blue 

octahedrons show CoO6 units. 
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Figure 13. Selected equibrum shapes of LiCoO2 and relative contribution of each surface as a 

function of the oxygen chemical potential in a Li deficient environment calculated by first principles 

calculation. Reprinted with permission from Ref. 99. Copyright 2016 American Chemical Society. 
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Figure 14. (a) Surface structure of LiCoO2(001) and (b) corresponding constant current STM image 

of a Li0.66CoO2(001) surface measured at ~5 K, showing hexagonal lattice of Li ions at the surface 

4.8 × 4.8 nm
2
, sample bias voltage (Vs) = -1.0 V, and tunneling current (It) = 0.2 nA. Reprinted 

figure with permission from Ref. 21. Copyright 2013 by the American Physical Society. 
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Figure 15. Noisy features observed in STM images of Li0.66CoO2(001) surface obtained at ~5 K. The 

noisy features are probably due to unstable Li on the surface. Reprinted figure in the supplemental 

material with permission from Ref. 21. Copyright 2013 by the American Physical Society. 
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Figure 16. STM images of CoO2 layer on Li0.66CoO2(001) surface, (a) and (b) Vs = -0.6 and +0.6 V, 

respectively (6×6 nm
2
, It= 0.3 nA). The autocorrelation image of (b) is shown in the inset. Reprinted 

figure with permission from Ref. 21. Copyright 2013 by the American Physical Society. 
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Figure 17. Crystal structure of olivine type LiFePO4. Green and red balls show Li and O, 

respectively. Dark purple octahedrons and pink tetrahedrons show FeO6 and PO4 units, respectively. 
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Figure 18. Li migration pathway directed to (010) in LiFePO4 crystal. Small and large spheres show 

the Li and Fe ions. The tetrahedral structures show PO4 units. Reproduced from Ref. 102 with 

permission of The Royal Society of Chemistry. 
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Figure 19. Surface structure of LiFePO4(010) determined by calculation used a classical force field 

model (empirical potential model). Green, blue, purple and red balls show Li, Fe, P and O ions. 

Reproduced from Ref. 102 with permission of The Royal Society of Chemistry. 
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Figure 20. A image obtained by annular bright field (ABF) imaging in aberration-corrected scanning 

transmission electron microscopy (STEM) of the LiFePO4(010) surface taken down the [001] zone 

axis, (a) cleavage surface and (b) the surface after 3000 h from chemical deithiation. The white 

arrows in (a) and (c) indicate the directions of shift of P and Fe atom columns from the bulk position. 

(b) Cross-section of the reconstructed (010) surface model of LiFePO4 obtained from first-principles 

calculations. Reprinted with permission from Ref. 23. Copyright 2016 American Chemical Society. 

(a) (b) 

(c) 
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Figure 21. Crystal structure of spinel type LiMn2O4. Green and red balls show Li and O, 

respectively. Light purple octahedrons show MnO6 units. 
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Figure 22. The surface structure of Li-terminated LiMn2O4(111) with inverse spinel structure 

obtained by first principles calculations. Blue, magenta and red circles show Li, Mn and O atomic 

species, respectively. The reconstruction between the undercoordinated surface Mn and bulk fully 

tetrahedrally coordinated Li is indicated by the circles. Reprinted figure with permission from Ref. 

108. Copyright 2013 by the American Physical Society. 
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Figure 23. Surface energies of the most stable surface terminations for the low- and high-index 

surfaces of LiMn2O4. Each phase diagram is plotted for a fixed value of ΔμLi, whereas ΔμO is 

considered as a variable parameter. Reprinted with permission from Ref. 115. Copyright 2016 

American Chemical Society. 
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Figure 24. Li-terminated LiMn2O4(111) structure which is obtained by first principles calculation as 

the most stable structure. Reprinted with permission from Ref. 115. Copyright 2016 American 

Chemical Society. 
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Figure 25. Crystal structure of graphite. Basal and edge planes are shown in the figure. 
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Figure 26. (a) Frequency modulation atomic force microscopic image of graphite(001) in water. The 

image was obtained in the constant height (variable frequency shift) mode. (b) Cross-sectional 

profile (upper curve) measured on A–B line in Fig. 26(a) and force profile (lower curve). Reprinted 

from Ref. 117 with permission. Copyright 2011 The Japan Society of Applied Physics 
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Figure 27. Structure of zigzag and armchair edges in a graphite layer (graphene). 
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Figure 28. Crystal structure of Li4Ti5O12. Green and red balls show Li and O, respectively. Gray 

octahedrons show TiO6 units. 
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Figure 29. Crystal structure of LiTi2O4. Green and red balls show Li and O, respectively. Gray 

octahedrons show TiO6 units. 
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Figure 30. Atom resolved image of Li4Ti5O12(111) surface obtained by scanning tunneling 

microscopy in ultra-high vacuum. Reprinted from Ref. 122, Copyright 2014, with permission from 

Elsevier. 
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Figure 31. Atom resolved image of Li4Ti5O12(111) surface obtained by frequency-modulation atomic 

force microscopy in aqueous solution. Reprinted from Ref. 123, with the permission of AIP 

Publishing. 
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Figure 32. The proposed surface structure of Li4Ti5O12(111) surface. Reprinted from Ref. 123, with 

the permission of AIP Publishing. 
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Figure 33. dI/dV spectrum of Li-Li0.66CoO2(001) obtained at ~5 K in ultra-high vacuum. The tip 

position was Vs = -0.8 V and It = 0.3 nA. Reprinted figure with permission from Ref. 21. Copyright 

2013 by the American Physical Society. 
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Figure 34. (a) and (b) ordering images obtained by scanning tunneling microscopy on CoO2 layers 

on Li0.66CoO2(001) at Vs = -0.6 and +0.6 V, respectively. 6×6 nm
2
, It = 0.3 nA. The autocorrelation 

image of (b) is shown in the inset. (c) Comparison of line profile of the image at -0.6 and +0.6 V in 

(a) and (b). (d) Averaged dI/dV spectrum taken in (a). Set point: It = 0.3 nA, Vs = -0.8 V. Reprinted 

figure with permission from Ref. 21. Copyright 2013 by the American Physical Society. 
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Figure 35. (a) and (b) disordering images obtained by scanning tunneling microscopy on CoO2 

layers of Li0.66CoO2(001) at Vs = -1.0 and +0.8 V, respectively. Both images were taken at the same 

position; 7×7 nm
2
, It = 0.3 nA. (c) Autocorrelation image of (a). (d) Averaged dI/dV spectrum taken 

in (a). Set point: It = 0.2 nA, Vs = -1.0 V. Reprinted figure with permission from Ref. 21. Copyright 

2013 by the American Physical Society. 
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Figure 36. Surface structure of LiFePO4(010) and oxygenated LiFePO4(010) obtained by first 

principles calculation. Reprinted with permission from Ref. 131. Copyright 2015 American 

Chemical Society. 
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Figure 37. Projected density of electronic states of the clean (a) and oxygenated (b) LiFePO4(010) 

surfaces. The contribution of top two Fe layers, as well as O atoms between them, is shown. 

Reprinted with permission from Ref. 131. Copyright 2015 American Chemical Society. 
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Figure 38. Mn-3d projected density of states of (a) bulk λ-MnO2, (b) the λ-MnO2(001) surface, (c) 

Mn
3+

 in bulk LiMn2O4, (d) Mn
4+

 in bulk LiMn2O4, (e) the Li-terminated LiMn2O4(001) surface, and 

(f) the Al2O3/LiMn2O4 (001) surface. Reprinted with permission from Ref. 133. Copyright 2010 

American Chemical Society. 
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Figure 39. Scanning tunneling spectroscopy obtained on basal plane of graphite surface. Reprinted 

figure with permission from Ref. 139. Copyright 1985 by the American Physical Society. 
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Figure 40. Density of state of graphite calculated by using the full zone π-band Johnson-Dresselhaus 

model. Reprinted figure with permission from Ref. 142. Copyright 1982 by the American Physical 

Society. 
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Figure 41. dI/dV curves obtained armchair (a) and zigzag (b) edges on HOPG. Reprinted figure with 

permission from Ref. 144. Copyright 2006 by the American Physical Society. 
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Figure 42. Density of states of surfaces of Li4Ti5O12 calculated by first principles calculation. 

Reprinted from Ref. 126, 2016, with permission from Elsevier. 
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Figure 43. (a) Neutron reflectivity and (b) analyzed scattaring length density determined for (i) as-

prepared sample, (ii) sample after immersion in electrolyte (1 M LiClO4 in deuterated EC:DMC (vol. 

1:2)), (iii) sample after Li extraction at 4.2 V (vs Li
+
/Li), and (iv) sample after Li

+
 insertion at 3.3 V 

(vs Li+/Li) of LiCoO2(104) layer/SrRuO3(100) layer/Nb−SrTiO3(100) layer. The blue dots and red 

curves in (a) correspond to experimental and fitted data, respectively. The neutron reflectivity in (ii), 
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(iii), and (iv) and SLD values in (i), (ii), and (iii) are shifted for offsets. Reprinted with permission 

from Ref. 16. Copyright 2016 American Chemical Society. 
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Figure 44. in-situ atomic force microscopy images obained on the basal plane of HOPG (a) 2.9 V 

(vs. Li/Li
+
) before starting potential scan, (b) 1.10 - 0.95 V (vs. Li/Li

+
), (c) 0.95 - 0.80 V (vs. Li/Li

+
), 

(d) 0.65 - 0.50 V (vs. Li/Li
+
), (e) 0.20 - 0.05 V (vs. Li/Li

+
) during the first cycle at 0.5 mV s

-1
, and (f) 

2.9 after the first cycle in 1 M LiClO4 /EC + DEC (vol. 1 : 1). Reprinted with permission from Ref. 

20. 2001, The Electrochemical Society.  
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Figure 45. (a) Co K-edge XANES spectra on LiCoO2 surface and (b) Fe K-edge XANES spectra on 

LiFePO4 surface before (black line) and after (red line) electrolyte immersion, obtained via in situ 

total reflection fluorescence-X-ray absorption spectroscopy. Reprinted with permission from Ref. 

13. Copyright 2014 American Chemical Society. 
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Figure 46. Co K-edge XANES spectra of the LiCoO2 surface during (a) Li ion extraction and (b) 

insertion (R3.8 V is the voltage applied during Li-ion insertion). Fe K-edge XANES spectra on 

LiFePO4 surface during (c) Li ion extraction and (d) insertion (R3.0 V is the voltage applied during 

Li-ion insertion). Reprinted with permission from Ref. 13. Copyright 2014 American Chemical 

Society. 
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Figure 47. Schematic illustrations of the changes in the electronic structure at the (a,c) 

LiCoO2/electrolyte and (b,d) LiFePO4/electrolyte interfaces upon electrolyte immersion and during 

Li ion extraction/insertion. (ΦS and ΦL are the inner potentials of the electrode and electrolyte, 

respectively. Reprinted with permission from Ref. 13. Copyright 2014 American Chemical Society. 
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Figure 48. Schematic view of the surface structure of (a) LiCoO2 and (b) MgO coated LiCoO2 

during lithium ion extraction. Reprinted from Ref. 81 with permission from the Wiley publication. 
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Figure 49. Schematic illustration of the electronic structure at the LiCoO2/electrolyte interface for (a, 

b) the VC-free and (c, d) the VC-added electrolytes. ϕE and ϕL are electrochemical potentials of an 

electron in the electrode and the electrolyte, respectively. The blue and green pentagons represent EC 

and VC molecules, respectively. Reprinted with permission from Ref. 82. Copyright 2015 American 

Chemical Society. 
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Figure 50. A example of Nyquist plot for a four-probe system consisting of 

Li/electrolyte/LLT/electrolyte/Li. The electrolyte was 1 M LiCF3SO4 in PC. Reprinted with 

permission from Ref. 10. 2005, The Electrochemical Society. 
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Figure 51. Temperature dependencies of Li ion transfer resistances at the interface between glass 

electrolyte and liquid electrolytes of PC, DMSO, and FEC containing 1 M LiCF3SO3.  Reprinted 

with permission from Ref. 10. 2005, The Electrochemical Society. 
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Figure 52. Temperature dependence of Li ion transfer through LixCoO2/PC interface. Closed and 

open circles show the data obtained from bare and an MgO coated LiCoO2 thin film electrodes at 4.0 

V (vs. Li/Li
+
). Reprinted from Ref. 183, 2004, with permission from Elsevier. 
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Figure 53. Schematic illustration of Li ion and solvated Li transfers at graphite electrodes. The 

activation energies for solvated Li ion transfer are much lower than those for Li ion transfer.  

Reprinted with permission from Ref. 10. 2005, The Electrochemical Society. 
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Figure 54. Observation of the first layer of adsorbed tetraglyme on HOPG obtained by frequency 

modulation atomic force microscopy in liquid. The frequency and amplitude of the cantilever 

oscillation are 92 kHz and 0.3 nm, respectively. Reprinted from Ref. 188, with the permission of AIP 

Publishing. 
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Figure 55. Cross-sectional distribution of frequency shift that reflect the molecular density in liquid 

phase at the tetraglyme/HOPG interface. The amplitude of the cantilever oscillation is 0.3 nm. The 

cantilever approached the surface until the frequency shift reached 1000 Hz. Reprinted from Ref. 

188, with the permission of AIP Publishing. 
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Table 1. Physical parameters of LiFePO4 surfaces calculated by classical force field model 

(empirical potential model). All data are from Ref. 102. 

 

Plane 

Tasker 

surface 

type 

d-spacing, 

dnkl/Å 

Surface energy,  

Esurface/J m
-2 

Attachment 

energy, 

Eattach/J m
-2 Unrelaxed Relaxed 

(001) III 2.33 2.40 1.11 -11.18 

(010) III 3.01 1.64 0.72 -5.74 

(100) III 5.19 2.12 0.87 -3.39 

(011) III 3.69 2.55 0.75 -6.43 

(012) II 1.09 4.50 1.02 -27.31 

(021) II 1.27 2.41 0.82 -18.03 

(101) III 4.26 1.65 0.88 -3.42 

(102) II 2.28 3.29 1.15 -19.85 

(110) II 2.60 3.62 0.92 -16.25 

(111) III 3.48 2.94 0.89 -5.34 

(112) III 2.13 2.57 0.88 -16.81 

(120) III 1.45 3.53 0.86 -17.43 

(121) II 2.46 2.44 0.94 -11.27 

(122) III 1.82 2.65 0.80 -14.17 

(201) III 3.47 1.37 0.71 -4.27 

(210) III 3.93 2.61 0.90 -5.55 

(211) III 3.01 2.51 0.80 -8.60 

(212) III 2.01 2.26 0.86 -11.60 

(221) II 2.27 2.52 0.79 -10.69 

 

 

 

 


